
S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1797 | P a g e

Erasure Code based Cloud Storage File system-Minimizing IO

Recovery

S.Annie Joice* J.Vasanth Wason**
(Department of Computer Science and Engineering, M.A.M. College of Engineering and Technology,

Tiruchirappalli-621105)

(Department of Computer Science and Engineering, M.A.M. College of Engineering and Technology,

Tiruchirappalli-621105)

ABSTRACT

Cloud storage is a model of

networked online storage where data is stored in

virtualized pools of storage which are generally

hosted by third parties. To reduce storage

overhead, cloud file systems are transitioning

from replication to erasure codes. This paper

present an algorithm that finds the optimal

number of codeword symbols needed for recovery

for any XOR-based erasure code and produces

recovery schedules that use a minimum amount of

data. Several cloud systems have adopted Reed-

Solomon (RS) codes, because of their generality

and their ability to tolerate larger numbers of

failures. We define a new class of rotated Reed-

Solomon codes that perform degraded reads more

efficiently than all known codes, but otherwise

inherit the reliability and performance properties

of Reed-Solomon codes.

Keywords-Erasure Code, Reed-Solomon code,

Reliability, Replication, Virtualized pool

1. Introduction

A cloud storage system, consisting of a

collection of storage servers, provides long-term
storage services over the Internet. Storing data in a

third party's cloud system causes serious concern

over data confidentiality. The proposed cloud file

system using erasure codes is inspired by Microsoft

Azure [10]. It conforms well with HDFS [8] modified

for RAID-6 [14] and Google’s analysis of

redundancy coding [15]. Some cloud file systems,

such as Microsoft Azure and the Google File system,

create an append-only write workload using a large

block size. Writes are accumulated and buffered until

a block is full and then the block is sealed: it is

erasure coded and the coded blocks are distributed to
storage nodes. Subsequent reads to sealed blocks

often access smaller amounts data than the block size,

depending upon workload [14, 46]. When examining

erasure codes in the context of cloud file systems,

two performance critical operations emerge. These

are degraded reads to temporarily unavailable data

and recovery from single failures. Although erasure

codes tolerate multiple simultaneous failures, single

failures represent 99.75% of recoveries [44].

Recovery performance has always been important.

Previous work includes architecture support [13, 21]

and workload optimizations for recovery [22, 48, 45].
However, it is particularly acute in the cloud owing

to scale. Massive systems have frequent component

failures so that recovery becomes part of regular

operation [16]. Frequent and temporary data

unavailability in the cloud results in degraded reads.

In the period between failure and recovery, reads are

degraded because they must reconstruct data from

unavailable storage nodes using erasure codes. This

is by necessity a slower operation than reading the

data without reconstruction. Temporary

unavailability dominates disk failures. Transient
errors in which no data are lost account for more than

90% of data center failures [15], owing to network

partitions, software problems, or non-disk hardware

faults. For this reason, Google delays the recovery of

failed storage nodes for 15 minutes. Temporary

unavailability also arises systematically when

software upgrades take storage nodes offline. In

many data centers, software updates are a rolling,

continuous process . Only recently have techniques

emerged to reduce the data requirements of

recovering an erasure code. Two recent research
projects have demonstrated how the RAID- 6 codes

RDP and EVENODD may recover from single disk

failures by reading significantly smaller subsets of

codeword symbols than the previous standard

practice of recovering from the parity drive [51, 49].

Recovery performance generalize these results to all

XOR-based erasure codes, analyze existing codes to

differentiate them based on recovery performance,

and experimentally verify that reducing the amount

of data used in recovery translates directly into

improved performance for cloud file systems, but not

for typical RAID array configurations.

An algorithm that finds the optimal number

of symbols needed for recovering data from an

arbitrary number of disk failures, which also

minimizes the amount of data read during recovery.

This paper includes an analysis of single failures in

RAID-6 codes that reveals that sparse codes, such as

Blaum-Roth [5], Liberation [34] and Liber8tion [35],

have the best recovery properties, reducing data by

about 30% over the standard technique that recovers

each row independently. This paper also analyzes
codes that tolerate three or more disk failures,

http://www.ijera.com/
http://en.wikipedia.org/wiki/Online_storage

S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1798 | P a g e

including the Reed-Solomon codes used by Google

[15] and Microsoft Azure [10].

The algorithm demonstrates that minimizing

recovery data translates directly into improved I/O

performance for cloud file systems. Prior work on

minimizing recovery I/O [51, 49, 27] is purely
analytic, whereas our work incorporates

measurements of recovery performance.

Reed-Solomon codes are particularly poor

for degraded reads in that they must always read all

data disks and parity for every degraded read. This is

problematic because RS codes are popular owing to

their generality and applicability to nearly all coding

situations. A new class of codes, Rotated Reed-

Solomon codes that exceed the degraded read

performance of all other codes, but otherwise have

the encoding performance and reliability properties
of RS Codes. Rotated RS codes can be constructed

for arbitrary numbers of disks and failures.

2. Related Work

Performance Metrics: Erasure codes have
been evaluated historically on a variety of metrics,

such as the CPU impact of encoding and decoding [3,

11, 37], the penalty of updating small amounts of

data [5, 26, 52] and the ability to reconfigure systems

without re-encoding [3, 7, 26]. The CPU performance

of different erasure codes can vary significantly.

