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ABSTRACT 

Cloud storage is a model of 

networked online storage where data is stored in 

virtualized pools of storage which are generally 

hosted by third parties. To reduce storage 

overhead, cloud file systems are transitioning 

from replication to erasure codes. This paper 

present an algorithm that finds the optimal 

number of codeword symbols needed for recovery 

for any XOR-based erasure code and produces 

recovery schedules that use a minimum amount of 

data. Several cloud systems have adopted Reed-

Solomon (RS) codes, because of their generality 

and their ability to tolerate larger numbers of 

failures. We define a new class of rotated Reed-

Solomon codes that perform degraded reads more 

efficiently than all known codes, but otherwise 

inherit the reliability and performance properties 

of Reed-Solomon codes. 

Keywords-Erasure Code, Reed-Solomon code, 

Reliability, Replication, Virtualized pool 

1. Introduction 

A cloud storage system, consisting of a 

collection of storage servers, provides long-term 
storage services over the Internet. Storing data in a 

third party's cloud system causes serious concern 

over data confidentiality. The proposed cloud file 

system using erasure codes is inspired by Microsoft 

Azure [10]. It conforms well with HDFS [8] modified 

for RAID-6 [14] and Google’s analysis of 

redundancy coding [15]. Some cloud file systems, 

such as Microsoft Azure and the Google File system, 

create an append-only write workload using a large 

block size. Writes are accumulated and buffered until 

a block is full and then the block is sealed: it is 

erasure coded and the coded blocks are distributed to 
storage nodes. Subsequent reads to sealed blocks 

often access smaller amounts data than the block size, 

depending upon workload [14, 46]. When examining 

erasure codes in the context of cloud file systems, 

two performance critical operations emerge. These 

are degraded reads to temporarily unavailable data 

and recovery from single failures. Although erasure 

codes tolerate multiple simultaneous failures, single 

failures represent 99.75% of recoveries [44]. 

Recovery performance has always been important. 

Previous work includes architecture support [13, 21]  

 

 

and workload optimizations for recovery [22, 48, 45]. 
However, it is particularly acute in the cloud owing 

to scale. Massive systems have frequent component 

failures so that recovery becomes part of regular 

operation [16]. Frequent and temporary data 

unavailability in the cloud results in degraded reads. 

In the period between failure and recovery, reads are 

degraded because they must reconstruct data from 

unavailable storage nodes using erasure codes. This 

is by necessity a slower operation than reading the 

data without reconstruction. Temporary 

unavailability dominates disk failures. Transient 
errors in which no data are lost account for more than 

90% of data center failures [15], owing to network 

partitions, software problems, or non-disk hardware 

faults. For this reason, Google delays the recovery of 

failed storage nodes for 15 minutes. Temporary 

unavailability also arises systematically when 

software upgrades take storage nodes offline. In 

many data centers, software updates are a rolling, 

continuous process . Only recently have techniques 

emerged to reduce the data requirements of 

recovering an erasure code. Two recent research 
projects have demonstrated how the RAID- 6 codes 

RDP and EVENODD may recover from single disk 

failures by reading significantly smaller subsets of 

codeword symbols than the previous standard 

practice of recovering from the parity drive [51, 49]. 

Recovery performance generalize these results to all 

XOR-based erasure codes, analyze existing codes to 

differentiate them based on recovery performance, 

and experimentally verify that reducing the amount 

of data used in recovery translates directly into 

improved performance for cloud file systems, but not 

for typical RAID array configurations. 
 

An algorithm that finds the optimal number 

of symbols needed for recovering data from an 

arbitrary number of disk failures, which also 

minimizes the amount of data read during recovery. 

This paper includes an analysis of single failures in 

RAID-6 codes that reveals that sparse codes, such as 

Blaum-Roth [5], Liberation [34] and Liber8tion [35], 

have the best recovery properties, reducing data by 

about 30% over the standard technique that recovers 

each row independently. This paper also analyzes 
codes that tolerate three or more disk failures, 
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including the Reed-Solomon codes used by Google 

[15] and Microsoft Azure [10]. 

