
 Ayman Elnaggar, Mokhtar Aboelaze / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1150-1156

1150 | P a g e

Embedded Reconfigurable Architectures for Multidimensional

Transforms

Ayman Elnaggar, Mokhtar Aboelaze

Department of Computer Science & Engineering, German University in Cairo, New Cairo City, Egypt

Department of Computer Science, York University, Toronto, Canada M3J 1P3

Abstract
This paper presents a general approach

for generating higher order (longer size)

multidimensional (m-d) architectures from
m2

lower order (shorter sizes) architectures. The

objective of our work is to derive a unified

framework and a design methodology that allows

direct mapping of the proposed algorithms into

embedded reconfigurable architectures such as

FPGAs. Our methodology is based on

manipulating tensor product forms so that they

can be mapped directly into modular parallel

architectures. The resulting circuits have very

simple modular structure and regular topology.

Keywords – Reconfigurable Architectures,
Recursive algorithms, multidimensional transforms,

tensor products, permutation matrices.

I. INTRODUCTION
This paper proposes an efficient and cost-

effective general methodology for mapping

multidimensional transforms onto efficient

reconfigurable architectures such as FPGAs. The
main objective of this paper is to derive a design

methodology and recursive formulation for the

multidimensional transforms which is useful for the

true modularization and parallelization of the

resulting computation.

Our methodology employs tensor product

(or Kronecker products) decompositions and

permutation matrices as the main tools for

expressing the general framework for

multidimensional DSP transforms. We employ

several techniques to manipulate such
decompositions into suitable recursive expressions

which can be mapped efficiently onto reconfigurable

FPGAs structures.

Our work is based on a non-trivial generalization of

the one-dimensional DSP transforms. It has been

shown that when coupled with stride permutation

matrices, tensor products provide a unifying

framework for describing and programming a wide

range of fast recursive algorithms for various

transform. This unifying framework is suited for

parallel processing machines and vector processing

machines [6], [10].
Some of the tensor product properties that will be

used throughout this paper are [6], [10]:

))((DCBACDAB  (1)

)()(CBACBA  (2)

If 21nnn  , then

)()(
21212121 ,, nnnnnnnnnn BIPAIPBA  (3)

If 321 nnnn  , then

323121321 ,,)(nnnnnnnnnnn PAIPIAI  (4)

If 212 nnn  , then

21 ,,2, nnnnn PPP  (5)

Where  denotes the tensor product, nI is

the identity matrix of size n, and snP , , the

permutation matrix, is nn binary matrix whose

entries are zeroes and ones, such that each row or

column of has a single 1 entry. If rsn  then snP ,

is an nn binary matrix specifying an
s

n
-shuffle

(or s-stride) permutation. The effect of the

permutation matrix snP , on an input vector nX of

length n is to shuffle the elements of nX by

grouping all the r elements separated by distance s

together. The first r element will be

srss xxxx)1(20 ,,,,  , the next r elements are

srss xxxx)1(12111 ,,,,   , and so on.

The main result reported in this paper

shows that a large two-dimensional (2-d)

computation for a given DSP transform on an nn

input array can be decomposed recursively into three

stages as shown in Fig. 1 for the case 4n . The

middle stage is constructed recursively from 22

parallel (data-independent) blocks each realizing a

smaller-size computation of the same DSP

transform. The pre-additions and the post-

permutations stages serve as "glue" circuits that

combine the 22 lower order blocks to construct the

higher order architecture. We also show that the

proposed unified approach can be extended such that

an m-d DSP transform can be constructed from 2m

smaller size m-d ones. The objective of our work is

to derive a unified framework and a design

methodology that allows direct mapping of the

 Ayman Elnaggar, Mokhtar Aboelaze / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1150-1156

1151 | P a g e

proposed algorithms into reconfigurable FPGAs

architectures.

Observe that, we have drawn our networks

such that data flows from right to left. We chose this

convention to show the direct correspondence

between the derived algorithms and the proposed
reconfigurable architecture.

