
 Irfan Ali / International Journal of Engineering Research and Applications  

(IJERA)                   ISSN: 2248-9622            www.ijera.com  
Vol. 3, Issue 1, January -February 2013, pp.706-711 

706 | P a g e  

Bit-Error-Rate (BER) Simulation Using MATLAB 
 

Irfan Ali 
M.Tech. Scholar, Jagan Nath University, Jaipur (India)              

 

Abstract 
This paper introduce the Bit error rate, 

(BER) simulation using Mat lab. Bit error rate, 

(BER) is a key parameter that is used in assessing 

systems that transmit digital data from one 

location to another. Systems for which bit error 

rate, is applicable include radio data links as well 

as fiber optic data systems, Ethernet, or any 

system that transmits data over a network of 

some form where noise, interference, and phase 

jitter may cause quality degradation of the digital 

signal.  Mat lab is an ideal tool for simulating 

digital communications systems, thanks to its 

easy scripting language and excellent data 

visualization capabilities. One of the most 

frequent simulation tasks in the field of digital 

communications is bit-error-rate testing of 

modems. The bit-error-rate performance of a 

receiver is a figure of merit that allows different 

designs to be compared in a fair manner. 

Performing bit-error-rate testing with Mat lab is 

very simple, but does require some prerequisite 

knowledge. 

 

Keywords: BER, Mat lab, Eb/No,  

 

I. INTRODUCTION 
As the name implies, a bit error rate (BER) 

is defined as the rate at which errors occur in a 

transmission system. This can be directly translated 

into the number of errors that occur in a string of a 

stated number of bits. The definition of bit error rate 

can be translated into a simple formula: 

 

      BER = number of errors / total number of bits 

sent 

If the medium between the transmitter and 

receiver is good and the signal to noise ratio is high, 
then the bit error rate will be very small possibly 

insignificant and having no noticeable effect on the 

overall system However if noise can be detected, 

then there is chance that the bit error rate will need 

to be considered. Although there are some 

differences in the way these systems work and the 

way in which bit error rate is affected, the basics of 

bit error rate itself are still the same. When data is 

transmitted over a data link, there is a possibility of 

errors being introduced into the system. If errors are 

introduced into the data, then the integrity of the 
system may be compromised. As a result, it is 

necessary to assess the performance of the system, 

and bit error rate, BER, provides an ideal way in 

which this can be achieved. Unlike many other 

forms of assessment, bit error rate, BER assesses the  

 

 
full end to end performance of a system including 

the transmitter, receiver and the medium between 

the two. In this way, bit error rate, BER enables the 

actual performance of a system in operation to be 

tested, rather than testing the component parts and 

hoping that they will operate satisfactorily when in 

place. The main reasons for the degradation of a 

data channel and the corresponding bit error rate, 

BER is noise and changes to the propagation path 

(where radio signal paths are used). Both effects 

have a random element to them, the noise following 

a Gaussian probability function while the 
propagation model follows a Rayleigh model. This 

means that analysis of the channel characteristics are 

normally undertaken using statistical analysis 

techniques. For fiber optic systems, bit errors mainly 

result from imperfections in the components used to 

make the link. These include the optical driver, 

receiver, connectors and the fiber itself. Bit errors 

may also be introduced as a result of optical 

dispersion and attenuation that may be present. Also 

noise may be introduced in the optical receiver 

itself. Typically these may be photodiodes and 
amplifiers which need to respond to very small 

changes and as a result there may be high noise 

levels present. Another contributory factor for bit 

errors is any phase jitter that may be present in the 

system as this can alter the sampling of the data. 

