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Abstract 
Empirical mode decomposition (EMD) is 

one of the most efficient methods used for non-

parametric signal denoising. In this study wavelet 

thresholding principle is used in the 

decomposition modes resulting from applying 

EMD to a signal. The principles of hard and soft 

wavelet thresholding including translation 

invariant denoising were appropriately modified 

to develop denoising methods suited for 

thresholding EMD modes. We demonstrated 

that, although a direct application of this 

principle is not feasible in the EMD case, it can 

be appropriately adapted by exploiting the 

special characteristics of the EMD decomposition 

modes. In the same manner, inspired by the 

translation invariant wavelet thresholding, a 

similar technique adapted to EMD is developed, 

leading to enhanced denoising performance. 

Keywords: Denoising, EMD, Wavelet 

thresholding 

 

I Introduction 
Denoising aims to remove the noise and to 

recover the original signal regardless of the signal’s 

frequency content. Traditional denoising schemes 

are based on linear methods, where the most 

common choice is the Wiener filtering and they 

have their own limitations(Kopsinis and McLauglin, 

2008).Recently, a new data-driven technique, 

referred to as empirical mode decomposition (EMD) 

has been introduced by Huang et al. (1998) for 

analyzing data from nonstationary and nonlinear 

processes. The EMD has received more attention in 

terms of applications, interpretation, and 

improvement. Empirical mode decomposition 

(EMD) method is an algorithm for the analysis of 

multicomponent signals that breaks them down into 

a number of amplitude and frequency modulated 

(AM/FM) zero-mean signals, termed intrinsic mode 

functions (IMFs). In contrast to conventional 

decomposition methods such as wavelets, which 

perform the analysis by projecting the signal under 

consideration onto a number of predefined basis 

vectors, EMD expresses the signal as an expansion 

of basis functions that are signal-dependent and are 

estimated via an iterative procedure called sifting. 

Although many attempts have been made to  

 

 

improve the understanding of the way EMD 

operates or to enhance its performance, EMD still 

lacks a sound mathematical theory and is essentially 

described by an algorithm. However, partly due to 

the fact that it is easily and directly applicable and 

partly because it often results in interesting and 

useful decomposition outcomes, it has found a vast 

number of diverse applications such as biomedical, 

watermarking  and audio processing  to name a few. 

In this study, inspired by standard wavelet  

thresholding and translation invariant thresholding, 

a few EMD-based denoising techniques are 

developed and tested in different signal scenarios 

and white Gaussian noise. It is shown that although 

the main principles between wavelet and EMD 

thresholding are the same, in the case of EMD, the 

thresholding operation has to be properly adapted in 

order to be consistent with the special characteristics 

of the signal modes resulting from EMD. The 

possibility of adapting the wavelet thresholding 

principles in thresholding the decomposition modes 

of EMD directly, is explored. Consequently, three 

novel EMD-based hard and soft thresholding 

strategies are presented. 

 

II EMD: A Brief description and 

notation 
EMD[3] adaptively decomposes a 

multicomponent signal [4] x(t) into a number of the 

so-called IMFs, 
( ) ( ),1ih t i L     

( )
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( ) ( ) ( )
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i

i

x t h t d t

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where d(t) is a remainder which is a non-zero-mean 

slowly varying function with only few extrema. 

Each one of the IMFs, say, the (i) th one , is 

estimated with the aid of an iterative process, called 

sifting, applied to the residual multicomponent 

signal. 
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The sifting process used in this paper is the 

standard one [3]. According to this, during the (n+1) 

th sifting iteration, the temporary IMF estimate 
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( ) ( )i

nh t  is improving according to the following 

steps.2 

 

1. Find the local maxima and minima of 
( ) ( )i

nh t .   

2. Interpolate, using natural cubic splines, along the 

points of 
( ) ( )i

nh t estimated in the first step in   order 

to form an upper and a lower envelope. 

3. Compute the mean of two envelopes. 

4. Obtain the refined estimate
( )

1( )i

nh t  of the IMF by 

subtracting the mean found in the previous step 

from the current IMF estimate
( ) ( )i

nh t  . 

5. Proceed from step 1) again unless a stopping 

criterion has been fulfilled. 