 

The algorithm demonstrates that minimizing 

recovery data translates directly into improved I/O 

performance for cloud file systems. Prior work on 

minimizing recovery I/O [51, 49, 27] is purely 
analytic, whereas our work incorporates 

measurements of recovery performance. 

 

Reed-Solomon codes are particularly poor 

for degraded reads in that they must always read all 

data disks and parity for every degraded read. This is 

problematic because RS codes are popular owing to 

their generality and applicability to nearly all coding 

situations. A new class of codes, Rotated Reed-

Solomon codes that exceed the degraded read 

performance of all other codes, but otherwise have 

the encoding performance and reliability properties 
of RS Codes. Rotated RS codes can be constructed 

for arbitrary numbers of disks and failures. 

 

2. Related Work 

Performance Metrics: Erasure codes have 
been evaluated historically on a variety of metrics, 

such as the CPU impact of encoding and decoding [3, 

11, 37], the penalty of updating small amounts of 

data [5, 26, 52] and the ability to reconfigure systems 

without re-encoding [3, 7, 26]. The CPU performance 

of different erasure codes can vary significantly. 

However, for all code consider, encoding and 

decoding bandwidth is orders of magnitude faster 

than disk bandwidth. Thus, the dominant factor when 

sealing data is writing the erasure coded blocks to 

disk, not calculating the codes. Similarly, when 

decoding either for recovery or for degraded reads, 
the dominant factor is reading the data.  

Updating small amounts of data is also not a 

concern in cloud file systems—the append-only write 

pattern and sealed blocks eliminate small writes in 

their entirety. System reconfiguration refers to 

changing coding parameters: changing the stripe 

width or increasing/decreasing fault tolerance. This 

type of reconfigurability is less important in clouds 

because each sealed block defines an independent 

stripe group, spread across cloud storage nodes 

differently than other sealed blocks. There is no 
single array of disks to be reconfigured. If the need 

for reconfiguration arises, each sealed block is re-

encoded independently. 

There has been some work lowering I/O 

costs in erasure-coded systems. In particular, 

WEAVER [19], Pyramid [23] and Stepped 

Combination Codes [18] have all been designed to 

lower I/O costs on recovery. However, all of these 

codes are non-MDS, which means that they do not 

have the storage efficiency that cloud storage systems 

demand. The REO RAID Engine [26] minimizes I/O 

in erasure-coded storage systems; however, its focus 

is primarily on the effect of updates on storage 

systems of smaller scale. 

 

Cloud Storage Systems: The default storage 

policy in cloud file systems has become triplication 

(triple replication), implemented in the Google File 
system [16] and adopted by Hadoop [8] and many 

others. Triplication has been favored because of its 

ease of implementation, good read and recovery 

performance, and reliability. 

 The storage overhead of triplication is a 

concern, leading system designers to consider erasure 

coding as an alternative. The performance tradeoffs 

between replication and erasure coding are well 

understood and have been evaluated in many 

environments, such as peer-to-peer file systems [43, 

50] and open-source coding libraries [37].  

Investigations into applying RAID-6 (two 
fault tolerant) erasure codes in cloud file systems 

show that they reduce storage overheads from 200% 

to 25% at a small cost in reliability and the 

performance of large reads [14]. Microsoft research 

further explored the cost/benefit tradeoffs and expand 

the analysis to new metrics: power proportionality 

and complexity [53]. For these reasons, Facebook is 

evaluating RAID-6 and erasure codes in their cloud 

infrastructure [47].  

 

Ford et al. [15] have developed reliability 
models for Google’s cloud file system and validated 

models against a year of workload and failure data 

from the Google infrastructure. Their analysis 

concludes that data placement strategies need to be 

aware of failure groupings and failure bursts. They 

also argue that, in the presence of correlated failures, 

codes more fault tolerant than RAID- 6 are needed to 

to reduce exposure to data loss; they consider Reed-

Solomon codes that tolerate three and four disk 

failures. Windows Azure storage employs Reed- 

Solomon codes for similar reasons [10]. The rotated 

RS codes that we present inherit all the properties of 
Reed- Solomon codes and improve degraded reads. 