However, for all code consider, encoding and

decoding bandwidth is orders of magnitude faster

than disk bandwidth. Thus, the dominant factor when

sealing data is writing the erasure coded blocks to

disk, not calculating the codes. Similarly, when

decoding either for recovery or for degraded reads,
the dominant factor is reading the data.

Updating small amounts of data is also not a

concern in cloud file systems—the append-only write

pattern and sealed blocks eliminate small writes in

their entirety. System reconfiguration refers to

changing coding parameters: changing the stripe

width or increasing/decreasing fault tolerance. This

type of reconfigurability is less important in clouds

because each sealed block defines an independent

stripe group, spread across cloud storage nodes

differently than other sealed blocks. There is no
single array of disks to be reconfigured. If the need

for reconfiguration arises, each sealed block is re-

encoded independently.

There has been some work lowering I/O

costs in erasure-coded systems. In particular,

WEAVER [19], Pyramid [23] and Stepped

Combination Codes [18] have all been designed to

lower I/O costs on recovery. However, all of these

codes are non-MDS, which means that they do not

have the storage efficiency that cloud storage systems

demand. The REO RAID Engine [26] minimizes I/O

in erasure-coded storage systems; however, its focus

is primarily on the effect of updates on storage

systems of smaller scale.

Cloud Storage Systems: The default storage

policy in cloud file systems has become triplication

(triple replication), implemented in the Google File
system [16] and adopted by Hadoop [8] and many

others. Triplication has been favored because of its

ease of implementation, good read and recovery

performance, and reliability.

 The storage overhead of triplication is a

concern, leading system designers to consider erasure

coding as an alternative. The performance tradeoffs

between replication and erasure coding are well

understood and have been evaluated in many

environments, such as peer-to-peer file systems [43,

50] and open-source coding libraries [37].

Investigations into applying RAID-6 (two
fault tolerant) erasure codes in cloud file systems

show that they reduce storage overheads from 200%

to 25% at a small cost in reliability and the

performance of large reads [14]. Microsoft research

further explored the cost/benefit tradeoffs and expand

the analysis to new metrics: power proportionality

and complexity [53]. For these reasons, Facebook is

evaluating RAID-6 and erasure codes in their cloud

infrastructure [47].

Ford et al. [15] have developed reliability
models for Google’s cloud file system and validated

models against a year of workload and failure data

from the Google infrastructure. Their analysis

concludes that data placement strategies need to be

aware of failure groupings and failure bursts. They

also argue that, in the presence of correlated failures,

codes more fault tolerant than RAID- 6 are needed to

to reduce exposure to data loss; they consider Reed-

Solomon codes that tolerate three and four disk

failures. Windows Azure storage employs Reed-

Solomon codes for similar reasons [10]. The rotated

RS codes that we present inherit all the properties of
Reed- Solomon codes and improve degraded reads.

Recovery Optimization: Workload-based

approaches to improving recovery are independent of

the choice of erasure code and apply to minimum I/O

recovery algorithm and rotated RS codes that we

present. These include: load-balancing recovery

among disks [22], recovering popular data first to

decrease read degradation [48], and only recovering

blocks that contain live data [45]. Similarly,

architecture support for recovery can be applied to
our codes, such as hardware that minimizes data

copying [13] and parity declustering [21].

Reducing the amount of data used in

recovery has only emerged recently as a topic and the

first results have given minimum recovery schedules

http://www.ijera.com/

S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1799 | P a g e

for EVENODD [49] and row-diagonal parity [51],

both RAID-6 codes. An algorithm that defines the

recovery I/O lower bound for any XOR-based erasure

code and allows multiple codes to be compared for

I/O recovery cost. Regenerating codes provide

optimal recovery bandwidth [12] among storage

nodes. This concept is different than minimizing I/O;
each storage node reads all of its available data and

computes and sends a linear combination.

Regenerating codes were designed for

distributed systems in which wide-area bandwidth

limits recovery performance. Exact regenerating

codes [39] recover lost data exactly (not a new linear

combination of data). In addition to minimizing

recovery bandwidth, these codes can in some cases

reduce recovery I/O. The relationship between

recovery bandwidth and recovery data size remains

an open problem.

3. Background: Erasure Coded Storage

Erasure coded storage systems add

redundancy for fault tolerance. Specifically, a system

of n disks is partitioned into k disks that hold data
and m disks that hold coding information. The coding

information is calculated from the data using an

erasure code. For practical storage systems, the

erasure code typically has two properties. First, it

must be Maximum Distance Separable (MDS), which

means that if any m of the n disks fails, their contents

may be recomputed from the k surviving disks.

Second, it must be systematic, which means that the k

data disks hold unencoded data.

 An erasure coded storage system is

partitioned into stripes, which are collections of disk
blocks from each of the n disks. The blocks

themselves are partitioned into symbols, and there is

a fixed number of symbols for each disk in each

stripe. We denote this quantity r. The stripes perform

encoding and decoding as independent units in the

disk system. Therefore, to alleviate hot spots that can

occur because the coding disks may require more

activity than the data disks, one can rotate the disks’

identities on a stripe-by-stripe basis.

For the purpose of our analysis, we focus on
a single stripe. There are k data disks labeled D0, . . .