 

The sifting process is effectively an empirical 

but powerful technique for the estimation of the 

mean
( ) ( )im t  of the residual multicomponent signal 

( ) ( )ix t  localy, a quantity that we term total local 

mean.  Although the notion of the total local mean is 

somewhat vague, especially for multicomponent 

signals, in the EMD context it means that its 

subtraction from 
( ) ( )ix t  will lead to a signal, which 

is actually the corresponding IMF, i.e., 
( ) ( ) ( )( ) ( ) ( ),i i ih t x t m t   that is going to have 

the following properties. 

1) Zero mean. 

2) All the maxima and all the minima of 
( ) ( )ih t  will be positive and negative, 

respectively. Often, but not always, the 

IMFs resemble sinusoids that are both 

amplitude and (frequency modulated (AM 

/FM). 

 

By construction, the number of say  N i

extrema of
( ) ( )ih t   positioned in time instances 

 
( ) ( ) ( ) ( )

1 2[ , ,....., ]i i i i

j N i
r r r r and the corresponding 

IMF points
( ) ( )( ), 1,....., ( )i i

jh r j N i , will 

alternate between maxima and minima, i.e,. positive 

and negative values. As a result, in any pair of 

extrema 
( ) ( ) ( ) ( ) ( )

1[ ( ), ( )]i i i i i

j j jr h r h r  , corresponds 

to a single zero-crossing 
( )i

jz . Depending on the 

IMF shape, the number of zero-crossings can be 

either 
4
  N i  or  N i -1. Moreover, each IMF 

lets say the one of the order, I, have fewer extrema 

than all over the lower order of IMFs, j=1, i-1, 

leading to fewer and fewer oscillations as the IMF 

order increases. In other words, each IMF occupies 

lower frequencies locally in the time-frequency 

domain than its preceeding ones. 

 
Figure 1.Empirical mode decomposition of the noisy 

signal shown in (a). 

 

III Signal Denoising 
Thresholding is a technique used for signal 

and image denoising. The discrete wavelet 

transform uses two types of filters: (1) averaging 

filters, and (2) detail filters. When we decompose a 

signal using the wavelet transform, we are left with 

a set of wavelet coefficients that correlates to the 

high frequency subbands. These high frequency 

subbands consist of the details in the data set.  

If these details are small enough, they 

might be omitted without substantially affecting the 

main features of the data set. Additionally, these 

small details are often those associated with noise; 

therefore, by setting these coefficients to zero, we 

are essentially killing the noise. This becomes the 

basic concept behind thresholding-set all frequency 

subband coefficients that are less than a particular 

threshold to zero and use these coefficients in an 

inverse wavelet transformation to reconstruct the 

data set.  

3.1. IMF Thresholding based Denoising 

An alternative denoising procedure inspired 

by wavelet thresholding is proposed. EMD 

thresholding can exceed the performance achieved 

by wavelet thresholding only by adapting the 

thresholding function to the special nature of IMFs. 

EMD can be interpreted as a subband-like filtering 

procedure resulting in essentially uncorrelated 

IMFs. Although the equivalent filter-bank structure 

is by no means predetermined and fixed as in 

wavelet decomposition, one can in principle perform 

thresholding in each IMF in order to locally exclude 

low-energy IMF parts that are expected to be 

significantly corrupted by noise.  

  A direct application of wavelet 

thresholding in the EMD case translates to 
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for soft thresholding, where, in both thresholding 

cases, indicates the  thresholded IMF. The reason 

for adopting different thresholds per mode will 

become clearer in the sequel. 

A generalized reconstruction of the denoised signal 

is given by 

                                     

2

1 2

( ) ( )

1

ˆ( ) ( ) ( )
M L

i i

k M k M

x t h t h t
  

    

Where the introduction of parameters  

gives us flexibility on the exclusion of the noisy 

low-order IMFs and on the optional thresholding of 

the high-order ones, which in white Gaussian noise 

conditions contain little noise energy.  There are two 

major differences, which are interconnected, 

between wavelet and direct EMD thresholding 

(EMD-DT) shown above.  