 

Recovery Optimization: Workload-based 

approaches to improving recovery are independent of 

the choice of erasure code and apply to minimum I/O 

recovery algorithm and rotated RS codes that we 

present. These include: load-balancing recovery 

among disks [22], recovering popular data first to 

decrease read degradation [48], and only recovering 

blocks that contain live data [45]. Similarly, 

architecture support for recovery can be applied to 
our codes, such as hardware that minimizes data 

copying [13] and parity declustering [21]. 

 

Reducing the amount of data used in 

recovery has only emerged recently as a topic and the 

first results have given minimum recovery schedules 
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for EVENODD [49] and row-diagonal parity [51], 

both RAID-6 codes. An algorithm that defines the 

recovery I/O lower bound for any XOR-based erasure 

code and allows multiple codes to be compared for 

I/O recovery cost. Regenerating codes provide 

optimal recovery bandwidth [12] among storage 

nodes. This concept is different than minimizing I/O; 
each storage node reads all of its available data and 

computes and sends a linear combination. 

 

Regenerating codes were designed for 

distributed systems in which wide-area bandwidth 

limits recovery performance. Exact regenerating 

codes [39] recover lost data exactly (not a new linear 

combination of data). In addition to minimizing 

recovery bandwidth, these codes can in some cases 

reduce recovery I/O. The relationship between 

recovery bandwidth and recovery data size remains 

an open problem. 
 

 

3. Background: Erasure Coded Storage 

 
Erasure coded storage systems add 

redundancy for fault tolerance.  Specifically, a system 

of n disks is partitioned into k disks that hold data 
and m disks that hold coding information. The coding 

information is calculated from the data using an 

erasure code. For practical storage systems, the 

erasure code typically has two properties. First, it 

must be Maximum Distance Separable (MDS), which 

means that if any m of the n disks fails, their contents 

may be recomputed from the k surviving disks. 

Second, it must be systematic, which means that the k 

data disks hold unencoded data.  

 An erasure coded storage system is 

partitioned into stripes, which are collections of disk 
blocks from each of the n disks. The blocks 

themselves are partitioned into symbols, and there is 

a fixed number of symbols for each disk in each 

stripe. We denote this quantity r. The stripes perform 

encoding and decoding as independent units in the 

disk system. Therefore, to alleviate hot spots that can 

occur because the coding disks may require more 

activity than the data disks, one can rotate the disks’ 

identities on a stripe-by-stripe basis. 

 

For the purpose of our analysis, we focus on 
a single stripe. There are k data disks labeled D0, . . . 

,Dk−1 andmcoding disks labeled C0, . . . ,Cm−1. 

There are nr symbols in the stripe. We label the r 

symbols on data disk i as di,0, di,1, . . . , di,r−1 and 

on coding disk j as cj,0, cj,1, . . . , cj,r−1. We depict 

an example system in Figure 1. In this example, k = 

6, m = 3 (and therefore n = 9) and r = 4. 

 

 
 

Fig. 1: One stripe from an erasure coded storage 

system. The parameters are k = 6, m = 3 and r = 4. 
 

Erasure codes are typically defined so that 

each symbol is a w-bit word, where w is typically 

small, often one. Then the coding words are defined 

as computations of the data words. Thus for example, 

suppose an erasure code were defined in Figure 1 for 

w = 1. Then each symbol in the stripe would be 

composed of one single bit. While that eases the 

definition of the erasure code, it does not map 

directly to a disk system. In reality, it makes sense for 

each symbol in a sealed block to be much larger in 

size, on the order of kilobytes or megabytes, and for 
each symbol to be partitioned into wbit words, which 

are encoded and decoded in parallel. 

 
3.1 Matrix-Vector Definition 

All erasure codes may be expressed in terms 

of a matrix vector product. An example is pictured in 
Figure 2. This continues the example from Figure 1, 

where k = 6, m = 3 and r = 4; In this picture, the 

erasure code is defined precisely. This is a Cauchy 

Reed-Solomon code [6] optimized by the Jerasure 

library [38]. The word size, w equals one, so all 

symbols are treated as bits and arithmetic is 

composed solely of the XOR operation. The kr 

symbols of data are organized as a kr-element bit 

vector. They are multiplied by a nr×kr Generator 

matrix GT .1 The product is a vector, called the 

codeword, with nr elements. These are all of the 

symbols in the stripe. Each collection of r symbols in 
the vector is stored on a different disk in the system.  

