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ABSTRACT 
Estimation of the shape and scale 

parameters of exponentiated exponential 

distribution is considered based on simple random 

sample and ranked set sample. Bayesian method of 

estimation under squared error loss function and 

maximum likelihood method will be used.  

Comparison between estimators is made through 

simulation via their absolute relative biases, mean 

square errors, and efficiencies. Comparison study 

revealed that the Bayes estimator is better than 

maximum likelihood estimator under both 

sampling schemes. The results show that the 

estimators based on ranked set sample are more 

efficient than that from simple random sample at 

the same sample size. 
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I. Introduction 
A method of sampling based on ranked sets 

is an efficient alternative to simple random sampling 

that has been shown to outperform simple random 
sampling in many situations by reducing the variance 

of an estimator, thereby providing the same accuracy 

with a smaller sample size than is needed in simple 

random sampling. Ranked set sample (RSS) can be 

applied in many studies where the exact measurement 

of an element is very difficult (in terms of money, 

time, labour and organization) but the variable of 

interest, although not easily measurable, can be 

relatively easily ranked (order) at no cost or very little 

additional cost. The ranking can be done on the basis 

of visual inspection, prior information, earlier 
sampling episodes or other rough methods not 

requiring actual measurement.  

      RSS was first suggested by McIntyre [1] and was 

supported by Takahasi and Wakimoto [2] by 

mathematical theory. Dell and Clutter [3] showed that 

RSS is more efficient than simple random sampling 

even with an error in ranking. Samawi et al. [4] 

suggested using extreme ranked set samples for 

estimating a population mean.  Muttlak [5] introduced 

median ranked set sampling to estimate the population 

mean. Al-Saleh and Al-Kadiri [6] considered double 

ranked set sample, as a procedure that increases the  

 

 

efficiency of the RSS estimator without increasing the 

set size m. It was shown that the double ranked set 
sample estimator of the mean is more efficient than 

that using RSS. Al-Saleh and Muttlak [7] used RSS in 

Bayesian estimation for exponential and normal 

distributions to reduce Bayes risk. Al-Hadhrami [8] 

studied the estimation problem of the unknown 

parameters for the modified Weibull distribution. 

Maximum likelihood estimators for the parameters 

were also investigated mathematically and 

numerically. The numerical results show that the 

estimators based on RSS are more efficient than that 

from SRS. Helui et al [9] studied the estimation of the 

unknown parameter for Weibull distribution under 
different sampling. Methods of estimation used are 

ML, moments and Bayes. They concluded that 

estimators based on RSS and modified RSS have 

many advantages over those that are based on simple 

random sample (SRS).  

This article is concerned with the maximum 

likelihood (ML) and Bayes estimators of the shape 

and scale parameters of exponentiated exponential 

based on SRS and RSS. Bayes estimators under 

squared error loss function are discussed assuming 

gamma prior distribution for both parameters. The 
performance of the obtained estimators is investigated 

in terms of their absolute relative biases (ARBs) and 

mean square errors (MSEs). Relative efficiency of the 

estimators is also calculated. 

The rest of the article is organized as follows. In 

Section 2, ML and Bayesian methods of estimation of 

unknown parameters are discussed under SRS. In 

Section 3, the same methods of estimation are 

discussed based on RSS. 

Numerical illustration is carried out to illustrate 

theoretical results in Section 4. Simulation results are 
displayed in Section 5. Finally, conclusions are 

presented in Section 6.  

 

II. Estimation of Parameters Using SRS 
This Section discusses the ML and Bayes 

estimators under squared error loss function for the 

unknown parameters of EE distribution under SRS. 

 

2.1 Maximum Likelihood Estimation  

Gupta and Kundu [10] proposed an exponentiated 
exponential (EE) distribution as an alternative to the 
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gamma and Weibull distributions and studied its 

different properties.  EE has the following probability 

density function (PDF) 

    0,,,) x-e - (1),,( 1   xexf x  
                      

Let 
nXXX ,...,, 21
be independent and identically 

distributed random variables from EE, then the log-

likelihood function, ),( L , is 
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Obviously, it is not easy to obtain a closed form 

solution for the two non-linear equations (1) and (2). 

So, iterative procedure must be applied to solve these 

equations numerically. Newton Raphson method is 

used to obtain ML estimates of   and , say, 
MLE

~

and 
MLE

~
.  