I. A GENERAL FRAMEWORK FOR 1-D RECURSIVE

DSP TRANSFORMS

In this section, we present a general

framework to derive recursive formulations for

multidimensional transforms. Given a 1-d DSP

algorithm in a matrix-vector form

 nnmm XTY , (6)

Where, nmT , is the transform matrix, nX

and mY are the input vector of size n and the

output vector of size m , respectively. Then, using

sparse matrix factorization approach [9], the matrix

nmT , can be factorized so that

knm TTTT 21,  (7)

Where, each of the matrices kTTT ,,, 21 

is sparse. Sparseness implies that either most of the
elements of the matrix are zeros or the matrix in the

block diagonal form. By applying tensor product

property (3) to the block diagonal matrices of

equation (7), we have

)()()(2/,2/, knmjinm QTIRT  (8)

Where, kQ and iR are the pre- and post-

processing glue structure that combine j blocks in

parallel of the lower-order transform of size

2/,2/ nmT .

A. The 1-d Linear Convolution

The 1-d linear convolution matrix)(nC of

size
2n , where  is an integer can be written

as [5], [6]

.))2/(3()(nQnCInRnC  (9)

 Where,

.]
2,2

)
2

[(1)
32,32

(1121   
 PAIPnQ

))((

)12(),12(3123),12(32    PBIPRnR k

A B


























 

1 0

1 1

0 1

1 0 0
1 1 1
0 0 1

,

In this case 3j (three parallel blocks of the

convolution of smaller size)2/n). The realization

of the 1-d linear convolution is shown in Fig. 1.

Fig. 1. The realization of the 1-d linear convolution

B. The 1-d DCT

The 1-d DCT nT of size n can be written as [3], [7]

 .)3(
2/ nnn QTInRT  (10)

 Where

.)2/2()2/2/()1
2/2(

,)2/2/(2/,

nVnIFnCnI
n

VInQ

nLnInnPnR















n
n diagC

cos2

1
,

1,,1,0),14(
2

 nMM
n

n 


 ,





























100000

010000

0

001100

000110

000011













mL ,

 2,2/2/)(nnnn PJIV  ,













11

11
2F ,

2/nI is the identity matrix of dimension 2/n , 

is the direct sum operator, 2/nJ is the exchange

matrix of order 2/n defined as

 Ayman Elnaggar, Mokhtar Aboelaze / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1150-1156

1152 | P a g e

,

0001

0010

0100

0000

2/



































nJ

In this case 2j (two parallel blocks of the DCT of

smaller size)2/n). The realization of the 1-d DCT

is shown in Fig. 2.

Fig. 2. The realization of the 1-d DCT

C. The 1-d WHT

Our last example is the 1-d WHT. The

original 1-d WHT transform matrix is defined as [1],

[2]













2/2/

2/2/

nn

nn
n

WW

WW
W , 












11

11
2W , (11)

Where, 2W is the 2-point WHT. Let nk 2log , we

can write equation (11) in the iterative tensor-
product form

)
22

1

0
2

(

2222/2

1








 iki IW
k

i

I

WWWnWWnW 

 (12)

which using property (4), can be modified to

111 2,2

1

0
22,

)(  



ikki n

k

i
nn PWIPW (13)

As an example, we can express 8W as

  
 1,8)24(8,8

.2,8)24(4,84,8)24(2,88

PWIP

PWIPPWIPW





 (14)

The realization of 8W is shown in Fig. 3 (a).

 Applying property (5) to equation (14)

and noting that now the permutations in two adjacent

stages can be grouped together into a single

permutation, the adjacent permutations 8,82,8 PP

(from the first and the second stage) will be replaced

by the single permutation 2,8P and the adjacent

permutations 4,84,8 PP (from the second and the

third stage) will be replaced by the single

permutation 2,8P as shown in Fig. 3 (b). Similarly,

equation (13) can be simplified to

)(2

1

0
22, 1 WIPW

k

i
nn k  




 (15)

Thus, nW can be computed by the

cascaded product of k similar stages (independent of

i) of double matrix products instead of the triple

matrix products in equation (8). Alternatively, we

can realize (15) by a single block of

)(222, 1 WIP kn  and take the output after k

iterations that allows a hardware saving without

slowing down the processing speed and reduction in

the hardware size as shown in Fig. 4 for the case

8n .

