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ABSTRACT 
This paper focuses on the end-point 

control of a single flexible link which rotates in 

the horizontal plane. The dynamic model is 

derived using a Lagrangian assumed modes 

method based on Euler–Bernoulli beam theory. 

Initially the system is modeled as a voltage-input 

model, and different controllers were applied to 

control the system. The position and trajectory 

control is performed by PID control methods for 

this system. The purpose of this study is to keep 

the rotate angle of the link at desired position and 

to eliminate the oscillation angle of end effectors. 

The results were produced for mode 1 and mode 

2 operation. The control blocks required for this 

system are performed on MATLAB – 

SIMULINK. The simulated results of the system 

based on PID controller are quite satisfactory. 
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I. INTRODUCTION 

An important advanced robotic system is 

the flexible-link robot arm. The desire to improve 

robot performance has led to the design of lighter 
flexible links. A light-flexible link robot arm has 

many advantages compared to conventional rigid 

link robots such as lower power consumption, higher 

payload-to-robot weight ratio, lower manufacturing 

cost, and easier transportation to name a few. 

Because of the elasticity of the flexible robot arm, 

the controller algorithms are different from that of 

the traditional rigid robot arm.  

A flexible link robot arm is a distributed 

parameter system of infinite order, Due to elastic 

properties of flexible manipulators, the development 
of a mathematical description and subsequent 

model-based control of the system is a complicated 

task. This is made difficult by the presence of a large 

(infinite) number of modes of vibration in the 

system. The modes become significant in two ways: 

firstly, because the oscillations themselves prolong 

the settling time and secondly, because attempts to 

actively control some modes result in instability of 

the other modes. This non-linear behavior of the 

structure at high speeds, firstly, degrades end-point 

accuracy and secondly complicates controller 

development.  
The flexible link systems play an important 

role in the industrial applications, mainly due to the  

 
 

 

 

use of lightweight materials in large space structures.  

The main difficulty associated with the flexible link 

manipulator is the vibrations at the end effectors. 

Various control strategies are available in the 

literature to minimize the vibrations. A brief 

description of these methods is given below.  

It is known that the flexible system is a highly 

nonlinear and heavily coupled system, ddifferent 

assumed modes method [1-3] is used for the 
dynamic modeling and implemented via a 

commercially available symbolic manipulation 

program. Systematic method is developed to 

symbolically derive the full nonlinear dynamic 

equations. 

High performance manipulators with 

dynamic behavior in which the flexibility is an 

essential aspect are addressed [4]. The mathematical 

representations commonly used in modeling flexible 

arms and arms with flexible drives are examined. 

Dynamic deformations of the flexible arm were 
represented in a simple and compact form with use 

of the virtual coordinate systems in [5]. Using the 

assumed-modes approach it is possible to find 

the transfer function between the torque input and 

the net tip deflection [6]. It is shown that when the 

number of modes is increased for more accurate 

modeling, the relative degree of the 

transfer function becomes ill-defined.  

In [8] the first method designs a stable pre-

filter using the extended bandwidth zero phase error 

tracking control method. The second feed forward 

method adds delay to the inverse model and then 
uses common filter design techniques to 

approximate this delayed frequency response. 

PID type composite controller for 

controlling flexible arms modeled by the singular 

perturbation approach [9], and investigates a tuning 

method based on the proposed controller structure. 

For the slow sub-controller, a PD plus disturbance 

observer is used, which eventually takes on PID 

form, and for the fast sub-controller, modal feedback 

PID control is utilized. By using the Tchebyshev 

representation of a discrete-time transfer function 
and some new results on root counting with respect 

to the unit circle[10], were shown that how the 

digital PID stabilizing gains can be determined by 

solving sets of linear inequalities in two unknowns 

for a fixed value of the third parameter. The 

application of the H∞ and PID control synthesis 

method is used to develop the tip position control of 
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a flexible-link manipulator [11]. A modified PID 

control (MPID) is proposed [12] which depend only 

on vibration feedback to improve the response of the 

flexible arm without the massive need for 

measurements.  