 

2.2 Bayesian Estimation  

Assume that  and  are independent random 

variables. Following Kundu and Gupta [11], it is 

assumed that   and have the following gamma 

prior distributions; 
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where, all the hyper parameters a; b; c; d are assumed 

to be known and non-negative. Suppose 

),...,,( 21 nxxxx   is a random sample from EE, 

then based on the likelihood function of the observed 

data;                   
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Using the priors given in equations (3), then the joint 

posterior density function of   and   can be written 

as;     
.
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Marginal posterior of a parameter is obtained by 

integrating the joint posterior distribution with respect 

to the other parameter and hence the marginal 

posterior of  can be written as 
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Similarly integrating the joint posterior with respect to 

 ,  the marginal posterior   can be obtained as 
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The Bayes estimators for parameters  and  of EE 

distribution under squared error loss function may be 

defined, respectively, as 
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There are no explicit forms for obtaining estimators 

for the EE, therefore, numerical solution and 

computer facilities are needed.  

 

III. Estimation of Parameters Using RSS 
The aim of this Section is to find the ML and 

Bayes estimators for the unknown parameters of EE 

distribution under RSS. 

 

3.1Maximum Likelihood Estimation 
RSS is recognized as a useful sampling 

technique for improving the precision and increasing 

the efficiency of estimation when the variable under 

consideration is expensive to measure or difficult to 
obtain but cheap and easy to rank. 

 The procedure of using RSS is as follows: 

Step1:  Randomly draw m random sets with m 

elements in each sample and ranked them (without 

actual measuring) with respect to the variable of 

interest. 

Step 2: From the first set, the element with the 

smallest rank was chosen. From the second set, the 

element with the second smallest rank was chosen. 

The procedure was continued until the element with 

the largest rank from the mth sample was chosen. This 

procedure yielded a total number of m elements 
chosen to be measured, one from each sample. 

Step 3: Repeat the above steps k times ( k cycles) 

until the desired sample size ( mkn  ) is obtained 

for analysis. 

Suppose that kcmiX ici ...1,...1.,)(  is a ranked 

set sample from EE distribution, with sample size 

mkn  , m is the set size and k is the number of 
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cycles. For simplicity, let  ,)( iciic XY  then for fixed 

c,  icY are independent with PDF equal to PDF of ith 

order statistics and given by 
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where, c is a constant. 

 Differentiate the log likelihood with respect to  and 

     and equating to zero 
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The ML estimators of   and  , say MLE , MLE , 

are the solution of the two nonlinear  equations (8) 

and (9). Since it is difficult to find a closed form 

solution for the parameters, numerical technique is 

needed to solve them.  

3.2 Bayesian Estimation  

Using the priors defined in equations (3) and the 

likelihood function given in equation (7), then the 

joint posterior density function of   and   under 

RSS can be written as;
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Marginal posterior of a parameter is obtained by 

integrating the joint posterior distribution with respect 

to the other parameter and hence the marginal 

posterior of  can be written, as 
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Similarly integrating the joint posterior with respect to 

 ,  the marginal posterior   can be obtained as   
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The Bayes estimators for parameters  and  of EE 

distribution under squared error loss function may be 
defined, respectively, as 
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These integrals cannot be obtained in a simple closed 

form; therefore, numerical solution is applied.  

IV.   Simulation Procedure 
It is very difficult to compare the theoretical 

performances of the different estimators proposed in 
the previous Sections. Therefore, this Section presents 

the numerical solutions to obtain the ML and Bayes 

estimators of the unknown parameters   and   for 

the EE distribution based on RSS and SRS.  A 

comparison studies between these estimators will be 

carried out through MSEs, ARBs and relative 

efficiency. Monte Carlo simulation is applied for 

different set sizes, different number of cycles and 

different parameter values.   The simulation 

procedures are described through the following 

algorithm 

Step 1: A random sample of size n = 10, 15, 16, 20, 
24 and 30 with set size m=(2,3), number of cycles k = 

(5,8,10), where kmn    are generated from EE 

distribution.
 

Step 2: The parameters values are selected as 

1.1)3.0(5.0   for 1 in estimation procedure.  

Step 3: For the chosen set of parameters and each 

sample of size n, eight estimators ( MLE
~

, MLE
~

,
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Bayes
~

Bayes
~

, MLE , MLE , 
Bayes  and 

Bayes ) are 

computed under SRS and RSS.  

Step 4:  Repeat the pervious steps from 1 to 3 N times 
representing different samples, where N=1000. Then, 

the ARBs and MSEs of the estimates are computed. 