,Dk−1 andmcoding disks labeled C0, . . . ,Cm−1.

There are nr symbols in the stripe. We label the r

symbols on data disk i as di,0, di,1, . . . , di,r−1 and

on coding disk j as cj,0, cj,1, . . . , cj,r−1. We depict

an example system in Figure 1. In this example, k =

6, m = 3 (and therefore n = 9) and r = 4.

Fig. 1: One stripe from an erasure coded storage

system. The parameters are k = 6, m = 3 and r = 4.

Erasure codes are typically defined so that

each symbol is a w-bit word, where w is typically

small, often one. Then the coding words are defined

as computations of the data words. Thus for example,

suppose an erasure code were defined in Figure 1 for

w = 1. Then each symbol in the stripe would be

composed of one single bit. While that eases the

definition of the erasure code, it does not map

directly to a disk system. In reality, it makes sense for

each symbol in a sealed block to be much larger in

size, on the order of kilobytes or megabytes, and for
each symbol to be partitioned into wbit words, which

are encoded and decoded in parallel.

3.1 Matrix-Vector Definition

All erasure codes may be expressed in terms

of a matrix vector product. An example is pictured in
Figure 2. This continues the example from Figure 1,

where k = 6, m = 3 and r = 4; In this picture, the

erasure code is defined precisely. This is a Cauchy

Reed-Solomon code [6] optimized by the Jerasure

library [38]. The word size, w equals one, so all

symbols are treated as bits and arithmetic is

composed solely of the XOR operation. The kr

symbols of data are organized as a kr-element bit

vector. They are multiplied by a nr×kr Generator

matrix GT .1 The product is a vector, called the

codeword, with nr elements. These are all of the

symbols in the stripe. Each collection of r symbols in
the vector is stored on a different disk in the system.

Since the the top kr rows of GT compose an

identity matrix, the first kr symbols in the codeword

contain the data. The remaining mr symbols are

calculated from the data using the bottom mr rows of

the Generator matrix. When up to m disks fail, the

standard methodolgy for recovery is to select k

surviving disks and create a decoding matrix B from

the kr rows of the Generator matrix that correspond

to them. The product of B−1 and the symbols in the k
surviving disks yields the original data [6, 20, 33].

http://www.ijera.com/

S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1800 | P a g e

There are many MDS erasure codes that

apply to storage systems. Reed-Solomon codes [40]

are defined for all values of k and m. With a Reed-

Solomon code, r = 1, and w must be such that 2w _ n.

Generator matrices are constructed from a

Vandermonde matrix so that any k × k subset of the

Generator matrix is invertible. There is quite a bit of
reference material on Reed-Solomon codes as they

apply to storage systems [33, 36, 6, 41], plus

numerous open-source Reed- Solomon coding

libraries [42, 38, 30, 31].

Cauchy Reed-Solomon codes convert Reed-

Solomon codes with r = 1 and w > 1 to a code where

r = w and w = 1. In doing so, they remove the

expensive multiplication of Galois Fields and replace

it with additional XOR operations. There are an

exponential number of ways to construct the

Generator matrix of a Cauchy Reed-Solomon code.
The Jerasure library attempts to construct a matrix

with a minimal number of non-zero entries [38]. It is

these matrices that we use in our examples with

Cauchy Reed-Solomon codes.

For m = 2, otherwise known as RAID-6,

there has been quite a bit of research on constructing

codes where w = 1 and the CPU performance is

optimized. EVENODD [3], RDP [11] and Blaum-

Roth [5] codes all require r + 1 to be a prime number

such that k _ r + 1 (EVENODD) or k _ r. The
Liberation codes [34] require r to be a prime number

and k _ r, and the Liber8tion code [35] is defined for

r = 8 and k _ r. The latter three codes (Blaum-Roth,

Liberation and Liber8tion) belong to a family of

codes called Minimum Density codes, whose

Generator matrices have a provably minimum

number of ones.

Both EVENODD and RDP codes have been

extrapolated to higher values of m [2, 4]. We call

these Generalized EVENODD and RDP. With m = 3,

the same restrictions on r apply. For larger values of

m, there are additional restrictions on r. The STAR

code [24] is an instance of the generalized

EVENODD codefor m = 3, where recovery is

performed without using the Generator matrix.

All of the above codes have a convenient
feature that disk C0 is constructed as the parity of the

data disks, as in RAID-4/5. Thus, the r rows of the

Generator matrix immediately below the identity

portion are composed of k (r × r) identity matrices.

To be consistent with these RAID systems, we will

refer to disk C0 as the ―P drive.‖

4. Optimal Recovery of XOR-Based Erasure

 Codes

When a data disk fails in an erasure coded

disk array, it is natural to reconstruct it simply using

the P drive. Each failed symbol is equal to the XOR

of corresponding symbols on each of the other data

disks, and the parity symbol on the P disk. We call

this methodology ―Reading from the P drive.‖ It

requires k symbols to be read from disk for each

decoded symbol.

Although it is straightforward both in

concept and implementation, in many cases, reading

from the P drive requires more I/O than is necessary.