It should be mentioned that we have applied

property (5) to reduce the shuffling inherited in the

original WHT algorithm to allow a uniform

hardware blocks as shown in Fig. 3 (b). We haven’t

modified the original complexity of the WHT that

are centered in the 2W blocks as shown in Fig. 3

and Fig. 4.

Applying property (1), equation (12) can be

modified to

 (16)

Where, (17)

Equation (16) represents the two-stage

recursive tensor product formulation of the 1-d WHT

(in this case 2j) in which the first stage is the pre-

additions (), followed by the second stage of the

core computation that consists of a

parallel blocks of two identical smaller WHT

computations each of size as shown in Fig. 5.

I. A GENERAL FRAMEWORK FOR 2-D RECURSIVE

DSP TRANSFORMS

For a 2-d input data,
2,1 nnX , of size 21 nn  , and

a separable 2-d transform,
2,1 nnT , we can write the

output,
2,1 nnY , in the form

2,1 nnY =
2,1 nnY

2,1 nnX (18)

where,
2,1 nnX and

2,1 nnY are the input and

output column-scanned vectors, respectively. For
separable matrices, the 2-d transform matrix

2,1 nnT can be written in the tensor product form as

[9]

nn

nn

nnnn

QWI

IWWI

IWWIWWW

)(

)()(

2/2

2/22/2

2/2/222/2







)(2/2 nn IWQ 

nQ

 2/2 nWI 

2/n

 Ayman Elnaggar, Mokhtar Aboelaze / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1150-1156

1153 | P a g e

212,1 nnnn TTT  (19)

 Where
1nT and

2nT are the row and column 1-

d transforms, respectively as defined in (8). By

replacing
1nT and

2nT by their corresponding

values from equation (8) and

Applying properties (1) to (4) to derive the

2-d recursive form

),
~

()2/,2/(),
~

(, 212122121 nnQnnT
j

InnRnnT  (20)

 Ayman Elnaggar, Mokhtar Aboelaze / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1150-1156

1154 | P a g e

Where,
2,1

~
nnQ and

2,1

~
nnR are the 2-d pre- and

post-processing glue structure, respectively that

combine 2j of the lower-order (smaller size) 2-d

transform 2/2,2/1 nnT of dimension

2/2/ 21 nn  .

A. The 2-d convolution

Let 1
1 2


n and 2

2 2


n . Pratt [9] has

shown that for an 21 nn  input data image, the 2-d

convolution output is given by

 fCq nn 2,1
 (21)

Where, Cn n1 2, is the 2-d convolution transform

matrix; and q and f are the output and input column-

scanned vectors, respectively of size 21nnn  .

Pratt has also shown that, for separable transforms,

the matrix
2,1 nnC can be decomposed into the

tensor form

)()(212,1
nCnCC nn  (22)

Where,)(1nC and)(2nC represent row and

column 1-d convolution operators on f, respectively,
as defined in (8) and (9). From (9) and (22), we can

express the 2-d convolution matrix as a function of

1-d convolutions as follows [4]

]2)2/2(3(2[]1)2/1(3(1[, 21
QnCIRQnCIRnnC 

 (23)