Step 5: Compute the efficiency of estimators, that 

defined as, Efficiency = MSE(SRS)/MSE(RSS). 

 

V. Simulation Results 
All simulated studies presented here are 

obtained via MathCAD (14). The results are reported 

in Tables 1 and 2. Table 1 contains the estimates of 
parameters for EE under SRS and RSS for different 

value of sample sizes and different value of 

parameters. Table 2 contains the efficiency of 

estimators for SRS relative to RSS. From Tables 1 

and 2 many conclusions can be made on the 

performance of both method of estimation based on 

RSS and SRS. These conclusions are summarized as 

follows:  

1. Based on SRS, ARBs and MSEs for the estimates 

of   and  are greater than the corresponding in 

RSS.  

2. For both method of estimation, it is clear that ARBs 
and MSEs decrease as set sizes increase for fixed 

value of  . 

3. As the value of   increases, the ARBs and MSEs 

increase in almost all of the cases.  

4- The MSEs for the Bayes estimates of both 

parameters  and  is smaller than the MSEs for the 

MLEs of  and   in almost all the cases under both 

SRS and RSS, in sense that,   

Bayes  is better than  MLE based on SRS 

Bayes is better than MLE based on SRS 

Bayes
~

is better than MLE
~

based on RSS 

Bayes
~

is better than MLE
~

based on RSS 

5- Comparing the biases of estimators, it is noted that 

the Bayes estimates have the minimum biases in 

almost all of the cases expect few cases.  

6. It is clear from Table 2 that the efficiency of 

estimators increases as the sample sizes increase. The 

estimators based on RSS have smaller MSE than the 

corresponding ones based on SRS. The efficiency of 

RSS estimators with respect to SRS estimator is 

greater than one and increases when the sample size 
increases. 

 

VI. Conclusions 
 This article deals with the estimation 

problem of unknown parameters of EE distribution 

based on RSS. ML and Bayesian methods of 

estimation are used. Bayes estimates are obtained 

under squared error loss function. Comparing the 

performance of estimators, it is observed that the 
Bayes performs better than ML relative to their ARBs 

and MSE’s. Furthermore, ARBs and MSEs of the 

estimates for both shape and scale parameters relative 

to RSS are smaller than the corresponding SRS. This 

study revealed that the estimators based on RSS are 

more efficient than the corresponding SRS.  

 

 

 

Table 1:  Results of simulation study of ARBs and MSEs of estimates for different values of parameters ),( 
for EE distribution under SRS and RSS. 

 

 

 

 

RSS 

)1,5.0(    

SRS 

)1,5.0(    

(m,k) 
MLE  

Bayes  MLE  
Bayes  MLE

~
 Bayes

~
 MLE

~
 Bayes

~
 

(2,5) 0.288 

0.043 

0.123 

0.039 

0.370 

0.163 

0.439 

0.217 

0.650 

0.054 

0.332 

0.052 

0.656 

0.172 

0.461 

0.280 

(2,8) 0.173 

0.033 

0.096 

0.031 

0.173 

0.158 

0.268 

0.165 

0.557 

0.044 

0.197 

0.044 

0.650 

0.169 

0.216 

0.215 

(2,10) 0.135  

0.020 

0.081 

0.028 

0.173 

0.154 

0.083 

0.129 

0.392 

0.038 

0.109 

0.040 

0.649 

0.165 

0.192 

0.184 

(3,5) 0.195 

0.036 

0.107 

0.037 

0.272 

0.162 

0.382 

0.168 

0.574 

0.046 

0.297 

0.050 

0.656 

0.171 

0.358 

0.215 

(3,8) 0.115 

0.015 

0.080 

0.028 

0.147 

0.116 

0.082 

0.116 

0.301 

0.029 

0.082 

0.039 

0.574 

0.130 

0.250 

0.171 

(3,10) 0.104 

0.011 

0.062 

0.010 

0.137 

0.029 

0.062 

0.019 

0.240 

0.025 

0.073 

0.022 

0.572 

0.059 

0.096 

0.054 
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Continued Table 1 

 

Note: The first entry is the simulated about ARBs. 

          The second entry is the simulated about MSEs. 

 

Table 2: Efficiency of the estimators under SRS with respect to RSS in both estimation methods.   