In particular, depending on the erasure code, there are
savings that can be exploited when multiple symbols

are recovered in the same stripe. This effect was first

demonstrated by Xiang et al. in RDP systems in

which one may reconstruct all the failed blocks in a

stripe by reading 25 percent fewer symbols than

reading from the P drive [51]. In this section, we

approach the problem in general.

http://www.ijera.com/

S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1801 | P a g e

Fig. 2: The matrix-vector representation of an erasure code. The parameters are the same as Figure 1: k = 6, m =

3

and r = 4. Symbols are one bit (i.e. w = 1). This is a Cauchy Reed-Solomon code for these parameters.

4.1 Algorithm to Determine the Minimum

 Number of Symbols for Recovery

We present an algorithm for recovering from

a single disk failure in any XOR-based erasure code

with a minimum number of symbols. The algorithm

takes as input a Generator matrix whose symbols are

single bits and the identity of a failed disk and

outputs equations to decode each failed symbol. The
inputs to the equations are the symbols that must be

read from disk. The number of inputs is minimized.

The algorithm is computationally

expensive—for the systems evaluated for this paper,

each instantiation took from seconds to hours of

compute-time. However, for any realistic storage

system, the number of recovery scenarios is limited,

so that the algorithm may be run ahead of time, and

the results may be stored for when they are required

by the system.

We explain the algorithm by using the

erasure code of Figure 3 as an example. This small

code, with k = m = r = 2, is not an MDS code;

however its simplicity facilitates our explanation. We

label the rows of GT as Ri, 0 ≤ i < nr. Each row Ri

corresponds to a data or coding symbol, and to

simplify our presentation, we will refer to symbols

using Ri rather than di,j or ci,j . Consider a set of

symbols in the codeword whose corresponding rows

in the Generator matrix sum to a vector of zeroes.

One example is {R0,R2,R4}. We call such a set of

symbols a decoding equation, because the fact their

rows sum to zero allows us to decode any one symbol

in the set as long as the remaining symbols are not

lost.

Fig. 3: An example erasure code to explain

the algorithm to minimize the number of symbols

required to recover from failures.

We can recover all the symbols in F by

selecting one decoding equation ei from each set Ei,

reading the nonfailed symbols in ei and then XOR-

ing them to produce the failed symbol. To minimize

the number of symbols read, our goal is to select one

equation ei from each Ei such that the number of

symbols in the union of all ei is minimized.

http://www.ijera.com/

S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1802 | P a g e

For example, suppose that a disk fails, and

both R0 and R1 are lost. A standard way to decode

the failed bits is to read from the P drive and use

coding symbols R4 and R5. In equation form, F =

{R0,R1} e0 = {R0,R2,R4} and e1 = {R1,R3,R5}.

Since e0 and e1 have distinct symbols, their union is

composed of six symbols, which means that four
must be read for recovery. However, if we instead

use {R1,R2,R7} for e1, then (e0 [e1) has five

symbols, meaning that only three are required for

recovery.

Thus, our problem is as follows: Given |F|

sets of decoding equations E0,E1, . . .E|F|−1, we wish

to select one equation from each set such that the size

of the union of these equations is minimized.

Unfortunately, this problem is NP-Hard in |F| and

|Ei|.2 However, we can solve the problem for

practical values of |F| and |Ei| (typically less than 8
and 25 respectively) by converting the equations into

a directed, weighted graph and finding the shortest

path through the graph. Given an instance of the

problem, we convert it to a graph as follows. First,

we represent each decoding equation in set form as

an nr-element bit string. For example, {R0,R2,R4} is

represented by 10101000.

Each node in the graph is also represented

by an nr-element bit string. There is a starting node Z

whose string is all zeroes. The remaining nodes are
partitioned into |F| sets, labeled S0, S1, . . . S|F|−1.

For each equation e0 2 E0, there is a node s0 2 S0

whose bit string equals e0’s bit string. There is an

edge from Z to each s0 whose weight is equal to the

number of ones in s0’s bit string.

For each node si € Si, there is an edge that

corresponds to each ei+1 € Ei+1. This edge is to a

node si+1 € Si+1 whose bit string is equal to the

bitwise OR of the bit strings of si and ei+1. The OR

calculates the union of the equations leading up to si

and ei+1. The weight of the edge is equal to the
difference between the number of ones in the bit

strings of si and si+1. The shortest path from Z to any

node in S|F|−1 denotes the minimum number of

elements required for recovery. If we annotate each

edge with the decoding equation that creates it, then

the shortest path contains the equations that are used

for recovery.

To illustrate, suppose again that F = {R0,

R1}, meaning f0 = R0 and f1 = R1. The decoding

equationsfor E0 and E1 are denoted by ei,j where i is

the index of the lost symbol in the set F and j is an
index into the set Ei. E0 and E1 are enumerated

below:

E0 E1

e0,0=10101000

e0,1=10010010

e0,2=10011101

e0,3=10100111

e1,0=01010100

e1,1=01101110

e1,2=01100001

e1,3=01011011

These equations may be converted to the
graph depicted in Figure 4, which has two shortest

paths of length five: { e0,0, e1,2} and { e0,1, e1,0}. Both

require three symbols for recovery: {R2,R4,R7} and

{R3,R5,R6}. While the graph clearly contains an

exponential number of nodes, one may program

Dijkstra’s algorithm to determine the shortest path

and prune the graph drastically. For example, in

Figure 5, the shortest path will be discovered before

the the dotted edges and grayed nodes are considered

by the algorithm. Therefore, they may be pruned.