The requirement of controllers with faster 

response and higher accuracy introduces a challenge 
that the researchers have faced in different ways. 

The large mass and energy requirements of standard 

rigid link manipulators have led to a desire for 

flexible link manipulators characterized by low-mass 

links and actuators with low power requirements. 

This is particularly desirable in certain applications, 

such as space systems, where mass and energy 

requirements must be minimized for transport 

purposes. Flexible link dynamics are also found in 

certain mechanical pointing systems and in systems 

with links having high length-to-width ratios. These 

dynamics make the system outputs such as tip 
position more difficult to control. Therefore, before 

flexible link manipulators can be surrealistically 

implemented, it is necessary to study the nature of 

flexible link manipulators and determine effective 

methods for position control. 

This paper deals with the modeling and PID 

control of single flexible link manipulator. The PID 

controller is a combination of PID controller and 

plant matrix controller that is adapted based on the 

output of PID controller. The paper aims at end-

point control by using PID controllers, which 
overcomes the disadvantage of the conventional 

controllers such as more raise time and settling time.  

 

II. FLEXIBLE MANIPULATOR  

The conventional approach to the design of 

an automatic control system often involves the 

construction of a mathematical model which best 

describes the dynamics behavior of the plant to be 

controlled, and the application of analytical 
techniques to this plant model to derive an 

appropriate control law. Usually, such a 

mathematical model consist of a set linear or non-

linear differential equations, most of them are 

derived using some form of approximation and 

simplification. The traditional model-based control 

techniques break down, when a representative model 

is difficult to obtain due to uncertainty or sheer 

complexity. It is known that robot system is highly 

non-linear and heavily coupled system, and accurate 

mathematical model is difficult to obtain, thus it 

making difficult to control using conventional 
techniques. This paper presents the mathematical 

modeling of a single link flexible manipulator. The 

system is modeled by the Lagrange formulation and 

model expansion method.  

 

III. MATHEMATICAL MODELLING OF 

FLEXIBLE MANIPULATOR 
The manipulator is illustrated in fig. 1, and 

is modeled as a pinned-free flexible beam with 

payload at one end. The beam can bend freely in the 

horizontal   plane but is considered stiff with respect 

to vertical bending and torsion. The model is 

developed using the Lagrange formulation and 

model expansion method. The length of the 

manipulator is assumed to be constant, and 

deformation due to shear, rotary inertia and the 
effects of axial forces are neglected. The moment of 

inertia about the hub O is denoted by  and  is the 

linear mass density.  The arm has length l , and the 

payload mass is given by .  The control torque T 

is applied at the hub of the manipulator by way of 

the rotary actuator. The angular displacement of the 

manipulator, moving in the xOy plane, is denoted by 

 . The width of the arm is assumed to be much 

greater than it’s the thickness, thus allowing it to 

vibrate dominantly in the horizontal direction. The 

shear deformation and rotary inertia effects are 
ignored. 

 
Fig. 1 Schematic representation of the flexible 

manipulator system 

 

For an angular displacement   and an elastic 

deflection  y(x,t) the total displacement u(x,t) of a 
point, measured at a distance  x from the hub can be 

described as a function of the above, measured from 

the direction of Ox.  

   (x, t) = u(x, t) +θ (t) x                   (1) 

The kinetic energy of the system can be written as 

       (2) 

 

In eqn. (2), the first term on the right hand 
side is due to the hub inertia, the second term is due 

to the rotation of the manipulator with respect to the 

origin, and the third term is due to the payload mass. 