 

Since the the top kr rows of GT compose an 

identity matrix, the first kr symbols in the codeword 

contain the data. The remaining mr symbols are 

calculated from the data using the bottom mr rows of 

the Generator matrix. When up to m disks fail, the 

standard methodolgy for recovery is to select k 

surviving disks and create a decoding matrix B from 

the kr rows of the Generator matrix that correspond 

to them. The product of B−1 and the symbols in the k 
surviving disks yields the original data [6, 20, 33]. 
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There are many MDS erasure codes that 

apply to storage systems. Reed-Solomon codes [40] 

are defined for all values of k and m. With a Reed-

Solomon code, r = 1, and w must be such that 2w _ n. 

Generator matrices are constructed from a 

Vandermonde matrix so that any k × k subset of the 

Generator matrix is invertible. There is quite a bit of 
reference material on Reed-Solomon codes as they 

apply to storage systems [33, 36, 6, 41], plus 

numerous open-source Reed- Solomon coding 

libraries [42, 38, 30, 31]. 

 

Cauchy Reed-Solomon codes convert Reed-

Solomon codes with r = 1 and w > 1 to a code where 

r = w and w = 1. In doing so, they remove the 

expensive multiplication of Galois Fields and replace 

it with additional XOR operations. There are an 

exponential number of ways to construct the 

Generator matrix of a Cauchy Reed-Solomon code. 
The Jerasure library attempts to construct a matrix 

with a minimal number of non-zero entries [38]. It is 

these matrices that we use in our examples with 

Cauchy Reed-Solomon codes. 

 

For m = 2, otherwise known as RAID-6, 

there has been quite a bit of research on constructing 

codes where w = 1 and the CPU performance is 

optimized. EVENODD [3], RDP [11] and Blaum-

Roth [5] codes all require r + 1 to be a prime number 

such that k _ r + 1 (EVENODD) or k _ r. The 
Liberation codes [34] require r to be a prime number 

and k _ r, and the Liber8tion code [35] is defined for 

r = 8 and k _ r. The latter three codes (Blaum-Roth, 

Liberation and Liber8tion) belong to a family of 

codes called Minimum Density codes, whose 

Generator matrices have a provably minimum 

number of ones.  

 

Both EVENODD and RDP codes have been 

extrapolated to higher values of m [2, 4]. We call 

these Generalized EVENODD and RDP. With m = 3, 

the same restrictions on r apply. For larger values of 

m, there are additional restrictions on r. The STAR 

code [24] is an instance of the generalized 

EVENODD codefor m = 3, where recovery is 

performed without using the Generator matrix. 

All of the above codes have a convenient 
feature that disk C0 is constructed as the parity of the 

data disks, as in RAID-4/5. Thus, the r rows of the 

Generator matrix immediately below the identity 

portion are composed of k (r × r) identity matrices. 

To be consistent with these RAID systems, we will 

refer to disk C0 as the ―P drive.‖ 

 
4. Optimal Recovery of XOR-Based Erasure 

    Codes 

 
When a data disk fails in an erasure coded 

disk array, it is natural to reconstruct it simply using 

the P drive. Each failed symbol is equal to the XOR 

of corresponding symbols on each of the other data 

disks, and the parity symbol on the P disk. We call 

this methodology ―Reading from the P drive.‖ It 

requires k symbols to be read from disk for each 

decoded symbol. 

 

Although it is straightforward both in 

concept and implementation, in many cases, reading 

from the P drive requires more I/O than is necessary. 

In particular, depending on the erasure code, there are 
savings that can be exploited when multiple symbols 

are recovered in the same stripe. This effect was first 

demonstrated by Xiang et al. in RDP systems in 

which one may reconstruct all the failed blocks in a 

stripe by reading 25 percent fewer symbols than 

reading from the P drive [51]. In this section, we 

approach the problem in general. 
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Fig. 2: The matrix-vector representation of an erasure code. The parameters are the same as Figure 1: k = 6, m = 

3 

and r = 4. Symbols are one bit (i.e. w = 1). This is a Cauchy Reed-Solomon code for these parameters. 