First, in contrast to wavelet denoising 

where thresholding is applied to the wavelet 

components, in the EMD case, thresholding is 

applied to the samples of each IMF, which are 

basically the signal portion contained in each 

adaptive subband. An equivalent procedure in the 

wavelet method would be to perform thresholding 

on the reconstructed signals after performing the 

synthesis function on each scale separately. 

Secondly, as a consequence of the first 

difference,the IMF samples are not Gaussian 

distributed with variance equal to the noise variance, 

as the wavelet components are irrespective of scale. 

In our study of thresholds, multiples of the 

IMF-dependent universal threshold, i.e, where is a 

constant, are used. Moreover, the IMF energies can 

be computed directly based on the variance estimate 

of the first IMF. 

3.2 Conventional EMD Denoising  

The first attempt at using EMD as a 

denoising tool emerged from the need to know 

whether a specific IMF contains useful information 

or primarily noise. Thus, significance IMF test 

procedures were simultaneously developed based on 

the statistical analysis of modes resulting from the 

decomposition of signals solely consisting of 

fractional Gaussian noise and white Gaussian noise, 

respectively.  

 

Figure 2. EMD Direct Thresholding.The top-right 

numbers are the SNR values after denoising. 

 

The reasoning underlying the significance 

test procedure above is fairly simple but strong. If 

the energy of the IMFs resulting from the 

decomposition of a noise-only signal with certain 

characteristics is known, then in actual cases of 

signals comprising both information and noise 

following the specific characteristics, a significant 

discrepancy between the energy of a noise-only IMF 

and the corresponding noisy-signal IMF indicates 

the presence of useful information. In a denoising 

scenario, this translates to partially reconstructing 

the signal using only the IMFs that contain useful 

information and discarding those that carry 

primarily noise, i.e., the IMFs that share similar 

amounts of energy with the noise-only case.  

 In practice, the noise-only signal is never 

available in order to apply EMD and estimate the 

IMF energies, so the usefulness of the above 

technique relies on whether or not the energies of 

the noise-only IMFs can be estimated directly based 

on the actual noisy signal. The latter is usually the 

case due to a striking feature of EMD. Apart from 

the first noise-only IMF, the power spectra of the 

other IMFs exhibit self-similar characteristics akin 

to those that appear in any dyadic filter structure. As 

a result, the IMF energies should linearly decrease 

in a semilog diagram of, e.g., with respect to for. It 

also turns out that the first IMF carries the highest 

amounts of energy  

 
Figure 3. EMD Conventional Denoising. The top-

right numbers are the SNR values after denoising. 

 

IV Wavelet based Denoising 
Employing a chosen orthonormal wavelet 

basis, an orthogonal N× N matrix W is appropriately 

built. Discrete wavelet transform (DWT)     c =Wx 

where, x=[x(1), x(2), . . . , x(N)] is the vector of the 

signal samples and c = [c1, c2, . . . , cN] contains the 
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resultant wavelet coefficients. Under white Gaussian 

noise conditions and due to the orthogonality of 

matrix W, any wavelet coefficient 𝑐𝑖  follows normal 

distribution with variance the noise variance σ and 

mean the corresponding coefficient value 𝑐𝑖  of the 

DWT of the noiseless signal  x(t).  

Provided that the signal under 

consideration is sparse in the wavelet domain the 

DWT is expected to distribute the total energy of 

x(t) in only a few wavelet components lending 

themselves to high amplitudes. As a result, the 

amplitude of most of the wavelet components is 

attributed to noise only. The fundamental reasoning 

of wavelet soft thresholding is to set to zero all the 

components which are lower than a threshold related 

to noise level and appropriately shrink the rest of the 

components 

There has recently been a great deal of 

research interest in wavelet thresholding techniques 

for signal and image denoising developed wavelet 

shrinkage and thresholding methods for 

reconstructing signals from noisy data, where the 

noise is assumed to be white and Gaussian. They 

have also shown that the resulting estimates of the 

unknown function are nearly minimax over a large 

class of function spaces and for a wide range of loss 

functions.  

