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Abstract
This paper presents a general approach
for generating higher order (longer size)

multidimensional (m-d) architectures from 2™
lower order (shorter sizes) architectures. The
objective of our work is to derive a unified
framework and a design methodology that allows
direct mapping of the proposed algorithms into
embedded reconfigurable architectures such as
FPGAs. Our methodology is based on
manipulating tensor product forms so that they
can be mapped directly into modular parallel
architectures. The resulting circuits have very
simple modular structure and regular topology.
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I.INTRODUCTION

This paper proposes an efficient and cost-
effective general methodology for mapping
multidimensional ~ transforms  onto  efficient
reconfigurable architectures such as FPGAs. The
main objective of this paper is to derive a design
methodology and recursive formulation for the
multidimensional transforms which is useful for the
true modularization and parallelization of the
resulting computation.

Our methodology employs tensor product
(or Kronecker products) decompositions and
permutation matrices as the main tools for
expressing the  general framework  for
multidimensional DSP transforms. We employ
several  techniques to  manipulate  such
decompositions into suitable recursive expressions
which can be mapped efficiently onto reconfigurable
FPGAS structures.
Our work is based on a non-trivial generalization of
the one-dimensional DSP transforms. It has been
shown that when coupled with stride permutation
matrices, tensor products provide a unifying
framework for describing and programming a wide
range of fast recursive algorithms for various
transform. This unifying framework is suited for
parallel processing machines and vector processing
machines [6], [10].
Some of the tensor product properties that will be
used throughout this paper are [6], [10]:

AB®CD = (A®B)(C ® D) 1)

(A®B)®C=A®(B®C) 2
If n=mny, then

Anl ® an = Pn,nl (1 n, ®An1) F’n,nz (1 n ® an) ®)
If N=nNyNyN3, then

|nl ®An2 ®|n3 = Pn,nln2 (|n1n3 ® An2 ) Pn,n3 4
If 2n=mn, , then

Pn,2 F Pn,nl I:’n,nz (5)

Where ® denotes the tensor product, I, is

the identity matrix of size n, and Png, the

permutation matrix, is nxn binary matrix whose
entries are zeroes and ones, such that each row or

column of has a single 1 entry. If n = rs then Py g

n
is an nxn binary matrix specifying an — -shuffle
S

(or s-stride) permutation. The effect of the
permutation matrix Pp g on an input vector Xp, of

length n is to shuffle the elements of X, by

grouping all the r elements separated by distance s
together. The first r element will be

X1 Xs, X2s, s X(r—1)s. the next r elements are

X1 X145+ X1425 "+ X14+(r—1)s » and so on.

The main result reported in this paper
shows that a large two-dimensional (2-d)
computation for a given DSP transform on an nxn
input array can be decomposed recursively into three
stages as shown in Fig. 1 for the case n=4. The
middle stage is constructed recursively from 22
parallel (data-independent) blocks each realizing a
smaller-size computation of the same DSP
transform. The pre-additions and the post-
permutations stages serve as "glue" circuits that
combine the 2° lower order blocks to construct the
higher order architecture. We also show that the
proposed unified approach can be extended such that
an m-d DSP transform can be constructed from 2™
smaller size m-d ones. The objective of our work is
to derive a unified framework and a design
methodology that allows direct mapping of the
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proposed algorithms into reconfigurable FPGAs
architectures.

Observe that, we have drawn our networks
such that data flows from right to left. We chose this
convention to show the direct correspondence
between the derived algorithms and the proposed
reconfigurable architecture.

I.A GENERAL FRAMEWORK FOR 1-D RECURSIVE
DSP TRANSFORMS

In this section, we present a general
framework to derive recursive formulations for
multidimensional transforms. Given a 1-d DSP
algorithm in a matrix-vector form

Ym =Tm,n Xn (6)

Where, Tm,n is the transform matrix, X

and Yy, are the input vector of size n and the

output vector of size m, respectively. Then, using
sparse matrix factorization approach [9], the matrix

Tm,n can be factorized so that
Tmn=T1T2 T ()

Where, each of the matrices T1,To, -+, Tk

is sparse. Sparseness implies that either most of the
elements of the matrix are zeros or the matrix in the
block diagonal form. By applying tensor product
property (3) to the block diagonal matrices of
equation (7), we have

Tmn =R (1j®Tm/2,n/2)(Qk) (8)