Signal to noise ratios and Eb/No figures are 

parameters that are more associated with radio links 

and radio communications systems. In terms of this, 

the bit error rate, BER, can also be defined in terms 

of the probability of error or POE. The determine 

this, three other variables are used. They are the 

error function, erf, the energy in one bit, Eb, and the 
noise power spectral density (which is the noise 

power in a 1 Hz bandwidth), No. It should be noted 

that each different type of modulation has its own 

value for the error function. This is because each 

type of modulation performs differently in the 

presence of noise. In particular, higher order 

modulation schemes (e.g. 64QAM, etc) that are able 

to carry higher data rates are not as robust in the 

presence of noise. Lower order modulation formats 

(e.g. BPSK, QPSK, etc.) offer lower data rates but 

are more robust. The energy per bit, Eb, can be 
determined by dividing the carrier power by the bit 

rate and is a measure of energy with the dimensions 

of Joules. No is a power per Hertz and therefore this 

has the dimensions of power (joules per second) 

divided by seconds). Looking at the dimensions of 

the ratio Eb/No all the dimensions cancel out to give 

a dimensionless ratio. It is important to note that 
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POE is proportional to Eb/No and is a form of signal 

to noise ratio. 

 

II. FACTORS AFFECTING BIT ERROR RATE 
It can be seen from using Eb/No, that the 

bit error rate, BER can be affected by a number of 

factors. By manipulating the variables that can be 

controlled it is possible to optimize a system to 

provide the performance levels that are required. 

This is normally undertaken in the design stages of a 

data transmission system so that the performance 

parameters can be adjusted at the initial design 

concept stages. The interference levels present in a 

system are generally set by external factors and 

cannot be changed by the system design. However it 

is possible to set the bandwidth of the system. By 

reducing the bandwidth the level of interference can 
be reduced. However reducing the bandwidth limits 

the data throughput that can be achieved. It is also 

possible to increase the power level of the system so 

that the power per bit is increased. This has to be 

balanced against factors including the interference 

levels to other users and the impact of increasing the 

power output on the size of the power amplifier and 

overall power consumption and battery life, etc. 

Lower order modulation schemes can be used, but 

this is at the expense of data throughput. It is 

necessary to balance all the available factors to 
achieve a satisfactory bit error rate. Normally it is 

not possible to achieve all the requirements and 

some trade-offs are required. However, even with a 

bit error rate below what is ideally required, further 

trade-offs can be made in terms of the levels of error 

correction that are introduced into the data being 

transmitted. Although more redundant data has to be 

sent with higher levels of error correction, this can 

help mask the effects of any bit errors that occur, 

thereby improving the overall bit error rate. 

 

III. SIMULATION TOOL 
MATLAB (matrix laboratory) is a 

calculating environment and fourth-generation 

programming language. Developed by Math Works, 

MATLAB allows matrix manipulations, plotting of 

functions and data, implementation of algorithms, 

creation of user interfaces, and interfacing with 

programs written in other languages, including C, 

C++, Java, and Fortran. Although Matlab is 
intended primarily for numerical computing, an 

optional toolbox uses the MuPAD symbolic engine, 

allowing access to symbolic Computing capabilities. 

An additional package, Simulink, adds graphical 

multi-domain simulation and Model-Based Design 

for dynamic and embedded systems. In 2004, 

Matlab had around one million users across industry 

and academia. Matlab users come from various 

backgrounds of engineering, science, and 

economics. Matlab is widely used in academic and 

research institutions as well as industrial enterprises. 

Matlab is an ideal tool for simulating digital 

communications systems, thanks to its easy scripting 

language and excellent data visualization 

capabilities. One of the most frequent simulation 

tasks in the field of digital communications is bit-

error- rate testing of modems. The bit-error-rate 

performance of a receiver is a figure of merit that 

allows different designs to be compared in a fair 
manner. Performing bit-error-rate testing with Mat 

lab is very simple, but does require some 

prerequisite knowledge. In Matlab, we represent 

continuous-time signals with a sequence of 

numbers, or samples, which are generally stored in a 

vector or an array. Before we can performance bit-

error-rate test, we must precisely understand the 

meaning of these samples. We must know what 

aspect of the signal the value of these samples 

represents. We must also know the time interval 

between successive samples. For communications 

simulations, the numeric value of the sample 
represents the amplitude of the continuous-time 

signal at a specific instant in time. We assume this 

amplitude is a measurement of voltage, though it 

could just as easily be a measurement of current. 