The potential energy is related to the bending of 

manipulator. Since the width of the manipulator 

under consideration is assumed to be significantly 

larger than its thickness, the effects of the shear 

displacement can be neglected. In this way, the 

potential energy of the manipulator can be written as 

         (3) 

where E is the modulus of the elasticity for the beam 

material, and I denote the second moment of area of 

the beam cross-section. 
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The non-conservative work for the input torque T 

can be written as 

 

             W                   (4) 

 

The Lagrangian for the system is formulated as 

 

              L=T-V                      (5) 

 

To obtain the equation of the motion of the 

manipulator, Hamilton extended principle is used as 
described in eqn. (6) 

 

            (6) 

 

where t1 and t2 are two arbitrary times and w  

represents virtual work.  Manipulating Eqn. (1) - (6) 

yields the equation of motion of the manipulator as   

 

      (7) 

 

The dynamic equation of the manipulator is 

described as 
 

      (8) 

 Where   

 

The corresponding boundary and initial conditions 

are given by 

 

 

 
 

 (9) 

Using the assumed mode method, the 

solution of the dynamic equation of motion of the 

manipulator can be obtained as linear combination 

of the product of the admissible function i (x) and 

the time-dependent generalized coordinates iq (t), as 

follows, where 

 

   
      (10) 

 

The admissible function i (x) also called 

the mode shape, is purely a function of the 

displacement along the length of the manipulator 

and iq (t) is purely a function of the time and 

includes an arbitrary, multiplicative constant. The 

parameter values for flexible manipulator are given 

in Table 1. 

Table 1 Parametric values for the flexible 

manipulator 

Physical parameter Symbol Value 

Length L 0.61 m 

Section area A 310-5 m2 

Density Ρ 7.8103 kg/m3 

Young modulus E 200109 N/m2 

Second moment of 

area 
I 2.510-12 m4 

Payload M 31.710-3 kg 

Moment of inertia of 

hub 
J 4.310-3 kg-m2 

 

Substitution of eqn. (10) into eqn. (7) by apply 

boundary and initial conditions of eqn. (9), the 

following ordinary differential equations can be 

derived  

   

     (11) 

    

       (12) 

Where 

 

 

 

   

 denotes the frequency of vibration, which can 

be determined from the above using the boundary 

conditions. The frequencies for the first and second 

modes of vibration and the corresponding terms 

 are shown in table 2. 

 

Table 2   Mode dependent parameters 

Mode 
  ia  ib  

1 2.6178 1.0035102 6.829210-2 4.496110-1 

2 6.9626 5.021510
3
 9.653910

-3
 2.224810

-1
 

 

If X is assumed as state space variables, 

 

and Y is assumed as the output, 

, eqn. (11)  and eqn .(12) can 

be written as 

 (13) 
and 

        (14)    

thus a fourth order model is considered as a system. 
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IV. PROBLEM FORMULATION 
Control strategies are designed for models 

of a flexible link manipulator that are linearized 

about a particular operating point, that is, for a given 

set of hub angle and elastic mode positions and 
velocities. The greater the variation of these 

positions and velocities from the operating point, the 

greater is the variation of the linearized model from 

the actual system. This variation becomes more 

pronounced for high-performance control systems 

since high performance implies rapid motion and 

therefore large departures of the hub angle and 

elastic mode positions and velocities from their 

nominal values. System performance and stability 

will degrade unless the situation is addressed. The 

objective is to control the angular displacement θ, 

and to minimize the vibrations at the final deflected 
position. 

 

4.1 PID Controller 

A proportional–integral–derivative 

controller (PID controller) is a generic loop feedback 

(controller) widely used in industrial control 

systems. A PID controller attempts to correct the 

error between a measured process variable and a 

desired set point by calculating and then instigating a 

corrective action that can adjust the process 

accordingly and rapidly, to keep the error minimal. 
 

 
Fig. 2 Block diagram of PID Controller 

 

The PID controller calculation involves 

three separate parameters; the proportional, the 

integral and derivative values as shown in fig. 2. The 

proportional value determines the reaction to the 

current error, the integral value determines the 

reaction based on the sum of recent errors, and the 

derivative value determines the reaction based on the 

rate at which the error has been changing. The 

weighted sum of these three actions is used to adjust 

the process via a control element such as the position 
of a control valve or the power supply of a heating 

element. 