Applying property (1), leads to

.
~~~

,)]())2/(((

))2/((()[(

2,1

2123

13212,1

QCR

QQnCI

nCIRRC

nn

nn







       (24)                                    

 

Where, 

   
.)](

~

,))2/(())2/((
~

,)(
~

21

23132,1

21

QQQ

nCInCIC

RRR

nn







  

     (25) 

Note that the matrix 
~

,Cn n1 2
contains the 1-d 

convolutions matrices C n( / )1 2 and C n( / )2 2  in an 

involved tensor product expression. By applying 

property (2), we can write (24) as 

     
,))2/2()3)2/1(3((,

~

21
nCInCInnC            (26) 

Applying property (4), yields to  

         
,))2/())2/((

(
~

23),2/1(919

)11(3),11(92,1

nCPnCI

PC

n

nnnn



 
   

                                                                                 (27) 

 

Since the convolution matrix C(n/2) is of dimension 

[( ) / ]n n 1 2 , we can write C n( / )2 2 as  

C n I C n In n( / ) . ( / ) . /2 1 2 22 2
2 2

                          (28) 

Substituting (21) in (20) and applying property (1), 

).(

))2/()2/((

)(

).)2/(.()

)2/(((
~

2/23),2/1(9

219

12)11(3),11(9

2/22123),2/1(9

19)11(3),11(92,1

nn

nnn

nnn

nnnn

IP

nCnCI

IP

InCIP

nCIPC

















 
     (29) 

Now, substituting (29) in (24) gives 

C R I C Qn n n n1 2 1 29 2 2, / , /

~~
( )

~~
,                         (30) 

      

Where, C C n C nn n1 22 2 1 22 2/ , / ( / ) ( / )   is the 

lower order 2-d convolution matrix for an 

n n1 22 2/ /  input image, 

~~
( ) ( )( / ), /Q P I Q Qn n  9 2 3 2 1 21 2

    and  

)()(
~~

12)11(3),11(921   nnn IPRRR  are 

the new 2-d pre- and post-additions, respectively. 

Equation (30) represents the recursive 2-d 

convolution algorithm. In this case we use 9 (

9322 j ) of the lower-order Cn n1 22 2/ , /  

convolution blocks in parallel to generate the higher 

order Cn n1 2,  convolution as shown before in Fig. 6. 

 
 

B. The 2-d DCT 

Since the DCT matrix is separable, the 2-d 

DCT for an image of dimension 21 nn   can be 

computed by a stage of 2n  parallel 1-d DCT 

computations on 1n  points each, followed by 

another stage of 1n  parallel 1-d DCT computations 

on 2n  points each. This can be represented by the 

matrix-vector form 

  xTX nn 2,1
 ,                               (31) 

Where 
2,1 nnT is the 2-d DCT transform matrix for 

an 21 nn   image, X and x are the output and input 

column-scanned vectors, respectively.  By 



 Ayman Elnaggar, Mokhtar Aboelaze / International Journal of Engineering Research and 

Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 3, Issue 1, January -February 2013, pp.1150-1156 

1155 | P a g e  

substituting (10) in (31), we have 

xTTX nn )(
21

 .                              (32) 

By further manipulation of equation (32) in a similar 

way to that we did to (23) of the 2-d convolution, 

we can write (23) as [3] 

     

                                                                         (33)                               

Where, 

  and
                               

.                                                   

Equation (33) represents the truly recursive 2-d 

DCT in which and are the pre- 

and post-processing glue structures, respectively, 

that combine ( 4222 j ) identical lower-

order 2-d DCT modules each of size 

 in parallel, to construct the higher 

order 2-d DCT of size . 

 

II. A GENERAL FRAMEWORK FOR M-D 

RECURSIVE DSP TRANSFORMS 
We can extend the steps in deriving 

recursive formulae of the 1-d and the 2-d transforms 

to the multidimensional case. For an m-d transform 

inT ,The general form will be  

  QTIRT
in

m

i
mjin

m

i

ˆ)(ˆ
2/

11 
                   (34) 

Where, Q̂  and R̂  are the m-d pre- and post-

processing glue structures that combine mj  

parallel blocks of the lower-order m-d transforms of 

size 
2/inT . 

 

A. The m-d WHT 

We can extend the 2-d WHT derivation to 

the m-d case. From (12) and (34), the m-d WHT can 