 
4.1 Algorithm to Determine the Minimum 

       Number of Symbols for Recovery 

We present an algorithm for recovering from 

a single disk failure in any XOR-based erasure code 

with a minimum number of symbols. The algorithm 

takes as input a Generator matrix whose symbols are 

single bits and the identity of a failed disk and 

outputs equations to decode each failed symbol. The 
inputs to the equations are the symbols that must be 

read from disk. The number of inputs is minimized.  

 

The algorithm is computationally 

expensive—for the systems evaluated for this paper, 

each instantiation took from seconds to hours of 

compute-time.  However, for any realistic storage 

system, the number of recovery scenarios is limited, 

so that the algorithm may be run ahead of time, and 

the results may be stored for when they are required 

by the system. 
 

We explain the algorithm by using the 

erasure code of Figure 3 as an example. This small 

code, with k = m = r = 2, is not an MDS code; 

however its simplicity facilitates our explanation. We 

label the rows of GT as Ri, 0 ≤ i < nr. Each row Ri 

corresponds to a data or coding symbol, and to 

simplify our presentation, we will refer to symbols 

using Ri rather than di,j or ci,j . Consider a set of 

symbols in the codeword whose corresponding rows 

in the Generator matrix sum to a vector of zeroes. 

One example is {R0,R2,R4}. We call such a set of 

symbols a decoding equation, because the fact their 

rows sum to zero allows us to decode any one symbol 

in the set as long as the remaining symbols are not 

lost.  

 

 
Fig. 3: An example erasure code to explain 

the algorithm to minimize the number of symbols 

required to recover from failures. 
 

We can recover all the symbols in F by 

selecting one decoding equation ei from each set Ei, 

reading the nonfailed symbols in ei and then XOR-

ing them to produce the failed symbol. To minimize 

the number of symbols read, our goal is to select one 

equation ei from each Ei  such that the number of 

symbols in the union  of all ei is minimized.  
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For example, suppose that a disk fails, and 

both R0 and R1 are lost. A standard way to decode 

the failed bits is to read from the P drive and use 

coding symbols R4 and R5. In equation form, F = 

{R0,R1} e0 = {R0,R2,R4} and e1 = {R1,R3,R5}. 

Since e0 and e1 have distinct symbols, their union is 

composed of six symbols, which means that four 
must be read for recovery. However, if we instead 

use {R1,R2,R7} for e1, then (e0 [ e1) has five 

symbols, meaning that only three are required for 

recovery. 

 

Thus, our problem is as follows: Given |F| 

sets of decoding equations E0,E1, . . .E|F|−1, we wish 

to select one equation from each set such that the size 

of the union of these equations is minimized. 

Unfortunately, this problem is NP-Hard in |F| and 

|Ei|.2 However, we can solve the problem for 

practical values of |F| and |Ei| (typically less than 8 
and 25 respectively) by converting the equations into 

a directed, weighted graph and finding the shortest 

path through the graph. Given an instance of the 

problem, we convert it to a graph as follows. First, 

we represent each decoding equation in set form as 

an nr-element bit string. For example, {R0,R2,R4} is 

represented by 10101000. 

 

Each node in the graph is also represented 

by an nr-element bit string. There is a starting node Z 

whose string is all zeroes. The remaining nodes are 
partitioned into |F| sets, labeled S0, S1, . . . S|F|−1. 

For each equation e0 2 E0, there is a node s0 2 S0 

whose bit string equals e0’s bit string. There is an 

edge from Z to each s0 whose weight is equal to the 

number of ones in s0’s bit string.  

