
 S.Nagaraj, R.Mallikarjuna Reddy / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.295-299

295 | P a g e

FPGA Implementation of Modified Booth Multiplier

S.Nagaraj
1
, R.Mallikarjuna Reddy

2

1Associate professor, Department of ECE, SVCET, Chittoor, nagarajsubramanyam@gmail.com
2Associate professor, Department of ECE, SVCET, Chittoor. mallikarjunareddy.r416@gmail.com

Abstract
To design a high speed multiplier with

reduced error compensation technique. The

fixed-width multiplier is attractive to many

multimedia and digital signal processing systems

which are desirable to maintain a fixed format

and allow a little accuracy loss to output data.

This paper presents the Design of error

compensated truncation circuit and its

implementation in fixed width multiplier. To

reduce the truncation error, we first slightly

modify the partial product matrix of Booth

multiplication and then derive an effective error

compensation function that makes the error

distribution be more symmetric to and

centralized in the error equal to zero, leading the

fixed-width modified Booth multiplier to very

small mean and mean-square errors. However, a

huge truncation error will be introduced to this

kind of fixed-width modified Booth multipliers.

To overcome this problem, several error

compensated truncation circuit approaches have

been proposed to effectively reduce the

truncation error of fixed-width modified Booth

multipliers.

I.INTRODUCTION
HIGH processing performance and low

power dissipation are the most important objectives
in many multimedia and digital signal processing

(DSP) systems, where multipliers are always the

fundamental arithmetic unit and significantly

influence the system‟s performance and power

dissipation. To achieve high performance, the

modified Booth encoding which reduces the number

of partial products by a factor of two through

performing the multiplier recoding has been widely

adopted in parallel multipliers. Moreover, nxn fixed-

width multipliers that generate only the most

significant product bits are frequently utilized to
maintain a fixed word size in these loss systems

which allow a little accuracy loss to output data.

Significant hardware complexity reduction and

power saving can be achieved by directly removing

the adder cells of standard multiplier for the

computation of the least significant bits of 2n-bit

output product. However, a huge truncation error

will be introduced to this kind of direct-truncated

fixed-width multiplier (DTFM). To effectively

reduce the truncation error, various error

compensation methods, which add estimated

compensation value to the carry inputs of the

reserved adder cells, have been proposed. The error

compensation value can be produced by the constant

Scheme. The constant scheme through adaptively

adjusting the compensation value according to the

input data at the expense of a little higher hardware

complexity. However, most of the adaptive error

compensation approaches are developed only for

fixed-width array multipliers and cannot be applied

to significantly reduce the truncation error of fixed-

width modified Booth multipliers directly. To
overcome this problem, several error compensation

approaches [1]–[3] have been proposed to

effectively reduce the truncation error of fixed-width

modified Booth multipliers. In [1], the compensation

value was generated by using statistical analysis and

linear regression analysis. This approach can

significantly decrease the mean error of fixed-width

modified Booth multipliers, but the maximum

absolute error and the mean-square error are still

large. Cho et al. [2] divided the truncated part of the

bit product matrix of Booth multiplication into a
major group and a minor group depending on their

effects on the truncation error. To obtain better error

performance with a simple error compensation

circuit, Booth encoded outputs are utilized to

generate the error compensation value. In [3], a

systematic design methodology for the low-error

fixed-width modified Booth multiplier via exploring

the influence of various indices in a binary threshold

was developed to decrease the product error. The

fixed-width modified Booth multipliers in [2] and

[3] achieve better error performance in terms of the

maximum absolute error and the mean-square error
when compared with the previous published

multiplier in [1]. However, their mean errors are

much larger than that of [1]. The smaller mean error

and mean-square error represent that the error

distribution is more symmetric to and centralized in

the error equal to zero (denoted as zero error). For

many multimedia and DSP applications, the final

output data are produced from accumulating a series

of products rather than from a single multiplication

operation directly.