  

      Efficiency of   

)1,5.0(    

Efficiency of  

)1,5.0(    

(m,k) ML Bayesian  ML Bayesian  

(2,5) 1.256 1.333 1.055 1.290 

(2,8) 1.333 1.419 1.070 1.303 

(2,10) 1.900 1.429 1.071 1.426 

(3,5) 1.278 1.351 1.056 1.297 

(3,8) 1.933 1.393 1.121 1.474 

(3,10) 2.273 2.200 2.034 2.842 

 Efficiency of   

)1,8.0(    

Efficiency of  

)1,8.0(    

(m,k) ML Bayesian  ML Bayesian  

(2,5) 1.018 1.404 1.481 1.043 

(2,8) 1.025 1.554 1.695 1.281 

(2,10) 1.203 1.666 1.709 1.921 

(3,5) 1.057 1.412 1.656 1.138 

 

 

RSS 

)1,8.0(    

SRS 

)1,8.0(    

(m,k) 
MLE  

Bayes  MLE  
Bayes  MLE

~
 

Bayes
~

 MLE
~

 
Bayes

~
 

(2,5) 0.343 

0.339 

0.276 

0.089 

0.196 

0.233 

0.301 

0.255 

0.451 

0.345 

0.276 

0.125 

0.540 

0.345 

0.336 

0.266 

(2,8) 0.116 

0.118 

0.127 

0.065 

0.105 

0.118 

0.219 

0.185 

0.293 

0.121 

0.230 

0.101 

0.532 

0.200 

0.239 

0.237 

(2,10) 0.088 

0.079 

0.068 

0.045 

0.093 

0.079 

0.123 

0.114 

0.193 

0.095 

0.130 

0.075 

0.425 

0.135 

0.179 

0.219 

(3,5) 0.254 

0.138 

0.157 

0.085 

0.194 

0.131 

0.236 

0.225 

0.337 

0.146 

0.234 

0.120 

0.535 

0.217 

0.252 

0.256 

(3,8) 0.079 

0.031 

0.048 

0.036 

0.054 

0.032 

0.096 

0.088 

0.169 

0.068 

0.118 

0.063 

0.404 

0.080 

0.135 

0.196 

(3,10) 0.065 

0.023 

0.047 

0.024 

0.036 

0.020 

0.070 

0.066 

0.168 

0.062 

0.011 

0.044 

0.388 

0.060 

0.107 

0.185 

 RSS 

)1,1.1(    

SRS 

)1,1.1(    

(m,k) 
MLE  

Bayes  MLE  
Bayes  MLE

~
 

Bayes
~

 MLE
~

 
Bayes

~
 

(2,5) 0.405 

0.311 

0.124 

0.188 

0.341 

0.266 

0.227 

0.280 

0.593 

0.388 

0.365 

0.280 

0.452 

0.310 

0.338 

0.466 

(2,8) 0.230 

0.176 

0.065 

0.111 

0.128 

0.174 

0.113 

0.104 

0.558 

0.228 

0.273 

0.235 

0.445 

0.278 

0.202 

0.198 

(2,10) 0.156 

0.173 

0.058 

0.085 

0.109 

0.102 

0.105 

0.085 

0.478 

0.225 

0.171 

0.199 

0.300 

0.206 

0.155 

0.197 

(3,5) 0.318 

0.183 

0.076 

0.169 

0.220 

0.244 

0.190 

0.167 

0.582 

0.238 

0.316 

0.345 

0.451 

0.294 

0.260 

0.310 

(3,8) 0.144 

0.090 

0.051 

0.064 

0.089 

0.097 

0.070 

0.083 

0.470 

0.180 

0.148 

0.159 

0.288 

0.197 

0.086 

0.195 

(3,10) 0.116 
0.085 

0.049 
0.043 

0.081 
0.038 

0.036 
0.077 

0.456 
0.171 

0.065 
0.150 

0.086 
0.102 

0.083 
0.189 
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(3,8) 2.194 1.750 2.500 2.227 

(3,10) 2.696 1.833 3.000 2.803 

 Efficiency of   

)1,1.1(    

Efficiency of  

)1,1.1(    

(m,k) ML  Bayesian  ML Bayesian  

(2,5) 1.248 1.489 1.165 1.664 

(2,8) 1.295 2.117 1.597 1.904 

(2,10) 1.306 2.341 2.019 2.318 

(3,5) 1.301 2.041 1.205 1.856 

(3,8) 2.000 2.484 2.031 2.349 

(3,10) 2.012 3.488 2.684 2.455 