Where, Qi and R; are the pre- and post-

processing glue structure that combine j blocks in
parallel of the lower-order transform of size

Tm/2,n/2-

A. The 1-d Linear Convolution
The 1-d linear convolution matrix C(n) of

sizen=2%, where « is an integer can be written
as [5], [6]

C(n) =Rp (I3 ®C(n/2))Qn . )

Where,
_ a-1
Qn—(P2a71312a723) [(lzafl ®A)P2a’2afl]-

Rp = Rza—k (P,

3(20’—1),3(' 2% ® B)Pa

(2% —1),(20‘—1))

10
1 00
A=1 1| , B=|-1 1-1
0 0 1

01

In this case j=3 (three parallel blocks of the
convolution of smaller size n/2)). The realization
of the 1-d linear convolution is shown in Fig. 1.

}
R“ {"
n-l
- Cini2)e
*» -
2n-1 _ 2 3
Convolution, | - n
= |Cini2}s S f—
OUTPUT || 2 = | | INPUT
& (i) @
Stage il 3 Stage ¥ 2 Stage H 1

C(n) 1-D Convolution
Fig. 1. Therealization of the 1-d linear convolution

B. The 1-d DCT

The 1-d DCT T}, of size n can be written as [3], [7]

Th =Ry (13®T.1,)Qn. (10)
Where
Rn=Pnn/2Un/2®Lns2)

Qn =128V, 75) (In/2 ®Cn/2)(F2® In/2) Vi -

C, =diad — = |,
2C0s¢n

o =2£(4|v| +1),M=0,1--,n-1,
n

1 1.0 0 0 0
0 1 1 O 0O O
0O 0 1 1 0 O

gt
0 0 0 O 1
000 0 - 0 1

Vn=n/2®Jn/2) P2,

RERE
2711

I/ 2 is the identity matrix of dimension n/2, @
is the direct sum operator, Jp, /2 is the exchange

matrix of order N/ 2 defined as
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0 0 - 0 0]

00 - 1 0
Jnjp= |0 & it

0 O

1 0 - 0 0]

In this case j=2 (two parallel blocks of the DCT of
smaller size n/2)). The realization of the 1-d DCT
is shown in Fig. 2.

IIFJ' L’M
gr ?:r'z' 2
D -] 3 i
S g i n 7 INPUT
OUTPUT ‘- ::.»'z' ’
Stage Stage # 2 Stage # 1
T,

Fig. 2. The realization of the 1-d DCT

C. The 1-d WHT
Our last example is the 1-d WHT. The
original 1-d WHT transform matrix is defined as [1],

[2]
w W 1 1

Wn:[ n/2 n/2 J’ sz[ J’ (11)
Wnlz _Wn/2 e ]

Where, W5 is the 2-point WHT. Let k =log, n, we
can write equation (11) in the iterative tensor-
product form

Wp =W2 ® Wp/2 =Wy ® Wy ®---®---W5

=11 (1, ®W2 ® 1 k-i-1)
i=0
which using property (4), can be modified to
k-1
W, =11 Pn Si+l (|2k-1 ®W,) Pn NEE (13)
i=0 ' ,

As an example, we can express Wg as
Wg =|Pg, 2 (14 ®W2) P 4|8, 4 (14 ®W2)Pg 2]
Pg,g (14 ®W2)PRg 1
(14)
The realization of Wg is shown in Fig. 3 (a).

Applying property (5) to equation (14)
and noting that now the permutations in two adjacent
stages can be grouped together into a single
permutation, the adjacent permutationsPg» Pgg
(from the first and the second stage) will be replaced
by the single permutation P8,2 and the adjacent

permutations Pg 4 Pg 4 (from the second and the

third stage) will be replaced by the single
permutation P8,2 as shown in Fig. 3 (b). Similarly,
equation (13) can be simplified to
k-1
W, = H Pn,2 (|2k,1 ®WZ) (15)
i=0
Thus, W, can be computed by the

cascaded product of k similar stages (independent of
i) of double matrix products instead of the triple
matrix products in equation (8). Alternatively, we
can realize (15) by a single block of
Pn,2 (I,k-1 ®Wp) and take the output after K
iterations that allows a hardware saving without
slowing down the processing speed and reduction in
the hardware size as shown in Fig. 4 for the case
n=8.