This paper is organized as follows. In
section II, the modified booth multiplier is briefly

reviewed. The implementation results and outputs

are showed. Section III describes the detailed

comparison of booth multiplier and modified booth

multiplier. Finally ,section IV concludes this paper.

 S.Nagaraj, R.Mallikarjuna Reddy / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.295-299

296 | P a g e

II. PROPOSED LOGIC
Here booth multiplier is going to modified

as Multiplier, partial product, partial product shifter,

adder blocks are shown in below figure 1

Fig 2.1 Block diagram of modified booth multiplier

Fig 2.1.1.Block diagram of multiplier

For example:

Multiplicand: 0110010110101001

Multiplier : 0000111101010101

Product :

0000011000010110101010000001101

Fig2.1.2.Output waveform of multiplier

2.1 MODIFIED BOOTH ENCODER (MBE)

Modified Booth encoding is most often

used to avoid variable size partial product arrays.

Before designing a MBE, the multiplier B has to be

converted into a Prior to convert the multiplier, a

zero is appended into the Least Significant Bit (LSB)

of the multiplier. The figure above shows that the

multiplier has been divided into four partitions and

hence that mean four partial products will be

generated using booth multiplier approach Instead of

eight partial products being generated using
conventional multiplier.

Zn = -2* Bn+1 + Bn + Bn-1
Let‟s take an example of converting an 8-

bit number into a Radix-4 number. Let the number

be -36 = 11011100. Now we have to append a „0‟ to

the LSB. Hence the new number becomes a 9-digit

number that is 110111000. This is now further

encoded into Radix-4 numbers according to the

following given table.

Bits

A

Bits

B

Bits

C

opera

tion

X

1

X

2
Add Sub

0 0 0 +0 0 0 0 1

0 0 1 +a 0 1 0 1

0 1 0 +a 0 1 0 1

0 1 1 +2a 1 0 0 1

1 0 0 -2a 1 0 1 0

1 0 1 -a 0 1 1 0

1 1 0 -a 0 1 1 0

1 1 1 -0 0 0 1 0

Table 1: Modified booth encoder

Fig 2.1.3.Block diagram of booth encoder

The encoder block generates the selector

signals for each 3 bits of multiplicand. This is the

logic for the encoder block:

X1= (a xor b)(a xor c)(not(b xor c))

X2= b xor c

Add=not a

Sub= a

Fig 2.1.4.k-map of booth encoder

 S.Nagaraj, R.Mallikarjuna Reddy / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.295-299

297 | P a g e

Fig 2.1.5.Booth encoder output Wave form

Fig 2.1.6.Block diagram of booth decoder

The decoder block generates the partial

product from the selector signals that they are

generated in encoder block.

Example:

Multiplicand = 0110010110101001

Bits = 0110

Out = 1111001101001010

Fig 2.1.7.Booth decoder output waveform

2.2 PARTIAL PRODUCT

Partial product generator is the combination

circuit of the product generator and the 5 to 1 MUX

circuit. Product generator is designed to produce the

product by multiplying the multiplicand A by 0, 1, -

1, 2 or -2. A 5 to 1 MUX is designed to determine

which product is chosen depending on the M, 2M,

3M control signal which is generated from the MBE.

For product generator, multiply by zero means the
multiplicand is multiplied by “0”.Multiply by “1”

means the product still remains the same as the

multiplicand value. Multiply by “-1” means that the

product is the two‟s complement form of the

number. Multiply by “-2” is to shift left one bit the

two‟s complement of the multiplicand value and

multiply by “2” means just shift left the multiplicand

by one place.

Fig 2.2.1.Block diagram of partial product

Fig 2.2.2.Example of showing partial product (6-bit)

method showing how partial products should be

Added

To prove the output result is correct:

11111101001101100 =

 20(0) + 21(0) + 22(1) +

 23(1) + 24(0) + 25(1) +
 26(1) + 27(0) + 29(1) +

 210(0) + 211(-1) =

 4+8+32+64+512-2048= -1428

 S.Nagaraj, R.Mallikarjuna Reddy / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.295-299

298 | P a g e

Fig 2.2.3.Partial product output waveform

2.3 PARTIAL PRODUCT SHIFTER

Partial product shifter is used to know when
numbers of bits are shifted after every operation of

multiplier.