The model generally adopted for the 

observed process is                        

 ( ) ( ) ( ), 1,....., 2 ( )Jy i f i i i K J N     

  

Where ξ(i)} is usually assumed to be a 

random noise vector with independent and 

identically distributed (i.i.d.) Gaussian components 

with zero mean and variance 𝜎2. Note however that 

the assumption of Gaussianity is alleviated in the 

sequel. Estimation of the underlying unknown signal 

f is of interest. We subsequently consider a 

(periodic) discrete wavelet expansion of the 

observation signal, leading to the following additive 

model: 

                        
, , , , {1.......2 }j k j k j k j

y fW W W k K     

Under the Gaussian noise assumption, 

thresholding techniques successfully utilize the 

unitary transform property of the wavelet 

decomposition to distinguish statistically the signal 

components from those of the noise. In order to fix 

terminology, we recall that a thresholding rule sets 

to zero all coefficients with an absolute value below 

a certain threshold 0j  .   

We exhibit close connections between 

wavelet thresholding and Maximum A Posteriori 

(MAP) estimation (or, equivalently, wavelet 

regularization) using exponential power prior 

distributions. Our approach differs from those 

previously mentioned by using a different prior and 

also different loss functions. One of the main 

advantages of our approach is to naturally provide a 

thresholding rule, and consequently, a threshold 

value adapted to the signal/noise under study.  

Moreover, we will also show that the MAP 

estimation is also closely related to wavelet 

regularization of ill-posed inverse stochastic 

problems with appropriate penalties and loss 

functions, that parallel Bridge estimation techniques 

for nonparametric regression as introduced by the 

sake of simplicity (but see our discussion later), we 

assume in the sequel  that the  wavelet coefficients 

of the signal and the noise are two independent 

sequences of i.i.d. random variables.  

Hard thresholding zeroes out all values in 

the frequency band that is found to be Gaussian. The 

hard thresholding coefficient is 

                 
0,

1, .
h

if theband isGaussian
c

if theband is not Gaussian


 
  

 

Figure 4. Wavelet Translation invariant Hard 

thresholding. 

 

Soft Thresholding is obtained by 

multiplying values in the specific frequency band 

that is found to be Gaussian, by a coefficient 

between 0 and 1. Using a coefficient of 0 is the 

same as hard thresholding, whereas using a 

coefficient of 1 is the same as leaving the frequency 

band undisturbed. The soft thresholding coefficient 

is calculated using 

                 
4

ˆ3
,

1.5
c


  

Where µ4 g is the bootstrapped kurtosis of the 

particular frequency band, and denotes the absolute 

value. The bootstrapped kurtosis value µ4 g is 

limited not to exceed 4.5, which will be explained 

later. The bootstrapped kurtosis value µ4 g is 

obtained by using the Bootstrap principle, which 

calls for resamplings from the data set many times 

with replacement, to obtain N resampled sets of the 

same length as the original data set. Next, the 

kurtosis value for each resample is found. Finally, 

the Bootstrapped kurtosis µ4 g is defined as the 

estimated mean obtained from N kurtosis values. It 
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should be noted that the thresholding coefficient c is 

a function of the frequency band’s degree of 

Gaussianity. Equation above shows that the 

coefficient c gets closer to 0 as the bootstrapped 

kurtosis value µ4 g for a specific frequency band 

gets closer to the theoretical value 3, and vice versa. 

Therefore, the closer a frequency band gets to being 

Gaussian, the smaller contribution it has after soft 

thresholding. 

In order to simplify the presentation of our 

result further, we will drop the dependence on the 

resolution level j and the time index k of the 

quantities involved subsequently. 

4.1. Iterative EMD Interval-Thresholding 

Direct application of translation invariant 

denoising to the EMD case will not work. This 

arises from the fact that the wavelet components of 

the circularly shifted versions of the signal 

correspond to atoms centered on different signal 

instances. In the case of the data-driven EMD 

decomposition, the major processing components, 

which are the extrema, are signal dependent, leading 

to fixed relative extrema positions with respect to 

the signal when the latter is shifted. As a result, the 

EMD of shifted versions of the noisy signal 

corresponds to identical  IMFs sifted by the same 

amount. Consequently, noise averaging cannot be 

achieved in this way. The different denoised 

versions of the noisy signal in the case of EMD can 

only be constructed from different IMF versions 

after being thresholded. Inevitably, this is possible 

only by decomposing different noisy versions of the 

signal under consideration itself.  