It should be mentioned that we have applied
property (5) to reduce the shuffling inherited in the
original WHT algorithm to allow a uniform
hardware blocks as shown in Fig. 3 (b). We haven’t
modified the original complexity of the WHT that

are centered in the W, blocks as shown in Fig. 3
and Fig. 4.

Applying property (1), equation (12) can be
modified to
Wp =W & Wpyp =12Wy @ W2 In/2
=(I2 ®Wp2) W2 ®1p/2) (16)
=(l2 ®Wp/2) Qn

Where, Qn =W, ® Iy/2) 7)

Equation (16) represents the two-stage
recursive tensor product formulation of the 1-d WHT
(in this case j =2') in which the first stage is the pre-

additions ( Qp, ), followed by the second stage of the
core computation (Ip ®W,,;5) that consists of a

parallel blocks of two identical smaller WHT
computations each of size n/2 as shown in Fig. 5.

I.A GENERAL FRAMEWORK FOR 2-D RECURSIVE
DSP TRANSFORMS

For a 2-d input data, Xy n, , of size Ny xny, and
a separable 2-d transform, Tnl, no » We can write the
output, Ynl,nz , in the form

Yni.no =Yng,no Xngono (18)

where, an,nz and Ynl,nz are the input and

output column-scanned vectors, respectively. For
separable matrices, the 2-d transform matrix

Tnl,nz can be written in the tensor product form as

9]
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Where Tp; and Tp, are the row and column 1- Applying properties (1) to (4) to derive the

2-d recursive form
d transforms, respectively as defined in (8). By ursiv

replacing Tnl and Tnz by their corresponding

Tng,no =(§n1,n2)(| j2 ®Tn1/2,n2/2)(5n1,n2) (20)
values from equation (8) and
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Where, 6n1,n2 and ﬁnl,nz are the 2-d pre- and
post-processing glue structure, respectively that
combine j2 of the lower-order (smaller size) 2-d
Thy/2n01/2 of
m/2xny/2.

transform dimension

A. The 2-d convolution
Let i =2%and ny = 292 Pratt [9] has
shown that for an nyxny input data image, the 2-d
convolution output is given by
q=Cpnyf (21)
Where, C, . is the 2-d convolution transform
matrix; and g and f are the output and input column-
scanned vectors, respectively of size n=nqn,.
Pratt has also shown that, for separable transforms,
the matrix Cnl,ng can be decomposed into the

tensor form
Chy,ny = C(n)®C(n2) (22)
Where, C(ng) and C(np) represent row and

column 1-d convolution operators on f, respectively,
as defined in (8) and (9). From (9) and (22), we can
express the 2-d convolution matrix as a function of
1-d convolutions as follows [4]

Cny,n, =[R1(13®C(n /2)Q1]®[R2 (13 ®C(n2 /2)Q2]
(23)
Applying property (1), leads to
Cny,ny =[(R1®R2)((13 ®C(ny /2))®
(13 ®C(n2/2))(Q1 ®Q2)],  (24)
ZRCnl,nz Q.

Where,
R =(Ri®Ry),
Cry.np = (13 ®C(ny /2))®(13 ®C(ny /2)),

Q=(Q1 ®Q2)]
(25)
Note that the matrix 5%”2 contains the 1-d
convolutions matrices C(n, /2)and C(n, /2) inan

involved tensor product expression. By applying
property (2), we can write (24) as

Cny,ny = ((13®C(M /2)®13)®C(n2/2)), (26)
Applying property (4), yields to
énl, np = (P9(n1 -1),3(n1-1)
(19 ®C(n1/2)Py(ny 12)3)®C(n2 /2)),
(27)

Since the convolution matrix C(n/2) is of dimension
[(n=2) xn/2], we can write C(n, /2) as
C(n, 12)=1p,1.C(n; 12) .1, 12 (28)
Substituting (21) in (20) and applying property (1),
Cnl,np_ = (P9(n1—1),3(n1—1) (lg ®C(ny /2)
P9(n1/2),3)® (1 no ~1.C(n2 /2)-|n2 /2)
=(Pg(ng -1),3(n; -1) @y -1)
(g ®C(n1 /2)®C(no /2))
(Po(ng 12),3®1ny 12)-
(29)
Now, substituting (29) in (24) gives

Cnl,n2 =R (Io ®Cn1/2,r12/2) 6 1 (30)

Where, C 5,0 =C(n/2)®C(n,/2) is the
lower order 2-d convolution matrix for an
n,/2xn,/2 input image,
Q= (Pognyr2)3 ® 11,12 ) (Q ®Q,)  and

R=(R1®R2)(Py(ng -1),3(ny 1) ®lny-1)  are
the new 2-d pre- and post-additions, respectively.