 

For each node si € Si, there is an edge that 

corresponds to each ei+1 € Ei+1. This edge is to a 

node si+1 € Si+1 whose bit string is equal to the 

bitwise OR of the bit strings of si and ei+1. The OR 

calculates the union of the equations leading up to si 

and ei+1. The weight of the edge is equal to the 
difference between the number of ones in the bit 

strings of si and si+1. The shortest path from Z to any 

node in S|F|−1 denotes the minimum number of 

elements required for recovery. If we annotate each 

edge with the decoding equation that creates it, then 

the shortest path contains the equations that are used 

for recovery. 

To illustrate, suppose again that F = {R0, 

R1}, meaning f0 = R0 and f1 = R1. The decoding 

equationsfor E0 and E1 are denoted by ei,j where i is 

the index of the lost symbol in the set F and j is an 
index into the set Ei. E0 and E1 are enumerated 

below: 

 

 

 

 

E0 E1 

e0,0=10101000 

e0,1=10010010 

e0,2=10011101 

e0,3=10100111 

e1,0=01010100 

e1,1=01101110 

e1,2=01100001 

e1,3=01011011 

 

 

These equations may be converted to the 
graph depicted in Figure 4, which has two shortest 

paths of length five: { e0,0, e1,2} and { e0,1, e1,0}. Both 

require three symbols for recovery: {R2,R4,R7} and 

{R3,R5,R6}. While the graph clearly contains an 

exponential number of nodes, one may program 

Dijkstra’s algorithm to determine the shortest path 

and prune the graph drastically. For example, in 

Figure 5, the shortest path will be discovered before 

the the dotted edges and grayed nodes are considered 

by the algorithm. Therefore, they may be pruned. 

 

 
Fig. 4: The graph that results when R0 and R1 are 
lost. 

 

4.2 Algorithm for Reconstruction 

When data disk i fails, the algorithm is 

applied for F = {di,0, . . . , di,r−1}. When coding disk 

j fails, F ={cj,0, . . . , cj,r−1}. If a storage system 

rotates the identities of the disks on a stripe-by-stripe 

basis, then the average number of symbols for all 

failed disks multiplied by the total number of stripes 

gives a measure of the symbols required to 

reconstruct a failed disk. 

 
4.3 Algorithm for Degraded Reads 

To take maximum advantage of parallel I/O, 

we assume that contiguous symbols in the file system 

are stored on different disks in the storage system. In 
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other words, if one is reading three symbols starting 

with symbol d0,0, then those three symbols are d0,0, 

d1,0 and d2,0, coming from three different disk 

drives. 

 To evaluate degraded reads, we assume that 

an application desires to read B symbols starting at 

symbol dx,y, and that data disk f has failed. We 
determine the penalty of the failure to be the number 

of symbols required to perform the read, minus B. 

 

There are many cases that can arise from the 

differing values of B, f, x and y. To illustrate, first 

suppose that B < k (which is a partial read case) and 

that none of the symbols to be read reside on disk f. 

Then the failure does not impact the read operation 

— it takes exactly B symbols to complete the read, 

and the penalty is zero. 

As a second case, consider when B = kr and 

dx,y =d0,0. Then we are reading exactly one stripe in 
its entirety. In this case, we have to read the (k−1)r 

non-failed data symbols to fulfill the read request. 

Therefore, we may recover very easily from the P 

drive by reading all of its symbols and decoding. The 

read requires kr = B symbols. Once again, the penalty 

is zero. 

However, consider the case when B = k, f = 

0, and dx,y = d1,0. Symbols d1,0 through dk−1,0 are 

non-failed and must be read. Symbol d0,1 must also 

be read and it is failed. If we use the P drive to 

recover, then we need to read d1,1 through dk−1,0 
and c0,1. The total symbols read is 2k −1: the failure 

has induced a penalty of k −1 symbols. 

 

In all of these cases, the degraded read is 

contained by one stripe. If the read spans two stripes, 

then we can calculate the penalty as the sum of the 

penalties of the read in each stripe. If the read spans 

more than two stripes, then we only need to calculate 

the penalties in the first and last stripe. This is 

because, as described above, whole-stripe degraded 

reads incur no penalty. 

When we perform a degraded read within a 
stripe, we modify our algorithm slightly. For each 

non-failed data symbol that must be read, we set its 

bit in the state of the starting node Z to one. For 

example, in Figure 3, suppose we are performing a 

degraded read where B = 2, f = 0 and dx,y = d0,0. 