The time between successive samples is, by 

definition, Ts. This tells us how often the continuous 

time signal was sampled. Instead of specifying Ts , 

we usually specify the sampling frequency, fs , 

which is the inverse of Ts. For convenience, we will 

always associate a sample value of 1.0 with a 

voltage of exactly one volt. Furthermore, we will 
always assume a resistance of exactly one ohm. This 

allows us to dispense with the notion of resistance 

altogether. For our simulations, we will represent a 

continuous time signal as an array of samples, the 

numeric value of which is in units of volts, 

referenced to a resistance of one ohm. Usually, the 

sampling frequency is 8 KHz, but other sampling 

frequencies are also in common use, so the sampling 

frequency should always be specified. Suppose we 

have a signal x(n), where n is an index of the sample 

number. We define the instantaneous power of the 

signal as:                           
                      Pins ≡ x2(n). 

 

In other words, the instantaneous power of a sample 

is just the value of that sample squared. Since the 

units of the sample are volts, the units of the power 

are watts. A far more useful quantity is the average 

power, which is simply the average of the 

instantaneous power of every sample in the signal. 

For signal x(n), of N samples, we have: 

 

                                      N 

Pave ≡      Σ x2(n).                                    (1) 

                                     n=1                         

 

Note that this is simply the sum of the square of all 

samples, divided by the number of samples. One 



 Irfan Ali / International Journal of Engineering Research and Applications  

(IJERA)                   ISSN: 2248-9622            www.ijera.com  
Vol. 3, Issue 1, January -February 2013, pp.706-711 

708 | P a g e  

way to compute the average power, „pav‟, of signal 

„x‟, using Matlab is: 

                    

                 pav= sum(x.^2)/length(x). 

 

If our signal has a mean of zero, or in other 

words, no DC component, we can find the average 
power of the signal by taking its variance. This 

works because: 

 

    σ(x) ≡ E[x2]−(E[x])2, 

 

which states: the variance of a signal is the 

mean of its square, minus the square of its mean. If 

the mean is zero, the variance is just the mean of the 

square, exactly the same as the average power. 

Therefore, if a signal has no DC value, we can 

compute its average power by finding its variance. 

We need to be careful using the variance to find the 
average power of a signal. This technique only 

works if the mean of the signal is zero. If the mean 

is not zero, we must use (1), which always works, 

regardless of whether the mean is zero or not. By 

definition, power is the time derivative of energy; or 

equivalently, energy is the time integral of power. 

For sampled signals, integration reduces to a 

summation. Since energy is the product of power 

and time, the total energy of a signal must be equal 

to its average power multiplied by its duration. 

Furthermore, the duration of a signal is its length in 
samples, divided by the sampling frequency, in 

samples per second. Therefore: 

 

 

  Etot = Pave · t        

   =    .  , 

      =   .                       (2) 

The Matlab command for finding the total energy, 

„et‟, of signal „x‟, that has sampling rate „fs‟, is: 

                             

       et= sum(x.^2)/ fs. 

 

IV. SIMULATION PROCEDURE 
Bit-error-rate testing requires a transmitter, 

a receiver, and a channel. We begin by generating a 

long sequence of random bits, which we provide as 

input to the transmitter. The transmitter modulates 

these bits onto some form of digital signalling, 

which we will send though a simulated channel. Bit-

error-rate performance is usually depicted on a two 

dimensional graph. The ordinate is the normalized 

signal-to-noise ratio (SNR) expressed as Eb /N0: the 

energy-per-bit divided by the one-sided power 

spectral density of the noise, expressed in decibels 

(dB). The abscissa is the bit-error-rate, a 

dimensionless quantity, usually expressed in powers 
of ten. To create a graph of bit-error-rate versus 

SNR, we plot a series of points. Each of these points 

requires us to run a simulation at a specific value of 

SNR. To obtain the bit-error-rate at a specific SNR, 

we follow the procedure given below 

 

A. Run Transmitter 

The first step in the simulation is to use the 

transmitter to create a digitally modulated signal 

from a sequence of pseudo-random bits. Once we 
have created this signal, x(n), we need to make some 

measurements of it. 

