
Nazir Iqbal, Mahmood ul Hassan, Abdel Rehman Osman, Mubashir Ahmad/ International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.604-607

604 | P a g e

A framework for partial implementation of PSP in Extreme

programming

Nazir Iqbal, Mahmood ul Hassan, Abdel Rehman Osman, Mubashir

Ahmad
Department of Computing & Technology IQRA University-IU Islamabad, Pakistan.

Computer Department, College of Science & Arts, Al Jouf University, Tabarjal, Saudi Arabia

 Abstract
As the developed software has tendency of

complexity and growing size, still major portion of

it is developed by an individual and self-directed

programmer. To enhance the skills of individual

developer and team capabilities is the key feature

towards quality and productivity.

This research gives an idea of the modification of

extreme programming by inserting in Personal

software process, which is easy to follow and keeps

the software development process lighten. This

new model will establish best development

practices from XP. For quality and better project

planning PSP will support the individual.

Strategies, phases and twelve core practices of this

model are explained in this paper.

I. Introduction
Different approaches to software have been

introduced from last 25 years; today few of them

have been survived. In the beginning every approach

was effectively used, but with the passage of time a
lot of deficiencies found in those models.

A new method called “Agile” was introduced to

overcome the problems in traditional methods. They

are more adoptive as compared to traditional

methods. There are numerous methodologies under

the umbrella of “Agile” but the most popular type of

methodology is Extreme Programming. XP is a set of

principles and standards to develop high quality

software speedily that offer maximum advantage to

the customer.

 Extreme programming is suitable where customers

are not sure and change their mind frequently. XP

uses iterative approach to develop software. To meet
changing requirements are intended to deliver

working software quickly and evolve this quickly.

Developers in small scale industry are facing a lot of

problems to deliver a quality product well on time.

Majority of the agile methods focuses on team. These

methods are needed to be customized to enhance the

individual performance.

PSP is the solution to improve the performance of the

organization by improving individual performance,

as the performance of individual collectively reflects

at the organizational level, however to learn PSP and

implement it thoroughly it needs a lot of efforts,
training and documentation, so the actual

implementation of PSP in small scale industry is

very tough.

The approach in this research is based on

combination of PSP and XP. The PSP helps people to

realize and enhance their individual performance.

PSP train individuals in estimation and planning of

their work. Like XP, PSP track quality and from the

very initial development phase, focus on building the

quality product.

Personal software process provides personal control,
with the help of PSP a developer can produce more

reliable plan, and work can be managed properly.

Personal software process helps the developer to

estimate and measure their work.

II. The Practices
 This improved model is a software development approach designed for small scale software

industry. Following are 12 core practices.

Practices Improved Model

The Planning

Game

To divide the task into small module user stories is a good practice, here effort on each story

is estimated and then sorted according to the priority.

Small Releases

The team releases the system to the customer in iteration. Important and Small unit of

functionality are often release early. The feedback of this release is critical for the system

development.

Continuous

Integration
Daily all the changes are integrated. Tests are after and before the integration.

Simple Design
It is always easy to work on simple design than a complex one. Requirements are always

change, so just only do to fulfill today’s requirement.

Nazir Iqbal, Mahmood ul Hassan, Abdel Rehman Osman, Mubashir Ahmad/ International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.604-607

605 | P a g e

Testing

To verify the software Tests are written, then software is developed to pass those tests. Two

types of tests in this improved model

1. The developers write test first to check their functionality, each is for class or small

module.

2. Acceptance Testing is for the whole system, when acceptance is pass for any story that is
considered complete

Refactoring
 Keep your code simple, understandable and easy to modify. It saves time and increases

quality and also produce an organize system.

Coding standards A set of practices which works as a model to be followed.

Process

Improvement

Proposal

Improvement ideas and to record process problems

To have improvement ideas in priority order
Priority of improvement plans

Any other important observation

Time Recording For errors Review the completed Time Recording log.

Size

Measurement

The size of the completed program is measured.

The size of new, deleted and reused code is measured.

Use size template to determine to total program size

Defect Type

Standard

Team member responsible for requirement gathering

Defect Recording
To ensure that all of the defects found in each phase were recorded.

Use the Project Plan Summary to verify any omitted defects

III. Strategies of the model
Incremental change: Change in increment is the

main strength of this model is, as change

continuously occurs. so small and incremental change

is suggested.

Stand up Meetings: For reporting problems daily a

short meeting is held. The members then try to find

the solution to those problems.
Tracking progress: The progress of the team

members is tracked with the help of other team

members.

Less Documents: This improved model uses few

plan and recording logs to document.

Small investment: This model is mainly for small

scale software industry, the strategy is to start with

few developers, later if needed more developers are

inducted.

IV. Phases of the model
The life cycle of this improved model

consist of five phases: exploration, planning, personal

planning, iteration to release, product ionizing.