be written in the tensor product form 
 

  
xW

xWWWX

in

m

i

mnnn

)(

)(

1

21




 

           (35) 

 

Where, )(
21 mnnn WWW    is the m-d 

WHT transform matrix for an m-d input, 
inW is the 

1-d WHT coefficient matrix for an input vector of 

length in  as defined in (16), X and x are the output 

and input column-scanned vectors, respectively.  

Using properties (1) to (4), we can write (35) in the 

form [2] 

 

,]ˆ)(ˆ[ 2/
12

xQWIRX
im n

m

i
                       (36) 

Where 2/
1

in

m

i
W


  is the lower order m-d WHT and 




















 

































 



















1

1

,
1

,
ˆ

,
1

1

1 1
,

ˆ

321

321

m

i
wI

m

il
wwPR

iQ
m

i

m

i
uI

i

k
uuPQ

           

(37) 

,

1

)(
2

1
3,

1

)(2,

1

)(
2

1
1

,

1

)1(
2

1
3,22,

1

21


























i

ij
jnw

i

k
knw

i

k
knw

i

j
jmnuu

im

j
jnu

                                                          

      

iQ  is the 1-d pre-processing as defined by (17).    

Equation (37) extends our results by showing that a 

large m-d WHT can be computed from a single 

stage of smaller m-d WHTs. 

 

III. CONCLUSIONS 
In this paper, we presented a general 

approach for decomposing higher order (longer size) 

multidimensional (m-d) architectures from 
m2  

lower order (shorter sizes) architectures. We have 

shown several examples for the 1-d and 2-d 

common transforms such as linear convolution, 

DCT, and WHT. We have extended our results to 

cover the m-d case as well. The objective of our 

work was to derive a unified framework and a 

design methodology that allows direct mapping of 

the proposed algorithms into reconfigurable 

architectures.  The resulting circuits have very 

simple modular structure and regular topology that 

can be mapped directly to FPGAs.  
 

REFERENCES 

1. E. Cetin, O. N. Gerek, and S. Ulukus, 

"Block Wavelet Transforms for Image 

Coding," IEEE Trans. on Circuits and 

systems for Video Technology, Vol. 3, pp. 

433-435, 1993. 

2. Elnaggar, Mokhtar Aboelaze, “A Scalable 

Formulation for 2-D WHT,” Proc. of the 

IEEE International Symposium on Circuits 

and Systems (ISCAS' 2003), pp IV484-

IV487, Thailand, May 2003. 

3. Elnaggar, H. M. Alnuweiri, "A New Multi-

Dimensional Recursive Architecture for 

Computing The Discrete Cosine 
Transform," IEEE Transactions on Circuits 

and Systems for Video Technology, Vol. 

10, No. 1, pp. 113-119, February 2000. 

,)(
~

2,12/22,122,1 nnnnnn QIPQ 

)(
~

2/21,122,12,1 nnnnnnn IPRR 

2,1

~
nnQ

2,1

~
nnR

22

2/2/ 21 nn 

21 nn 

xQTIRX nnnnnn )
~

)(
~

(
2,12/2,2/142,1





 Ayman Elnaggar, Mokhtar Aboelaze / International Journal of Engineering Research and 

Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 3, Issue 1, January -February 2013, pp.1150-1156 

1156 | P a g e  

4. Elnaggar and M. Aboelaze, "An Efficient 

Architecture for Multi-Dimensional 

Convolution," IEEE Trans. on Circuits and 

Systems II, Vol. 47, No. 12, pp. 1520-1523, 

2000. 

5. Elnaggar and M. Aboelaze, “A Modified 

Shuffle Free Architecture for Linear 
Convolution,” IEEE Trans. on Circuits and 

Systems II, Vol. 48, No. 9, pp. 862-866, 

2001. 

6. J. Granata, M. Conner, R. Tolimieri, "A 

Tensor Product Factorization of the Linear 

Convolution Matrix", IEEE Trans on 

Circuits and Systems, Vol. 38, p. 1364--6, 

1991. 

7. H. S. Hou, "A Fast Recursive Algorithm 

for Computing the Discrete Cosine 

Transform," IEEE Trans. On ASSP, Vol. 

Assp-35, No. 10, 1987. 
8. K. R. Rao, P. Yip, "Discrete Cosine 

Transform: Algorithms, Advantages, and 

Applications," Academic Press, 1990. 

9. W. K. Pratt, Digital Image Processing, 

John Wiley & Sons, Inc., 1991. 

10. R. Tolimieri, M. An, C. Lu, Algorithms for 

Discrete Fourier Transform and 

Convolution, Springer-Verlag, New York 

1989. 

 