 

B. Establish SNR 

The signal-to-noise-ratio (SNR), Eb /N0, is 

usually expressed in decibels, but we must convert 

decibels to an ordinary ratio before we can make 

further use of the SNR. If we set the SNR to m dB, 

then Eb/N0= 10m/10. Using Matlab, we find the 

ratio, „ebn0‟, from the SNR in decibels, „snrdb‟, as:  

                      

 ebn0= 10^(snrdb/10). 
 

 Note that Eb/N0 is a dimensionless quantity. 

 

C. Determine Eb 

Energy-per-bit is the total energy of the 

signal, divided by the number of bits contained in 

the signal. We can also express energy-per-bit as the 

average signal power multiplied by the duration of 

one bit. Either way, the expression for Eb is: 

 

                Eb =   

 

where N is the total number of samples in 

the signal, and fbit is the bit rate in bits-per-second. 

Using Matlab, we find the energy-per-bit, „eb‟, of 
our transmitted signal, „x‟, that has a bit rate „fb‟, as: 

 

               eb = sum(x.^2)/(length(x)*fb). 

 

Since our signal, x(n), is in units of volts, the units 

of Eb are Joules. 

 

D. Calculate N0 

With the SNR and energy-per-bit now 

known, we are ready to calculate N0, the one-sided 

power spectral density of the noise. All we have to 

do is divide Eb by the SNR, providing we have 
converted the SNR from decibels to a ratio. Using 

Matlab, we find the power spectral density of the 

noise, „n0‟, given energy- per-bit „eb‟, and SNR 

„ebn0‟, as: 

                       n0 = eb/ebn0. 

 

The power spectral density of the noise has units of 

Watts per Hertz. 

 

E. Calculate σn 

The one-sided power spectral density of the 
noise, N0, tells us how much noise power is present 

in a 1.0 Hz bandwidth of the signal. In order to find 
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the variance, or average power, of the noise, we 

must know the noise bandwidth. For a real signal, 

x(n), sampled at fs Hz, the noise bandwidth will be 

half the sampling rate. Therefore, we find the 

average power of the noise by multiplying the 

power spectral density of the noise by the noise 

bandwidth: 
 

              σn =    , 

 
where σn is the noise variance in W, and N0 

is the one-sided power spectral density of the noise 

inW/Hz. Using Matlab, the average noise power, 

„pn‟, of noise having power spectral density „n0‟, 

and sampling frequency „fs‟, is calculated as: 

 

                         pn= n0*fs/2. 

 

The average noise power is in units of Watts. 

 

F. Generate Noise 
Although the communications toolbox of 

Matlab has functions to generate additive white 

Gaussian noise, we will use one of the standard 

built-in functions to generate AWGN. Since the 

noise has a zero mean, its power and its variance are 

identical. We need to generate a noise vector that is 

the same length as our signal vector x(n), and this 

noise vector must have variance σn W. The Matlab 

function „randn‟ generates normally distributed 

random numbers with a mean of zero and a variance 

of one. We must scale the output so the result has 

the desired variance, σn. To do this, we simply 
multiply the output of the „randn‟ function by p¾n. 

We can generate the noise vector „n‟, as: 

 

              n = sqrt(pn)*randn(1,length(x));. 

 

Like the signal vector, the samples of the noise 

vector have units of volts. 

 

G. Add Noise 

We create a noisy signal by adding the 

noise vector to the signal vector. If we are running a 
fixed-point simulation, we will need to scale the 

resulting sum by the reciprocal of the maximum 

absolute value, so the sum stays within amplitude 

limits of ±1.0. Otherwise, we can simply add the 

signal vector „x‟ to the noise vector „n‟ to obtain the 

noisy signal vector „y‟ as: 

                          y = x+n;. 