Fig. 4: The graph that results when R0 and R1 are
lost.

4.2 Algorithm for Reconstruction

When data disk i fails, the algorithm is

applied for F = {di,0, . . . , di,r−1}. When coding disk

j fails, F ={cj,0, . . . , cj,r−1}. If a storage system

rotates the identities of the disks on a stripe-by-stripe

basis, then the average number of symbols for all

failed disks multiplied by the total number of stripes

gives a measure of the symbols required to

reconstruct a failed disk.

4.3 Algorithm for Degraded Reads

To take maximum advantage of parallel I/O,

we assume that contiguous symbols in the file system

are stored on different disks in the storage system. In

http://www.ijera.com/

S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1803 | P a g e

other words, if one is reading three symbols starting

with symbol d0,0, then those three symbols are d0,0,

d1,0 and d2,0, coming from three different disk

drives.

 To evaluate degraded reads, we assume that

an application desires to read B symbols starting at

symbol dx,y, and that data disk f has failed. We
determine the penalty of the failure to be the number

of symbols required to perform the read, minus B.

There are many cases that can arise from the

differing values of B, f, x and y. To illustrate, first

suppose that B < k (which is a partial read case) and

that none of the symbols to be read reside on disk f.

Then the failure does not impact the read operation

— it takes exactly B symbols to complete the read,

and the penalty is zero.

As a second case, consider when B = kr and

dx,y =d0,0. Then we are reading exactly one stripe in
its entirety. In this case, we have to read the (k−1)r

non-failed data symbols to fulfill the read request.

Therefore, we may recover very easily from the P

drive by reading all of its symbols and decoding. The

read requires kr = B symbols. Once again, the penalty

is zero.

However, consider the case when B = k, f =

0, and dx,y = d1,0. Symbols d1,0 through dk−1,0 are

non-failed and must be read. Symbol d0,1 must also

be read and it is failed. If we use the P drive to

recover, then we need to read d1,1 through dk−1,0
and c0,1. The total symbols read is 2k −1: the failure

has induced a penalty of k −1 symbols.

In all of these cases, the degraded read is

contained by one stripe. If the read spans two stripes,

then we can calculate the penalty as the sum of the

penalties of the read in each stripe. If the read spans

more than two stripes, then we only need to calculate

the penalties in the first and last stripe. This is

because, as described above, whole-stripe degraded

reads incur no penalty.

When we perform a degraded read within a
stripe, we modify our algorithm slightly. For each

non-failed data symbol that must be read, we set its

bit in the state of the starting node Z to one. For

example, in Figure 3, suppose we are performing a

degraded read where B = 2, f = 0 and dx,y = d0,0.

There is one failed bit: F = d0,0. Since d1,0 = R2

must be read, the starting state Z of the shortest path

graph is labeled 00100000. The algorithm correctly

identifies that only c0,0 needs to be read to recover

d0,0 and complete the read.

5. Rotated Reed-Solomon Codes
Before performing analyses of failed disk

reconstruction and degraded reads, we present two

instances of a new erasure code, called the Rotated

Reed-Solomon code. These codes have been

designed to be MDS codes that optimize the

performance of degraded reads for single disk

failures. The general formulation and theoretical

evaluation of these codes is beyond the scope of this

paper; instead, we present instances for m € {2, 3}.

Fig. 5: A Reed-Solomon code for k = 6 and m = 3.

Symbols must be w-bit words such that w ≥ 4, and

arithmetic is over GF(2w).

The most intuitive way to present a Rotated

Reed- Solomon code is as a modification to a

standard Reed- Solomon code. We present such a

code for m _ 3 in Equation 1. As with all Reed-

Solomon codes, r = 1.

 For 0≤ j< 3, Cj, 0 = 2𝑗 𝑖𝑘−1
𝑖=0 di,0 (1)

This is an MDS code so long as k, m, r and

w adhere to some constraints, which we detail at the
end of this section. This code is attractive because

one may implement encoding with XOR and

multiplication by two and four in GF(2w), which are

all very fast operations. For example, the m = 2

version of this code lies at the heart of the Linux

RAID-6 coding engine [1].

We present the code pictorally in Figure 5.

A chain of circles denotes taking the XOR of di,0; a

chain of triangles denotes taking the XOR of 2idi,0,

and a chain of squares denotes taking the XOR of

4idi,0. To convert this code into a Rotated Reed-
Solomon code, we allow r to take on any positive

value, and define the coding symbols with Equation

2.

Intuitively, the Rotated Reed-Solomon code

converts the one-row code in Figure 6 into a multi-

row code, and then the equations for coding disks 1

and 2 are split across adjacent rows. We draw the

Rotated Reed- Solomon codes for k = 6 and m = {2,

3} and r = 3 in Figures 6 and 7.

http://www.ijera.com/

S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1804 | P a g e

Fig. 6: A Rotated Reed-Solomon code for k = 6, m =

2 and r = 3.