Equation (30) represents the recursive 2-d
convolution algorithm. In this case we use 9 (

2 2
j©=3=9) of the lower-order C,/;

convolution blocks in parallel to generate the higher
order C,  convolution as shown before in Fig. 6.

Cin/2m2}
2.0 f Block 1 5
Convolution ; : t'llﬁui.ﬂt?:h ; nxm
- g ’ 3 18]
OUTPUT g Cin/2m2) = INFUT
* Block 9 " !
Slage # 3 Stage # 2 Stape # 1
C{n,m) 2-D Convolution
Eig, 4, The r=slizstion of the rsourzive 2-d convelution
B. The 2-d DCT

Since the DCT matrix is separable, the 2-d
DCT for an image of dimension Ny XNy can be

computed by a stage of N, parallel 1-d DCT
computations on Nq points each, followed by
another stage of Ny parallel 1-d DCT computations

on Ny points each. This can be represented by the
matrix-vector form

Where Tnl,nz is the 2-d DCT transform matrix for

an Nq XNy image, X and x are the output and input
column-scanned  vectors,  respectively. By
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substituting (10) in (31), we have
X Za-nl ®Tn2) X. (32)
By further manipulation of equation (32) in a similar

way to that we did to (23) of the 2-d convolution,
we can write (23) as [3]

X =(Rng.np (12 ®Tng 1205 /2) Qnyiny ) X (33)
Where,

in,n2 = (P2n1,2 ® |n2 12 )in,n2 , and

Rnl,ng = Rnl,nz (P2n1,n1 ® |n2 12) -

Equation (33) represents the truly recursive 2-d
DCT in which in,nz and Rnl,nz
and post-processing glue structures, respectively,

are the pre-

that combine 22(j2 —22 —4) identical lower-
order 2-d DCT modules each of size
M /2xny /2 in parallel, to construct the higher

order 2-d DCT of size Ny X Ny.

1. A GENERAL FRAMEWORK FOR M-D
RECURSIVE DSP TRANSFORMS

We can extend the steps in deriving
recursive formulae of the 1-d and the 2-d transforms
to the multidimensional case. For an m-d transform

Tni , The general form will be
m A m A
® T =R(I.m ®Tpi/5)Q (34)

Where, Q and R are the m-d pre- and post-

processing glue structures that combine jrn

parallel blocks of the lower-order m-d transforms of
size Tni /2"

A. The m-d WHT

We can extend the 2-d WHT derivation to
the m-d case. From (12) and (34), the m-d WHT can
be written in the tensor product form

m (35)
= (iéfjlwni ) X

Where, (\an ®OWp, ® - ®an) is the m-d

WHT transform matrix for an m-d input, Wni is the

1-d WHT coefficient matrix for an input vector of
length Nj as defined in (16), X and x are the output

and input column-scanned vectors, respectively.
Using properties (1) to (4), we can write (35) in the
form [2]

X =[R (I ® W /2)Ql X (36)

m
Where ® Wni /2 is the lower order m-d WHT and
i=1

i=1
m-—lI 1 1
up=2J[[nj , up=2, U3—EH(nm—J+1),
=1 =1

i i i
wi =1 (), wa = TTW), wa== 11 (),
) k=1 2 =i

Q;j is the 1-d pre-processing as defined by (17).

Equation (37) extends our results by showing that a
large m-d WHT can be computed from a single
stage of smaller m-d WHTSs.

I1l. CONCLUSIONS
In this paper, we presented a general
approach for decomposing higher order (longer size)

multidimensional (m-d) architectures from 2™
lower order (shorter sizes) architectures. We have
shown several examples for the 1-d and 2-d
common transforms such as linear convolution,
DCT, and WHT. We have extended our results to
cover the m-d case as well. The objective of our
work was to derive a unified framework and a
design methodology that allows direct mapping of
the proposed algorithms into reconfigurable
architectures.  The resulting circuits have very
simple modular structure and regular topology that
can be mapped directly to FPGAs.
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