 

H. Run Receiver 

Once we have created a noisy signal vector, 

we use the receiver to demodulate this signal. The 

receiver will produce a sequence of demodulated 
bits, which we must compare to the transmitted bits, 

in order to determine how many demodulated bits 

are in error. 

 

I. Determine Offset 

Due to filtering and other delay-inducing 

operations typical of most receivers, there will be an 

offset between the received bits and the transmitted 

bits. Before we can compare the two bit sequences 

to check for errors, we must first determine this 
offset. One way to do this is by correlating the two 

sequences, then searching for the correlation peak. 

Suppose our transmitted bits are stored in vector 

„tx‟, and our received bits are stored in vector „rx‟. 

The received vector should contain more bits than 

the transmitted vector, since the receiver will 

produce (meaningless) outputs while the filters are 

filling and flushing. If the length of the transmitted 

bit vector is lt x , and the length of the received 

vector is lrx , the range of possible offsets is 

between zero and lrx −lt x −1. We can find the offset 

by performing a partial cross-correlation between 
the two vectors. Using Matlab, we can create a 

partial cross-correlation, „cor‟, from bit vectors „tx‟ 

and „rx‟, with the following loop: 

 

          for lag= 1 : length(rx)−length(tx)−1, 

          cor(lag)= tx*rx(lag : length(tx)−1+lag)′; 

          end. 

 

The resulting vector, „cor‟, is a partial 

cross-correlation of the transmitted and received 

bits, over the possible range of lags: 0 : lrx −lt x −1. 
We need to find the location of the maximum value 

of „cor‟, since this will tell us the offset between the 

bit vectors. Since Matlab numbers array elements as 

1 : N instead of as 0 :N−1, we need to subtract one 

from the index of the correlation peak. Using 

Matlab, we find the correct bit offset, „off‟, as: 

     

           off= find(cor== max(cor))−1. 

 

J. Create Error Vector 

Once we know the offset between the 

transmitted and received bit vectors, we are ready to 
calculate the bit errors. For bit values of zero and 

one, a simple difference will reveal bit errors. 

Wherever there is a bit error, the difference between 

the bits will be ±1, and wherever there is not a bit 

error, the difference will be zero. Using Matlab, we 

calculate the error vector, „err‟, from the transmitted 

bit vector, „tx‟, and the received bit vector, „rx‟, 

having an offset of „off‟, as: 

 

   err = tx−rx(off+1 : length(tx)+off);. 

 

K. Count Bit Errors 

The error vector, „err‟ contains non-zero 

elements in the locations where there were bit 

errors. We need to tally the number of non-zero 

elements, since this is the total number of bit errors 

in this simulation. Using Matlab, we calculate the 
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total number of bit errors, „te‟, from the error vector 

„err‟ as: 

                te= sum(abs(err)). 

 

L. Calculate Bit-Error-Rate 

Each time we run a bit-error-rate 

simulation, we transmit and receive a fixed number 
of bits. We determine how many of the received bits 

are in error, then compute the bit-error-rate as the 

number of bit errors divided by the total number of 

bits in the transmitted signal. Using Matlab, we 

compute the bit error-rate, „ber‟, as: 

 

ber= te/length(tx), 

 

where „te‟ is the total number of bit errors, and „tx‟ 

is the transmitted bit vector. 

 

V. SIMULATION RESULTS 
Performing a bit-error-rate simulation can 

be a lengthy process. We need to run individual 

simulations at each SNR of interest. We also need to 

make sure our results are statistically significant. 

 

A. Statistical Validity 

When the bit-error-rate is high, many bits 

will be in error. The worst-case bit-error-rate is 50 

percent, at which point, the modem is essentially 
useless. Most communications systems require bit-

error-rates several orders of magnitude lower than 

this. Even a bit-error-rate of one percent is 

considered quite high. We usually want to plot a 

curve of the bit-error-rate as a function of the SNR, 

and include enough points to cover a wide range of 

bit-error-rates. At high SNRs, this can become 

difficult, since the bit-error-rate becomes very low. 

