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Abstract  
This paper presents a general approach 

for generating higher order (longer size) 

multidimensional (m-d) architectures from 
m2  

lower order (shorter sizes) architectures. The 

objective of our work is to derive a unified 

framework and a design methodology that allows 

direct mapping of the proposed algorithms into 

embedded reconfigurable architectures such as 

FPGAs. Our methodology is based on 

manipulating tensor product forms so that they 

can be mapped directly into modular parallel 

architectures.  The resulting circuits have very 

simple modular structure and regular topology. 
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I. INTRODUCTION 
This paper proposes an efficient and cost-

effective general methodology for mapping 

multidimensional transforms onto efficient 

reconfigurable architectures such as FPGAs. The 
main objective of this paper is to derive a design 

methodology and recursive formulation for the 

multidimensional transforms which is useful for the 

true modularization and parallelization of the 

resulting computation.  

Our methodology employs tensor product 

(or Kronecker products) decompositions and 

permutation matrices as the main tools for 

expressing the general framework for 

multidimensional DSP transforms. We employ 

several techniques to manipulate such 
decompositions into suitable recursive expressions 

which can be mapped efficiently onto reconfigurable 

FPGAs structures.  

Our work is based on a non-trivial generalization of 

the one-dimensional DSP transforms. It has been 

shown that when coupled with stride permutation 

matrices, tensor products provide a unifying 

framework for describing and programming a wide 

range of fast recursive algorithms for various 

transform. This unifying framework is suited for 

parallel processing machines and vector processing 

machines [6], [10].  
Some of the tensor product properties that will be 

used throughout this paper are [6], [10]: 

 

 

 

))(( DCBACDAB                     (1) 

 

)()( CBACBA                     (2) 

If   21nnn  , then 

)()(
21212121 ,, nnnnnnnnnn BIPAIPBA  (3) 

If  321 nnnn  , then 

 
323121321 ,, )( nnnnnnnnnnn PAIPIAI   (4) 

If  212 nnn   , then 

 
21 ,,2, nnnnn PPP                          (5) 

Where   denotes the tensor product, nI  is 

the identity matrix of size n, and snP , , the 

permutation matrix, is nn  binary matrix whose 

entries are zeroes and ones, such that each row or 

column of has a single 1 entry. If rsn   then snP ,  

is an nn  binary matrix specifying an 
s

n
-shuffle 

(or s-stride) permutation. The effect of the 

permutation matrix snP ,  on an input vector nX  of 

length n is to shuffle the elements of nX  by 

grouping all the r elements separated by distance s 

together. The first r element will be

srss xxxx )1(20 ,,,,  , the next r elements are 

srss xxxx )1(12111 ,,,,   , and so on.  

 

The main result reported in this paper 

shows that a large two-dimensional (2-d) 

computation for a given DSP transform on an nn  

input array can be decomposed recursively into three 

stages as shown in Fig. 1 for the case 4n . The 

middle stage is constructed recursively from 22 

parallel (data-independent) blocks each realizing a 

smaller-size computation of the same DSP 

transform. The pre-additions and the post-

permutations stages serve as "glue" circuits that 

combine the 22 lower order blocks to construct the 

higher order architecture. We also show that the 

proposed unified approach can be extended such that 

an m-d DSP transform can be constructed from 2m 

smaller size m-d ones. The objective of our work is 

to derive a unified framework and a design 

methodology that allows direct mapping of the 
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proposed algorithms into reconfigurable FPGAs 

architectures. 

 

Observe that, we have drawn our networks 

such that data flows from right to left. We chose this 

convention to show the direct correspondence 

between the derived algorithms and the proposed 
reconfigurable architecture. 

 

I. A GENERAL FRAMEWORK FOR 1-D RECURSIVE 

DSP TRANSFORMS 

In this section, we present a general 

framework to derive recursive formulations for 

multidimensional transforms. Given a 1-d DSP 

algorithm in a matrix-vector form 

  nnmm XTY ,                               (6) 

  

Where, nmT ,  is the transform matrix, nX  

and mY  are the input vector of size n  and the 

output vector of size m , respectively. Then, using 

sparse matrix factorization approach [9], the matrix 

nmT ,  can be factorized so that 

knm TTTT 21,                                       (7) 

 

Where, each of the matrices kTTT ,,, 21   

is sparse. Sparseness implies that either most of the 
elements of the matrix are zeros or the matrix in the 

block diagonal form.  By applying tensor product 

property (3) to the block diagonal matrices of 

equation (7), we have 

 

)()()( 2/,2/, knmjinm QTIRT                 (8) 

 

Where, kQ  and iR  are the pre- and post-

processing glue structure that combine j blocks in 

parallel of the lower-order transform of size 

2/,2/ nmT .  