There is one failed bit: F = d0,0. Since d1,0 = R2 

must be read, the starting state Z of the shortest path 

graph is labeled 00100000. The algorithm correctly 

identifies that only c0,0 needs to be read to recover 

d0,0 and complete the read. 

 

5.  Rotated Reed-Solomon Codes 
Before performing analyses of failed disk 

reconstruction and degraded reads, we present two 

instances of a new erasure code, called the Rotated 

Reed-Solomon code. These codes have been 

designed to be MDS codes that optimize the 

performance of degraded reads for single disk 

failures. The general formulation and theoretical 

evaluation of these codes is beyond the scope of this 

paper; instead, we present instances for m € {2, 3}. 

 

 
 

Fig. 5: A Reed-Solomon code for k = 6 and m = 3. 

Symbols must be w-bit words such that w ≥ 4, and 

arithmetic is over GF(2w). 

 

The most intuitive way to present a Rotated 

Reed- Solomon code is as a modification to a 

standard Reed- Solomon code. We present such a 

code for m _ 3 in Equation 1. As with all Reed-

Solomon codes, r = 1. 
 

   For 0≤ j< 3, Cj, 0 =    2𝑗  𝑖𝑘−1
𝑖=0  di,0  (1)  

 

This is an MDS code so long as k, m, r and 

w adhere to some constraints, which we detail at the 
end of this section. This code is attractive because 

one may implement encoding with XOR and 

multiplication by two and four in GF(2w), which are 

all very fast operations. For example, the m = 2 

version of this code lies at the heart of the Linux 

RAID-6 coding engine [1]. 

 

We present the code pictorally in Figure 5. 

A chain of circles denotes taking the XOR of di,0; a 

chain of triangles denotes taking the XOR of 2idi,0, 

and a chain of squares denotes taking the XOR of 

4idi,0. To convert this code into a Rotated Reed-
Solomon code, we allow r to take on any positive 

value, and define the coding symbols with Equation 

2. 

 

 
Intuitively, the Rotated Reed-Solomon code 

converts the one-row code in Figure 6 into a multi-

row code, and then the equations for coding disks 1 

and 2 are split across adjacent rows. We draw the 

Rotated Reed- Solomon codes for k = 6 and m = {2, 

3} and r = 3 in Figures 6 and 7. 
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Fig. 6: A Rotated Reed-Solomon code for k = 6, m = 

2 and r = 3. 

 

These codes have been designed to improve 

the penalty of degraded reads. Consider a RAID-6 

system that performs a degraded read of four symbols 

starting at d5,0 when disk 5 has failed. If we 

reconstruct from the P drive, we need to read d0,0 

through d4,0 plus c0,0 to reconstruct d5,0. Then we 
read the non-failed symbols d0,1, d1,1 and d2,1. The 

penalty is 5 symbols. With Rotated Reed-Solomon 

coding, d5,0, d0,1, d1,1 and d2,1 all participate in the 

equation for c1,0. Therefore, by reading c1,0, d0,1, 

d1,1, d2,1, d3,0 and d4,0, one both decodes d5,0 and 

reads the symbols that were required to be read. The 

penalty is only two symbols. 

 

With whole disk reconstruction, when r is an 

even number, one can reconstruct any failed data disk 

by reading 
𝑟

2
 𝑘 +

𝑘

𝑚
 symbols. The process is 

exemplified for k = 6, m = 3 and r = 4 in Figure 8. 

The first data disk has failed, and the symbols 

required to reconstruct each of the failed symbols is 

darkened and annotated with the equation that is used 

for reconstruction. Each pair of reconstructed 

symbols in this example shares four data symbols for 

reconstruction. Thus, the whole reconstruction 

process requires a total of 16 symbols, as opposed to 

24 when reading from the P Drive. 

 
 

Fig. 7: A Rotated Reed-Solomon code for k = 6,m = 

3 and r = 3. 