For example, a bit-error-rate of 10−6 means only one 

bit out of every million bits will be in error. If our 

test signal only contains 1000 bits, we will most 
likely not see an error at this Bit-error-rate. In order 

to be statistically significant, each simulation we run 

must generate some number of errors. If a 

simulation generates no errors, it does not mean the 

bit-error-rate is zero; it only means we did not have 

enough bits in our transmitted signal. As a rule of 

thumb, we need about 100 (or more) errors in each 

simulation, in order to have confidence that our bit-

error-rate is statistically valid. At high SNRs, this 

can require a test signal containing millions, or even 

billions of bits. 

 

B. Plotting 

Once we perform enough simulations to 

obtain valid results at all SNRs of interest, we will 

plot the results. We begin by creating vectors for 

both axes. The X-axis vector will contain SNR 

values, while the Y-axis vector will contain bit-

error- rates. The Y-axis should be plotted on a 

logarithmic scale, whereas the X-axis should be 

plotted on a linear scale. Supposing our SNR values 

are in vector „xx‟, and our corresponding bit-error-

rate values are in vector „yy‟, we use Matlab to plot: 

 

                              semilogy (xx,yy,′o′). 

      

Fig. 1, 2 and 3 shows example of plot of the results 

of a bit-error-rate simulation at different Eb/N0. 
 

 
 

                               Figure 1 
 

 
 

                            Figure 2 

  

 
 

                                 Figure 3 

 

Matlab Code For BER Simulation 

N = 10^6 % number of bits or symbols 

rand('state',100); % initializing the rand() function 

randn('state',200); % initializing the randn() function 

 

% Transmitter 

ip = rand(1,N)>0.5; % generating 0,1 with equal 

probability 
s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 1  

n = 1/sqrt(2)*[randn(1,N) + j*randn(1,N)]; % white 

gaussian noise, 0dB variance  
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Eb_N0_dB = [-3:10]; % multiple Eb/N0 values 

 

for ii = 1:length(Eb_N0_dB) 

   % Noise addition 

   y = s + 10^(-Eb_N0_dB(ii)/20)*n; % additive 

white gaussian noise 

 
   % receiver - hard decision decoding 

   ipHat = real(y)>0; 

 

   % counting the errors 

   nErr(ii) = size(find([ip- ipHat]),2); 

 

end 

 

simBer = nErr/N; % simulated ber 

theoryBer = 0.5*erfc(sqrt(10.^(Eb_N0_dB/10))); % 

theoretical ber 

 
% plot 

close all 

figure 

semilogy(Eb_N0_dB,theoryBer,'b.-'); 

hold on 

semilogy(Eb_N0_dB,simBer,'mx-'); 

axis([-3 10 10^-5 0.5]) 

grid on 

legend('theory', 'simulation'); 

xlabel('Eb/No, dB'); 

ylabel('Bit Error Rate'); 
title('Bit error probability curve for BPSK 

modulation'); 

 

                                                                  

Figure 4 

 

VI.  CONCLUSION  
Bit error rate BER is a parameter which 

gives an excellent indication of the performance of a 

data link such as radio or fibre optic system. As one 

of the main parameters of interest in any data link is 

the number of errors that occur, the bit error rate is a 

key parameter. A knowledge of the BER also 

enables other features of the link such as the power 

and bandwidth, etc to be tailored to enable the 

required performance to be obtained. Bit error rate 

(BER) testing, is a powerful methodology for end to 

end testing of digital transmission systems. A BER 

test provides a measurable and useful indication of 

the performance of the performance of the system 

that can be directly related to its operational 

performance. If the BER rises too high then the 

system performance will noticeably degrade. If it is 
within limits then the system will operate 

satisfactorily. We simulate the Bit-error-rate 

performance of digital communication system by 

adding a controlled amount of noise to the 

transmitted signal. This noisy signal then becomes 

the input to the receiver. The receiver demodulates 

the signal, producing a sequence of recovered bits. 

Finally, we compare the received bits to the 

transmitted bits, and tally up the errors through BER 

versus Eb/N0 plot. 
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