In the exploration phase the requirement are

gathered. It is one of the challenging tasks for

software developers. Requirements are gathered

using story cards. In the mean time the project

member familiarize themselves with tools, practices

and technology that will be used in the project, by

building a prototype of a system, the architectural

possibilities of the system are explored. This phase

takes from few weeks to months.

The main problem in this phase is the incompleteness

and unclear gathering of requirements, which causes

majority of the software failure

The Planning phase is about an agreement for the

first small release and stories priority order. Here the

programmer estimate time for each story and also

schedule is decided. Release planning has a set of

rules which permits everyone involved to make their
own decisions. It is important for both technical and

business people to make their decisions.

The developer on the basis of requirement priority

choose a set of tasks, it may comprise of smaller

tasks. The developer estimate and using his approach

the cost for each task is calculated. The planning

phase takes few days, while time for the first release

is up to two months.

The personal planning phase is about estimation

and measurement of the individual, here the

programmer measure and estimates the size of the

job. He estimates the effort required for each task and
produces a schedule for himself according to the task

order. To keep his work systematic the developer

follow code standards and use process improvement

proposal, Time and Defect recording log. In this

phase the developer daily evaluates himself at the day

end; with personal planning developer can provide

regular updates to his mangers and customers.

Nazir Iqbal, Mahmood ul Hassan, Abdel Rehman Osman, Mubashir Ahmad/ International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.604-607

606 | P a g e

The iteration to release phase is of several iteration

of the system, before first release. The schedule is

made for a number of iterations, while each iteration

is of 2 to 4 weeks long. Customer is responsible for

the selection of each story. For the whole system

architecture is created with the help of first iteration.

At the end of every iteration functional test is run.

The system is ready for production at the end of last

iteration.

The product ionizing Phase needs some extra

testing and performance of the system before it is

released to customer. Decision has to be made and
new changes may still be found in this phase. From 3

to 1 week the iteration need to be quick enough

during this phase. For later documentation the

postponed ideas are documented.

V Model at Work
The target of our model is individual and

small scale software industry, although it is not

formally applied in software industry, however it has
been tested and applied by individual developer and

has found satisfactory for the development. However

a qualitative survey was conducted to realize the use

of this model among software engineers. As software

professionals are typically busy so few basic

questions were asked. The questions are:

Q1: Was customer satisfied after usage of this

model?

Q2: Does model enhance the productivity?

Q3: with practices programmer skills’ get better.

Q4: Does this model improves software development

cycle time?

Q5: Does the management visibility improve with

practices?

100% of the professional were of positive opinion

and they reiterate that to use this new model in their

future suitable projects.

VI Conclusion
This paper suggests a new and improved

software development model for small scale software

industry. This model based on 12 core principle i.e.

each six from extreme programming and personal

software process. The model approach attempt

between the light and heavy methodology to

improves the software developer productivity and

quality. This improved inducts the process in XP

which targets individual performance, however it

keeps the major practices of XP so that can be fit for

small development team.
Our model consist of five (5) phases, they are

exploration, planning, personal planning, iteration to

release and product ionizing,

We do not recommend some of the practices like pair

programming and on-site customer for small

development team. As some of the team members do

not feel comfort while working in fairs, similarly full

time presence of customer and having informal

request of changes makes the project costly and

behind the schedule.

Nazir Iqbal, Mahmood ul Hassan, Abdel Rehman Osman, Mubashir Ahmad/ International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.604-607

607 | P a g e

In order to find how the model works in reality and

its effects on small software organization, one of the

most exciting aspects is try to implement the model

in an organization and conduct a case study. To
validate and extend this model much work to be

done.

References

1. “Can Extreme Programming be used by a

Lone Programmer?” , Edward Akpata and

Karel Riha (2004)

2. “ Application and Evaluation of the Personal

Software Process”, by Hamdy K.Elminir,

,Eman A. Khereba, Mohamed Abu Elsoud,

Ibrahim El-Hennawy,
3. PSP : “A self-improvement process for

software engineers 2005”

4. W.S. Humphrey, “Introduction to Personal

Software Process” , Software Engineering

Institute, Carnegie Mellon University

Pittsburgh, Pa..

5. “Ravikant Agarwal , and David Umphress ,

“Extreme Programming for a Single Person

Team?”

6. “A comparison between Agile and Traditional

Software Development Methodologies”, by M

.A .Awad
7. “ Personal Extreme Programming – An Agile

Process for Autonomous Developers”, by Yani

Dzhurov, Iva Krasteva, and Sylvia Ilieva,

8. “Toward a Framework for Evaluating Extreme

Programming”, by Laurie Williams1, William

Krebs2, Lucas Layman1, Annie I. Antón1,

Pekka Abrahamsson3