These codes have been designed to improve

the penalty of degraded reads. Consider a RAID-6

system that performs a degraded read of four symbols

starting at d5,0 when disk 5 has failed. If we

reconstruct from the P drive, we need to read d0,0

through d4,0 plus c0,0 to reconstruct d5,0. Then we
read the non-failed symbols d0,1, d1,1 and d2,1. The

penalty is 5 symbols. With Rotated Reed-Solomon

coding, d5,0, d0,1, d1,1 and d2,1 all participate in the

equation for c1,0. Therefore, by reading c1,0, d0,1,

d1,1, d2,1, d3,0 and d4,0, one both decodes d5,0 and

reads the symbols that were required to be read. The

penalty is only two symbols.

With whole disk reconstruction, when r is an

even number, one can reconstruct any failed data disk

by reading
𝑟

2
 𝑘 +

𝑘

𝑚
 symbols. The process is

exemplified for k = 6, m = 3 and r = 4 in Figure 8.

The first data disk has failed, and the symbols

required to reconstruct each of the failed symbols is

darkened and annotated with the equation that is used

for reconstruction. Each pair of reconstructed

symbols in this example shares four data symbols for

reconstruction. Thus, the whole reconstruction

process requires a total of 16 symbols, as opposed to

24 when reading from the P Drive.

Fig. 7: A Rotated Reed-Solomon code for k = 6,m =

3 and r = 3.

The process is similar for the other data

drives. Reconstructing failed coding drives, however

does not have the same benefits. We are unaware at

present of how to reconstruct a coding drive with

fewer than the maximum kr symbols.

As an aside, when more than one disk fails,

Rotated Reed-Solomon codes may require much

more computation to recover than other codes, due to

the use of matrix inversion for recovery. We view

this property as less important, since multiple disk
failures are rare occurrences in practical storage

systems, and computational overhead is less

important than the I/O impact of recovery.

Fig. 8: Reconstructing disk 0 when it fails, using
Rotated Reed-Solomon coding for k = 6, m = 3, r = 4.

5.1 MDS Constraints

The Rotated Reed-Solomon code specified

above in Section 5 is not MDS in general. In other

words, there are settings of k, m, w and r which

cannot tolerate the failure of any m disks. Below, we

detail ways to constrain these variables so that the

Rotated Reed-Solomon code is MDS. Each of these

settings has been verified by testing all combinations

of m failures to make sure that they may be tolerated.

They cover a wide variety of system sizes,

certainly much larger than those in use today.

The constraints are as follows:

m € {2, 3}

k ≤36, and k + m ≤ 2w + 1

w € {4, 8, 16}

r €{2, 4, 8, 16, 32}

Moreover, when w = 16, r may be any value

less than or equal to 48, except 15, 30 and 45. It is a
matter of future research to derive general-purpose

MDS constructions of Rotated Reed-Solomon codes.

6. Conclusion

 The paper provide guidance as to how to
deploy erasure coding in the cloud file systems with

respect to choosing a specific code and the size of

sealed blocks . Cloud file systems distribute the

coded blocks from each stripe (sealed block) on a

different set of storage nodes. This strategy provides

load balance and incremental scalability in the data

http://www.ijera.com/

S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1805 | P a g e

center. It also prevents correlated failures from

resulting in data loss and mitigates the effect that any

single failure has on a data set or application [15].

However, it does mean that each stripe is recovered

independently from a different set of disks. To

achieve good recovery performance when recovering

independent stripes, codeword symbols need to be
large enough to amortize disk seek overhead. Our

results recommend a minimum symbol size of 4 MB

and prefer 16 MB. This translates to a minimum

sealed block size of 144 MB and preferred size of

576 MB for RDP and GenRDP, for example. Cloud

file systems would benefit from increasing the sealed

blocks to these size from the 64 MB default

Increasing the symbol size has drawbacks as well. It

increases memory consumption during recovery and

increases the latency of degraded reads, because

larger symbols need to recover more data.

 Codes differ substantially in recovery

performance, which demands a careful selection of

code and parameters for cloud file systems.

Optimally-sparse, Minimum- Density codes tend to

perform best. The Liber8tion code and Generalized

RDP are preferred for m = 2 and m = 3 respectiveley.

Reed-Solomon codes will continue to be popular for

their generality. For some Reed- Solomon codes,

including rotated-RS codes, recovery performance

may be improved by more than 20%. However, the

number of symbols per disk (r) has significant
impact. For k = 6 data disks, the best values are r = 7

for m = 2 and r = 4 for m = 3.

Several open problems remain with respect

to optimal recovery and degraded reads. While our

algorithm an determine the minimum number of

symbols needed for recovery for any given code, it

remains unknown how to generate recovery-optimal

erasure codes. We are pursuing this problem both

analytically and through a programmatic search of

feasible generator matrixes. Rotated RS codes are a

first result in lowering degraded read costs. Lower
bounds for the number of symbols needed for

degraded reads have not been determined.

We have restricted our treatment to MDS

codes, since they are used almost exclusively in

practice because of their optimal storage efficiency.

However, some codes with decreased storage

efficiency have much lower recovery costs than MDS

[27, 18, 28, 23, 19]. Exploring non-MDS codes more

thoroughly will help guide those building cloud

systems in the tradeoffs between storage efficiency,
fault-tolerance, and performance.

References

 [1] H. P. Anvin. The mathematics of RAID-6.

http://kernel.org/pub/linux/kernel/

people/hpa/raid6.pdf, 2009.

[2] M. Blaum. A family of MDS array codes

with minimal number of encoding

operations. In IEEE International

Symposium on Information Theory,

September 2006.