 

A. The 1-d Linear Convolution 

The 1-d linear convolution matrix )(nC of 

size
2n , where   is an integer can be written 

as [5], [6] 

 

.))2/(3()( nQnCInRnC                               (9) 
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In this case 3j  (three parallel blocks of the 

convolution of smaller size )2/n ). The realization 

of the 1-d linear convolution is shown in Fig. 1. 

 

 
 

Fig. 1. The realization of the 1-d linear convolution 

 

B. The 1-d DCT 

 

The 1-d DCT nT  of size n  can be written as [3], [7] 
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2/nI  is the identity matrix of dimension 2/n ,   

is the direct sum operator, 2/nJ  is the exchange 

matrix of order 2/n  defined as 
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In this case 2j  (two parallel blocks of the DCT of 

smaller size )2/n ). The realization of the 1-d DCT 

is shown in Fig. 2. 

 

 
 
Fig. 2. The realization of the 1-d DCT 

 

C. The 1-d WHT 

Our last example is the 1-d WHT. The 

original 1-d WHT transform matrix is defined as [1], 

[2] 


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
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Where, 2W  is the 2-point WHT. Let nk 2log , we 

can write equation (11) in the iterative tensor-
product form 

)
22
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0
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     (12)   

which using property (4), can be modified to 
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As an example, we can express 8W  as 

  
 1,8)24(8,8

.2,8)24(4,84,8)24(2,88

PWIP

PWIPPWIPW




        

      (14) 

The realization of 8W  is shown in Fig. 3 (a). 

 

      Applying property (5) to equation (14) 

and noting that now the permutations in two adjacent 

stages can be grouped together into a single 

permutation, the adjacent permutations 8,82,8 PP  

(from the first and the second stage) will be replaced 

by the single permutation 2,8P and the adjacent 

permutations 4,84,8 PP  (from the second and the 

third stage) will be replaced by the single 

permutation 2,8P as shown in Fig. 3 (b). Similarly, 

equation (13) can be simplified to 

   )( 2

1

0
22, 1 WIPW

k

i
nn k  




                 (15) 

Thus, nW  can be computed by the 

cascaded product of k similar stages (independent of 

i) of double matrix products instead of the triple 

matrix products in equation (8). Alternatively, we 

can realize (15) by a single block of 

)( 222, 1 WIP kn  and take the output after k  

iterations that allows a hardware saving without 

slowing down the processing speed and reduction in 

the hardware size as shown in Fig. 4 for the case 

8n . 

It should be mentioned that we have applied 

property (5) to reduce the shuffling inherited in the 

original WHT algorithm to allow a uniform 

hardware blocks as shown in Fig. 3 (b). We haven’t 

modified the original complexity of the WHT that 

are centered in the 2W  blocks as shown in Fig. 3 

and Fig. 4. 

 

Applying property (1), equation (12) can be 

modified to 

  

     (16) 

      

Where,                        (17) 

Equation (16) represents the two-stage 

recursive tensor product formulation of the 1-d WHT 

(in this case 2j ) in which the first stage is the pre-

additions ( ), followed by the second stage of the 

core computation  that consists of a 

parallel blocks of two identical smaller WHT 

computations each of size  as shown in Fig. 5.  

 

I. A GENERAL FRAMEWORK FOR 2-D RECURSIVE 

DSP TRANSFORMS 

For a 2-d input data,
2,1 nnX , of size  21 nn  , and 

a separable 2-d transform, 
2,1 nnT , we can write the 

output, 
2,1 nnY , in the form 

2,1 nnY =
2,1 nnY

2,1 nnX                                (18) 

 

where, 
2,1 nnX  and 

2,1 nnY  are the input and 

output column-scanned vectors, respectively. For 
separable matrices, the 2-d transform matrix 

2,1 nnT  can be written in the tensor product form as 

[9] 
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212,1 nnnn TTT                                        (19)  

  

     Where 
1nT  and 

2nT  are the row and column 1-

d transforms, respectively as defined in (8). By 

replacing  
1nT  and 

2nT  by their corresponding 

values from equation (8) and  

 

 

Applying properties (1) to (4) to derive the 

2-d recursive form 

 

),
~
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Where, 
2,1

~
nnQ  and 

2,1

~
nnR  are the 2-d pre- and 

post-processing glue structure, respectively that 

combine 2j  of the lower-order (smaller size) 2-d 

transform 2/2,2/1 nnT  of dimension 

2/2/ 21 nn  . 

 

A. The 2-d convolution 

Let 1
1 2


n and 2

2 2


n . Pratt [9] has 

shown that for an 21 nn   input data image, the 2-d 

convolution output is given by  

           fCq nn 2,1
                                   (21)      

Where, Cn n1 2, is the 2-d convolution transform 

matrix; and q and f are the output and input column-

scanned vectors, respectively of size 21nnn  . 