 

The process is similar for the other data 

drives. Reconstructing failed coding drives, however 

does not have the same benefits. We are unaware at 

present of how to reconstruct a coding drive with 

fewer than the maximum kr symbols. 

As an aside, when more than one disk fails, 

Rotated Reed-Solomon codes may require much 

more computation to recover than other codes, due to 

the use of matrix inversion for recovery. We view 

this property as less important, since multiple disk 
failures are rare occurrences in practical storage 

systems, and computational overhead is less 

important than the I/O impact of recovery. 

 

 
Fig. 8: Reconstructing disk 0 when it fails, using 
Rotated Reed-Solomon coding for k = 6, m = 3, r = 4. 

 

5.1 MDS Constraints 

The Rotated Reed-Solomon code specified 

above in Section 5 is not MDS in general. In other 

words, there are settings of k, m, w and r which 

cannot tolerate the failure of any m disks. Below, we 

detail ways to constrain these variables so that the 

Rotated Reed-Solomon code is MDS. Each of these 

settings has been verified by testing all combinations 

of m failures to make sure that they may be tolerated.  
 

They cover a wide variety of system sizes, 

certainly much larger than those in use today. 

 

The constraints are as follows: 

m € {2, 3} 

k ≤36, and k + m ≤ 2w + 1 

w € {4, 8, 16} 

r €{2, 4, 8, 16, 32} 

 

Moreover, when w = 16, r may be any value 

less than or equal to 48, except 15, 30 and 45. It is a 
matter of future research to derive general-purpose 

MDS constructions of Rotated Reed-Solomon codes. 

 

6. Conclusion 

 
 The paper provide guidance as to how to 
deploy erasure coding in the cloud file systems with 

respect to choosing a specific code and the size of 

sealed blocks . Cloud file systems distribute the 

coded blocks from each stripe (sealed block) on a 

different set of storage nodes. This strategy provides 

load balance and incremental scalability in the data 
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center. It also prevents correlated failures from 

resulting in data loss and mitigates the effect that any 

single failure has on a data set or application [15]. 

However, it does mean that each stripe is recovered 

independently from a different set of disks. To 

achieve good recovery performance when recovering 

independent stripes, codeword symbols need to be 
large enough to amortize disk seek overhead. Our 

results recommend a minimum symbol size of 4 MB 

and prefer 16 MB. This translates to a minimum 

sealed block size of 144 MB and preferred size of 

576 MB for RDP and GenRDP, for example. Cloud 

file systems would benefit from increasing the sealed 

blocks to these size from the 64 MB default  

Increasing the symbol size has drawbacks as well. It 

increases memory consumption during recovery and 

increases the latency of degraded reads, because 

larger symbols need to recover more data. 

 
 Codes differ substantially in recovery 

performance, which demands a careful selection of 

code and parameters for cloud file systems. 

Optimally-sparse, Minimum- Density codes tend to 

perform best. The Liber8tion code and Generalized 

RDP are preferred for m = 2 and m = 3 respectiveley. 

Reed-Solomon codes will continue to be popular for 

their generality. For some Reed- Solomon codes, 

including rotated-RS codes, recovery performance 

may be improved by more than 20%. However, the 

number of symbols per disk (r) has significant 
impact. For k = 6 data disks, the best values are r = 7 

for m = 2 and r = 4 for m = 3.  

 

Several open problems remain with respect 

to optimal recovery and degraded reads. While our 

algorithm  an determine the minimum number of 

symbols needed for recovery for any given code, it 

remains unknown how to generate recovery-optimal 

erasure codes. We are pursuing this problem both 

analytically and through a programmatic search of 

feasible generator matrixes. Rotated RS codes are a 

first result in lowering degraded read costs. Lower 
bounds for the number of symbols needed for   

degraded reads have not been determined. 

 

We have restricted our treatment to MDS 

codes, since they are used almost exclusively in 

practice because of their optimal storage efficiency. 

However, some codes with decreased storage 

efficiency have much lower recovery costs than MDS 

[27, 18, 28, 23, 19]. Exploring non-MDS codes more 

thoroughly will help guide those building cloud 

systems in the tradeoffs between storage efficiency, 
fault-tolerance, and performance. 
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