[3] M. Blaum, J. Brady, J. Bruck, and J.
Menon. EVENODD: An efficient scheme

for tolerating double disk failures in RAID

architectures. IEEE Transactions on

Computing,44(2):192– 202, February 1995.

[4] M. Blaum, J. Bruck, and A. Vardy. MDS

array codes with independent parity

symbols. IEEE Transactions on Information

Theory, 42(2):529–542, February 1996.

[5] M. Blaum and R. M. Roth. On lowest

density MDS codes. IEEE Transactions on

Information Theory, 45(1):46–59, January

1999.
[6] . Blomer, M. Kalfane, M. Karpinski, R.

Karp, M. Luby, and D. Zuckerman. An

XOR-based erasure-resilient coding scheme.

Technical Report TR-95-048, International

Computer Science Institute, August 1995.

[7] V. Bohossian and J. Bruck. Shortening array

codes and the perfect 1-Factorization

conjecture. In IEEE International

Symposium on Information Theory, pages

2799– 2803, 2006.

[8] D. Borthakur. The Hadoop distributed file
system: Architecture and design.

http://hadoop.apache.org/

common/docs/current/hdfs-design.html,

2009.

[9] E. Brewer. Lessons from giant-scale

services. Internet Computing, 5(4), 2001.

[10] B. Calder, J. Wang, A. Ogus, N. Nilakantan,

A. Skjolsvold, S. McKelvie, Y. Xu, S.

Srivastav, J. Wu, H. Simitci, J. Haridas, C.

Uddaraju, H. Khatri, A. Edwards, V.

Bedekar, S. Mainali, R. Abbasi, A. Agarwal,

M. Fahim ul Haq, M. Ikram ul Haq, D.
Bhardwaj, S. Dayanand, A. Adusumilli, M.

McNett, S. Sankaran, K. Manivannan, and

L. Rigas. Windows Azure storage: A highly

available cloud storage service with strong

consistency. In Symposium on Operating

Systems Principles,2011.

[11] P. Corbett, B. English, A. Goel, T. Grcanac,

S. Kleiman, J. Leong, and S. Sankar. Row

diagonal parity for double disk failure

correction. In Conference on File and

Storage Technologies, March 2004.
[12] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J.

Wainwright, and K. Ramchandran. Network

coding for distributed storage systems. IEEE

Trans. Inf. Theor., 56(9):4539– 4551,

September 2010.

http://www.ijera.com/

S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1806 | P a g e

[13] A. L. Drapeau et al. RAID-II: A high-

bandwidth network file server. In

International Symposium on Computer

Architecture, 1994.

[14] B. Fan, W Tanisiriroj, L. Xiao, and G.

Gibson. DiskReduce: RAID for data-

intensive scalable computing. In Parallel
Data Storage Workshop, 2008.

[15] D. Ford, F. Labelle, F. .I. Popovici, M.

Stokely, V.-A. Truong, L. Barroso, C.

Grimes, and S. Quinlan. Availability in

globally distributed file systems. In

Operating Systems Design and

Implementation, 2010.

[16] S. Ghemawat, H. Gobioff, and S. Leung.

The Google file system. In ACM SOSP,

2003.

[17] K. Greenan, E. Miller, and T. J. Schwartz.

Optimizing Galois Field arithmetic for
diverse processor architectures and

applications. In Modeling, Analysis and

Simulation of Computer and

Telecommunication Systems, September

2008.

[18] K. M. Greenan, X. Li, and J. J. Wylie. Flat

XOR-based erasure codes in storage

systems: Constructions, efficient recovery,

and tradeoffs. Mass Storage Systems and

Technologies, 2010.

[19] J. L. Hafner. Weaver codes: Highly fault
tolerant erasure codes for storage systems.

In Conference on File and Storage

Technologies, 2005.

[20] J. L. Hafner, V. Deenadhayalan, K. K. Rao,

and J. A. Tomlin. Matrix methods for lost

data reconstruction in erasure codes. In

Conference on File and Storage

Technologies, 2005.

[21] M. Holland and G. A. Gibson. Parity

declustering for continuous operation in

redundant disk arrays. In Architectural

Support for Programming Languages and
Operating Systems. ACM, 1992.

[22] R. Y. Hou, J. Menon, and Y. N. Patt.

Balancing I/O response time and disk

rebuild time in a RAID5 disk array. In

Hawai’i International Conference on System

Sciences, 1993.

[23] C. Huang, M. Chen, and J. Li. Pyramid

codes: Flexible schemes to trade space for

access efficiency in reliable data storage

systems. Network Computing and

Applications, 2007.
[24] C. Huang and L. Xu. STAR: An efficient

coding scheme for correcting triple storage

node failures. IEEE Transactions on

Computers, 57(7):889–901, July 2008.

[25] H. Jin, J. Zhang, and K. Hwang. A raid

reconfiguration scheme for gracefully

degraded operations. EuroMicro Conference

on Parallel, Distributed, and Network-Based

Processing, 0:66, 1999.

[26] D. Kenchammana-Hosekote, D. He, and J.

L. Hafner. REO: A generic RAID engine

and optimizer. In Conference on File and

Storage Technologies, pages 261–276, 2007.
[27] O. Khan, R. Burns, J. S. Plank, and C.