Pratt has also shown that, for separable transforms, 

the matrix 
2,1 nnC can be decomposed into the 

tensor form  

)()( 212,1
nCnCC nn                          (22)  

Where, )( 1nC  and )( 2nC  represent row and 

column 1-d convolution operators on f, respectively, 
as defined in (8) and (9). From (9) and (22), we can 

express the 2-d convolution matrix as a function of 

1-d convolutions as follows [4] 

]2)2/2(3(2[]1)2/1(3(1[, 21
QnCIRQnCIRnnC                                                                           

            (23)  

Applying property (1), leads to 
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Where, 
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     (25) 

Note that the matrix 
~

,Cn n1 2
contains the 1-d 

convolutions matrices C n( / )1 2 and C n( / )2 2  in an 

involved tensor product expression. By applying 

property (2), we can write (24) as 

     
,))2/2()3)2/1(3((,

~

21
nCInCInnC            (26) 

Applying property (4), yields to  

         
,))2/())2/((

(
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23),2/1(919
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n

nnnn
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                                                                                 (27) 

 

Since the convolution matrix C(n/2) is of dimension 

[( ) / ]n n 1 2 , we can write C n( / )2 2 as  

C n I C n In n( / ) . ( / ) . /2 1 2 22 2
2 2

                          (28) 

Substituting (21) in (20) and applying property (1), 
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     (29) 

Now, substituting (29) in (24) gives 

C R I C Qn n n n1 2 1 29 2 2, / , /

~~
( )

~~
,                         (30) 

      

Where, C C n C nn n1 22 2 1 22 2/ , / ( / ) ( / )   is the 

lower order 2-d convolution matrix for an 

n n1 22 2/ /  input image, 

~~
( ) ( )( / ), /Q P I Q Qn n  9 2 3 2 1 21 2

    and  

)()(
~~

12)11(3),11(921   nnn IPRRR  are 

the new 2-d pre- and post-additions, respectively. 

Equation (30) represents the recursive 2-d 

convolution algorithm. In this case we use 9 (

9322 j ) of the lower-order Cn n1 22 2/ , /  

convolution blocks in parallel to generate the higher 

order Cn n1 2,  convolution as shown before in Fig. 6. 

 
 

B. The 2-d DCT 

Since the DCT matrix is separable, the 2-d 

DCT for an image of dimension 21 nn   can be 

computed by a stage of 2n  parallel 1-d DCT 

computations on 1n  points each, followed by 

another stage of 1n  parallel 1-d DCT computations 

on 2n  points each. This can be represented by the 

matrix-vector form 

  xTX nn 2,1
 ,                               (31) 

Where 
2,1 nnT is the 2-d DCT transform matrix for 

an 21 nn   image, X and x are the output and input 

column-scanned vectors, respectively.  By 
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substituting (10) in (31), we have 

xTTX nn )(
21

 .                              (32) 

By further manipulation of equation (32) in a similar 

way to that we did to (23) of the 2-d convolution, 

we can write (23) as [3] 

     

                                                                         (33)                               

Where, 

  and
                               

.                                                   

Equation (33) represents the truly recursive 2-d 

DCT in which and are the pre- 

and post-processing glue structures, respectively, 

that combine ( 4222 j ) identical lower-

order 2-d DCT modules each of size 

 in parallel, to construct the higher 

order 2-d DCT of size . 

 

II. A GENERAL FRAMEWORK FOR M-D 

RECURSIVE DSP TRANSFORMS 
We can extend the steps in deriving 

recursive formulae of the 1-d and the 2-d transforms 

to the multidimensional case. For an m-d transform 

inT ,The general form will be  

  QTIRT
in

m

i
mjin

m

i

ˆ)(ˆ
2/

11 
                   (34) 

Where, Q̂  and R̂  are the m-d pre- and post-

processing glue structures that combine mj  

parallel blocks of the lower-order m-d transforms of 

size 
2/inT . 

 

A. The m-d WHT 

We can extend the 2-d WHT derivation to 

the m-d case. From (12) and (34), the m-d WHT can 

be written in the tensor product form 
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Where, )(
21 mnnn WWW    is the m-d 

WHT transform matrix for an m-d input, 
inW is the 

1-d WHT coefficient matrix for an input vector of 

length in  as defined in (16), X and x are the output 

and input column-scanned vectors, respectively.  

Using properties (1) to (4), we can write (35) in the 

form [2] 
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iQ  is the 1-d pre-processing as defined by (17).    

Equation (37) extends our results by showing that a 

large m-d WHT can be computed from a single 

stage of smaller m-d WHTs. 

 

III. CONCLUSIONS 
In this paper, we presented a general 

approach for decomposing higher order (longer size) 

multidimensional (m-d) architectures from 
m2  

lower order (shorter sizes) architectures. We have 

shown several examples for the 1-d and 2-d 

common transforms such as linear convolution, 

DCT, and WHT. We have extended our results to 

cover the m-d case as well. The objective of our 

work was to derive a unified framework and a 

design methodology that allows direct mapping of 

the proposed algorithms into reconfigurable 

architectures.  The resulting circuits have very 

simple modular structure and regular topology that 

can be mapped directly to FPGAs.  
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