Fig 2.3.1.Block diagram of partial product shifter

For example:

Multiplier - 0000111101010101

Multiplicand - 0110010110101001

pp0 -

00000000000000000110010110101001

 pp1 -

000000000000000011001011010100100

pp2 -

000000000011001011010100100010000

Like this bits are shifted for every operation

of multiplier.

Fig 2.3.2.Partial product shifter output waveform

Two’s complement

 Here two‟s complement is implemented in new

using xor & or gates.

.
Fig 2.3.3.Block diagram of two‟s complement

For example:

X: 0000111101010101

Y: 1111000010101010

 1

Z: 1111000010101011

Or vector is used to put zeros or ones:

1. If MSB of the two‟s complement result is one

then or vector is one.

2. If MSB of the two‟s complement result is zero

then or vector is zero.

Fig 2.3.4.Two‟s complement output waveform

2.4 ADDER

 Fig 2.4.1.Block diagram of adder

 Adder takes the inputs performs addition

operation and generates sum, carry outputs

For example:

X: 00001111000011110101010101010101

Y : 00001111000011110101010101010100
Z:00001110000111101010101010101001

 S.Nagaraj, R.Mallikarjuna Reddy / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.295-299

299 | P a g e

Fig 2.4.2.Adder Output waveform

III. PARAMETER COMPARISONS

After

synthesis

Booth

multiplier

Modified booth

multiplier

Adders-16

Subtract-16

4x1 mux

No. of slices

4 i/p LUT

IOBS

Combinationa

l delay path

After map

No. of

occupied

slices

4-i/p LUT

Equivalent

gates

No. of

fan-out

Place &route

external IOB

No. of slices

Power

consumed

16

15

240

500

977

64

86.70ns

496

992

9,456

6

64

496

25Mw

-

-

-

366

644

64

65.96ns

375

642

3939

24

32

357

7mW

Table 2: Parameters comparison

0

0.5

1

1.5

2

2.5

3

3.5

4

modified
multiplier

multiplier complexity

P
o
w
er
c
o
n
s
u
m
pt
io
n

Fig 2 Graph representation of modified multiplier

and multiplier

In this graph vertical axis is power

consumption, horizontal axis is complexity. We

know from this graph complexity and power

consumption is less in modified booth multiplier,

when compared to multiplier. So, modified

multiplier is used to save power, complexity is

reduced, speed increment can be performed.

IV. CONCLUSION
In this paper, FPGA implementation of

modified Booth multiplier has been proposed. In the

proposed multiplier, the Partial product matrix of

Booth multiplication was slightly modified as booth

encoder, decoder, and mux. In booth encoder,

encoding table is derived from the booth multiplier,

according to this table we perform shifting, two‟s

complement in new way. So, modified multiplier is

used to save power, complexity is reduced, speed

increment can be achieved. When booth multiplier

and modified booth multiplier we can save the
power up to 40% respectively.

REFERENCES
[1] S. J. Jou, M.-H. Tsai and Y.-L. Tsao, “Low-

error reduced-width

BoothMultipliers for DSP applications,”

IEEE Trans. Circuits Syst. I, Fudam.Theory

Appl., vol. 50, no. 11, pp. 1470–1474, Nov.

2003.
[2] K.-J. Cho, K.-C. Lee, J.-G. Chung, and K.

K. Parhi, “Design of low errorFixed-width

modified Booth multiplier,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol.

12, no. 5, pp. 522–531, May 2004.

[3] M.-A. Song, L.-D. Van and S.-Y. Kuo,

“Adaptive low-error fixed widthBooth

multipliers,” IEICE Trans. Fundamentals,

vol. E90-A, no.6, pp. 1180–1187, Jun.

2007.