Huang. In search of I/O-optimal recovery

from disk failures. In Workshop on Hot

Topics in Storage Systems, 2011.

[28] M. Luby, M. Mitzenmacher, A. Shokrollahi,

D. Spielman, and V. Stemann. Practical

loss-resilient codes. In 29th Annual ACM

Symposium on Theory of Computing, pages

150–159, El Paso, TX, 1997. ACM.

[29] F. J. MacWilliams and N. J. A. Sloane. The

Theory of Error-Correcting Codes, Part I.

North-Holland Publishing Company, 1977.
13

[30] Onion Networks. Java FEC Library v1.0.3.

Open source code distribution:

http://onionnetwor ks.com/

fec/javadoc/, 2001.

[31] A. Partow. Schifra Reed-Solomon ECC

Library. Open source code distribution:

http://www.schifra.com/downloads.html,

2000-2007.

[32] W. W. Peterson and E. J. Weldon, Jr. Error-

Correcting Codes, Second Edition. The MIT
Press, 1972.

[33] J. S. Plank. A tutorial on Reed-Solomon

coding for faulttolerance in RAID-like

systems. Software—Practice & Experience,

27(9):995–1012, 1997.

[34] J. S. Plank. The RAID-6 Liberation codes.

In Conference on File and Storage

Technologies, 2008.

[35] J. S. Plank. The RAID-6 Liber8Tion code.

Int. J. High Perform. Comput. Appl.,

23:242–251, August 2009.

[36] J. S. Plank and Y. Ding. Note: Correction to
the 1997 tutorial on Reed-Solomon coding.

Software – Practice & Experience,

35(2):189–194, February 2005.

[37] J. S. Plank, J. Luo, C. D. Schuman, L. Xu,

and Z.Wilcox- OHearn. A performance

evaluation and examination of open-source

erasure coding libraries for storage. In

Conference on File and Storage

Technologies, 2009.

[38] J. S. Plank, S. Simmerman, and C. D.

Schuman. Jerasure: A library in C/C++
facilitating erasure coding for storage

applications - Version 1.2. Technical Report

CS-08-627, University of Tennessee, August

2008.

[39] K. V. Rashmi, N. B. Shah, P. V. Kumar, and

K. Ramachandran. Explicit construction of

http://www.ijera.com/
http://onionnetwor/

S.Annie Joice, J.Vasanth Wason /International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1797-1807

1807 | P a g e

optimal exact regenerating codes for

distributed storage. In Communication,

Control, and Computing, 2009.

[40] I. S. Reed and G. Solomon. Polynomial

codes over certain finite fields. Journal of

the Society for Industrial and Applied

Mathematics, 8:300–304, 1960.
[41] L. Rizzo. Effective erasure codes for reliable

computer communication protocols. ACM

SIGCOMM Computer Communication

Review, 27(2):24–36, 1997.

[42] L. Rizzo. Erasure codes based on

Vandermonde matrices. Gzipped tar file

posted at http://planete-bcast.inrialpes.fr/

rubrique.php3?id rubrique=10, 1998.

[43] R. Rodrigues and B. Liskov. High

availability in DHTS: Erasure coding vs.

replication. In Workshop on Peer-to- Peer

Systems, 2005.
[44] B. Schroeder and G. Gibson. Disk failures in

the real world: What does an MTTF of

1,000,000 mean to you? In Conference on

File and Storage Technologies, 2007.

[45] M. Sivathanu, V. Prabhakaran, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau.

Improving storage system availability with

D-GRAID. In Conference on File and

Storage Technologies, 2004.

[46] Apache Software. Pigmix. https://cwiki.

apache.org/confluence/display/PIG/ PigMix,
2011.

[47] A. Thusoo, D. Borthakur, R. Murthy, Z.

Shao, N. Jain, H. Liu, S. Anthony, and J. S.

Sarma. Data warehousing and analytics

infrastructure at Facebook. In SIGMOD,

2010.

[48] L. Tian, D. Feng, H. Jiang, K. Zhou, L.

Zeng, J. Chen, Z. Wang, and Z. Song. PRO:

a popularity-based multi-threaded

reconstruction optimization for

RAIDstructured storage systems. In

Conference on File and Storage
Technologies, 2007.

[49] Z. Wang, A. G. Dimakis, and J. Bruck.

Rebuilding for array codes in distributed

storage systems. CoRR, abs/1009.3291,

2010.

[50] H. Weatherspoon and J. Kubiatowicz.

Erasure coding vs.replication: A

quantitative comparison. In Workshop on

Peer-to-Peer Systems, 2002.

[51] L. Xiang, Y. Xu, J. C. S. Lui, and Q. Chang.

Optimal recovery of single disk failure in
RDP code storage systems. In ACM

SIGMETRICS, 2010.

[52] L. Xu and J. Bruck. X-Code: MDS array

codes with optimal encoding. IEEE

Transactions on Information Theory,

45(1):272–276, January 1999.

[53] Z. Zhang, A. Deshpande, X. Ma, E.

Thereska, and D. Narayanan. Does erasure

coding have a role to play in my data

center? Microsoft Technical Report

MSRTR- 2010-52, 2010.

http://www.ijera.com/
http://planete-bcast.inrialpes.fr/