Some applications may require using only one or 

two modes to provide the appropriate system 

control. This is achieved by setting the gain of 

undesired control outputs to zero. A PID controller 

will be called a PI, PD, P or I controller in the 

absence of the respective control actions. PI 

controllers are particularly common, since derivative 

action is very sensitive to measurement noise, and 

the absence of an integral value may prevent the 

system from reaching its target value due to the 

control action. 

 

4.2 Turning of PID Controller 

If the PID controller parameters are chosen 

in correctly, the controlled process input can be 

unstable, i.e. its output diverges, with or without 
oscillation and is limited only by saturation or 

mechanical breakage.  Tuning a control loop is 

adjustment of its control parameters to the optimum 

values for the desired control response. 

There are several methods for tuning a PID 

loop. The most effective methods are generally 

involve the development of some form of process 

model, then choosing P, I and D based on the 

dynamic model parameters. Manual tuning methods 

can be relatively inefficient. The choice of the 

method will depend largely on whether or not the 

loop can be taken offline for tuning, and the 
response time of the system. If the system can be 

taken offline, the best tuning method often involve 

subjecting the system to a step change in input, 

measuring the output as a function of time, and using 

this response to determine the control parameters. 

 

V. RESULTS AND ANALYSIS 
By exerting this controller to the system, 

the step response and the closed loop response in 
both modes will be as shown in Fig. 3 to 8. 

 
Fig. 3 Step response (alpha) of the system with PID 

controller for mode 1 

 

 
Fig. 4 Step response (theta) of the system with PID 

controller for mode 1 
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Fig. 5 Step response (Alpha) of PID controller with 

a disturbance for mode1 
 

Fig. 3 and 4 are shown the amplitude 

(alpha) and angular velocity (Theta) of the step 

response of the system PID controller without 

addition of disturbance for mode 1 operation  where 

as fig. 5 shows the step response(alpha) of the PID 

controller with addition of disturbance under mode 1 

operation.  

 
Fig. 6 Step response (theta) of PID controller with 

disturbance input 

 
Fig. 7 Step response (Alpha) of the system with PID 

controller for mode 2 

 
Fig. 8 Step response (Theta) of the system with PID 

controller for mode 2 

Fig. 6 and 7 are shown the amplitude (alpha) and 

angular velocity (Theta) of the step response of the 

system PID controller without addition of 

disturbance for mode 2 operation  where as fig. 8 

shows the step response(alpha) of the PID controller 

with addition of disturbance under mode 2 operation. 

The operating modes are shown with different 
parameters in the table 3. 

 

Table 3 Results of different parameters of PID 

Controller  

Type of 

operation 

Settling time 

(Sec) 

Peak over 

Shoot (Amps) 

Mode -1 15.2 1.40 

Mode - 2 19.5 1.58 

 

From the Fig. 3 to 8, it has observed that 

the PID controller doesn’t create a suitable step 

response for the system. Intense the settling time is  

15.2 seconds for mode-1 operation and 19.5 seconds 

for mode -2 operation.  It shows the Peak over shoot 

is 1.4 Amps for mode-1 operation and 1.58 Amps 

for mode-2 operation. 
 

VI. CONCLUSION 
PID Control of a Single Flexible Link 

Manipulator (SFLM) has been investigated in this 

paper.  In this paper initially simulations have been 

carried out using PID controller, the step response 

and the closed-loop response in both modes are 

shown in fig 3 to 8.  It is clear that the PID controller 

doesn’t create a suitable step response for the 
system. Intense transient oscillation and high over 

shoot are the shortcoming of such controller. 

Moreover the parameters of this controller are 

constant, no adaption with system dynamical 

changes. Since the amplitude of oscillation persists 

and in order improves the transient response of the 

system, a PID controller has been designed and 

simulated along with the system.  
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