We know that in white Gaussian noise 

conditions, the first IMF is mainly noise, and more 

specifically comprises the larger amount of noise 

compared to the rest of the IMFs. By altering in a 

random way the positions of the samples of the first 

IMF and then adding the resulting noise signal to the 

sum of the rest of the IMFs, we can obtain a 

different noisy version of the original signal.  

Algorithm 

1. Perform an EMD expansion of the original 

noisy signal x. 

2. Perform a partial reconstruction using the last 

L-1 IMFs only,𝑥𝑝 (t) = 𝐿 = 2ℎ 𝑡
𝑖

𝑖   

3. Randomly alter the sample position of the first 

IMF 
(1) (1)( ) ( ( ))ah t ALTER h t . 

4. Construct a different noisy version of  the 

original signal 
(1)( ) ( ) ( ).a p ax t x t h t   

5. Perform EMD  on the new altered noisy signal 

( ).ax t  

6. Perform EMD-IT denoising (12)or(13) on the 

IMFs of ( )ax t to obtain a denoised version 

1( ) .x t of x  

7. Iterate K-1 time between steps 3)-6),where K is 

the number of averaging iteration in order to 

obtain k denoised versions of 

1 2, ., , ,....., .kx ie x x x    

8. Average the resulted denoised signals  

1

( ) (1/ ) ( ).
k

k

k

x t k x t


    

4.2. Clear iterative interval thresholding  

When the noise is relatively low, enhanced 

performance compared to EMD-IIT denoising can 

be achieved with a variant called clear iterative 

interval-thresholding (EMD-CIIT). The need for 

such a modification comes from the fact that the 

first IMF, especially when the signal SNR is high, is 

likely to contain some signal portions as well. If this 

is the case, then by randomly altering its sample 

positions, the information signal carried on the first 

IMF will spread out contaminating the rest of the 

signal along its length. In such an unfortunate 

situation, the denoising performance will decline. In 

order to overcome this disadvantage of EMD-IIT it 

is not the first IMF that is altered directly but the 

first IMF after having all the parts of the useful 

information signal that it contains removed. The 

“extraction” of the information signal from the first 

IMF can be realized with any thresholding method, 

either EMD-based or wavelet-based. It is important 

to note that any useful signal resulting from the 

thresholding operation of the first IMF has to be 

summed with the partial reconstruction of the last 1 

IMFs.  

Algorithm 

1. Perform an EMD expansion of the original noisy 

signal x  

2. Perform a thresholding operation to the first IMF 

of ( )x t to obtain a denoised version

(1) (1)( ) ( )h t of h t . 

3. Compute the actual noise signal that existed in
(1) (1) (1) (1)( ), ( ) ( ) ( )nh t h t h t h t   .  

4.Perform a partial reconstruction using the last L-1 

IMFs plus the information signal contained in the 

first IMF,          ( ) (1)

2
( ) ( ) ( ).

L i

p i
x t h t h t


     

5. Randomly alter the sample positions of the noise-   

only part of the first IMF, 
(1) (1)( ) ( ( )).a nh t ALTER h t
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Figure 5. Result of the EMD-based  Denoising with 

Clear Iterative Interval Thresholding method using 

twenty Iterations. 

5. Simulation results and discussion 

 
Figure 6. SNR after denoising with respect to the 

number of shifting iterations

 
Figure 7. Performance evaluation of the piece-

regular signal using EMD-based denoising methods 

 
Figure 8. Performance evaluation of EMD-based 

hard thresholding techniques. 

SNR performance and variance of EMD-Based 

Denoising methods applied on Doppler and 

Piece-Regular signal. Table 1 & 2 
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V Conclusions 
In the present paper, the principles of hard 

and soft wavelet thresholding, including translation 

invariant denoising, were appropriately modified to 

develop denoising methods suited for thresholding 

EMD modes. The novel techniques presented 

exhibit an enhanced performance compared to 

wavelet denoising in the cases where the signal SNR 

is low and/ or the sampling frequency is high. These 

preliminary results suggest further efforts for 

improvement of EMD-based denoising when 

denoising of signals with moderate to high SNR 

would be appropriate. 
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