
G.Sravani,

B. Karunaiah, Prof K V Murali Mohan / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue6, November- December 2012, pp.1391-1395

1391 | P a g e

Implementation Of Led Driver For Commercial Applications

Based On Arm9

1
G.Sravani,

 2
B. Karunaiah,

3
Prof K V Murali Mohan

1M. Tech Student, Holy Mary Institute of Technology & Science, Bogaram (V), Keesara (M), R. R Dt.- 501301.

2Professor, ECE, Holy Mary Institute of Technology & Science, Bogaram (V), Keesara (M), R. R Dt.- 501301
3Professor,HOD of ECE Dept, Holy Mary Institute of Technology & Science, Bogaram (V), Keesara (M), R. R

Dt.- 501301

Abstract –
In Real time development 32-bit CPU’s

which are widely used satisfies high speed

processing, but they need a platform which

makes it to run systems steadily and speedily.

Stability and security plays an important role in

embedded field. Based on the price, architecture

and security Linux is one platform which plays

an important role in embedded applications .The

new version kernel has more benefits which are

useful for embedded applications. Since Linux is

open source we can get it easily and also the

modified features in scheduling makes it more

useful in embedded applications. This paper

mainly concentrates on the boot-loader which is

useful for system startup and loading of the

system software’s which defines the operating

procedures of the target platform before the

operating system kernel is run. Its only task is to

initialize the hardware and software environment

into an appropriate state.In this paper we are

using S3C2440 ARM9 high performance

processor. Early embedded applications are

simple in order to achieve only some specific

operations, such as specialized applications like

industrial control. Since these are simple

applications so there was no need of operating

system. But as the applications complexity

increased and functions became more complex,

and the over all system performance also needed

to be managed, so these simple applications

became insufficient. And, the need to choose an

embedded operating system becomes an

inevitable trend. But Linux was originally

developed as an Operating System for desktop

computers, and the OS to be used in embedded

systems will have some differences. So we need to

transform Linux into Embedded Linux. Since it

is the embedded operating system, we need to use

Cross compiler to CROSS_COMPILE Linux

source code according to the target. Before

compiling we have to configure the source code

according to the target board configuration. On

completion of successful compilation we will get

the Embedded Linux Kernel. Then we need to

transfer the kernel Image to the target board.

In Embedded Linux, the application program

doesn’t have direct access to the devices attached

to the target board. We need to use Device

Drivers. So we will be making one device driver

to control an LED according to our application

program.

Block diagram

Keywords - embedded system; Boot Loader;

Linux 2.6; transplant; LED driver

I. INTRODUCTION
With the Internet's development and post-

PC era, embedded systems have become the focus

of the current IT industry. As embedded system is of

low power consumption, small size, performance,

reliability, industry oriented applications, high and

prominent feature of the current, it has been widely

infiltrated into science, engineering, military

technology, business culture and the arts,
entertainment, as well as people's every aspect of

daily life and so on. We can imagine that some

people may have never had any contact with

computers, but cannot imagine that he never had any

contact with embedded systems. Because embedded

systems are everywhere, from the family's washing

machines, refrigerators, bicycles, cars, to the office

G.Sravani,

B. Karunaiah, Prof K V Murali Mohan / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue6, November- December 2012, pp.1391-1395

1392 | P a g e

of the remote conferencing system, etc., this is part

of embedded products. Currently embedded

technology has become a hot research and

application. Early embedded applications is

relatively simple, generally only in order to achieve

some specific functions to meet the needs of a

specific occasion, such as used in highly specialized
types of industrial control, aircraft and missiles and

other weapons and equipment in, etc. In these

systems, running software is a simple control loop,

so in general do not use the operating system, but as

the application areas of embedded systems has

expanded its functions more complex, so entirely by

the programmer to manage the overall system

capacity is clearly insufficient, And for each

additional one feature is necessary to redesign

system, resulting in a tremendous waste of resources

and duplication of effort. Meanwhile, along with the

development of computer technology and integrated
circuits, hardware provided conditions are getting

better and better, so choose an embedded operating

system has become an inevitable trend. Embedded

systems embedded operating system is to support

the work of the operating system. It is the nature of

knowledge systems and technology with general-

purpose operating system, there is not much

difference, generally used for more complex

embedded system software development [1]. Be

able to effectively manage a complex system

resources to complete the process management,
processor scheduling, memory management, device

management, interrupt handling tasks such as

operating systems; be able to hardware

virtualization, allowing developers to the driver

from the busy port and maintenance freed; able to

provide library functions, drivers, tools and

applications. Embedded operating system is

important to the operation of an embedded system,

environment and development platform, whether it

is efficient, stable, secure and so will have a direct

bearing on the success or failure of embedded

systems has become an embedded system design
and development priorities. But Linux was

originally developed for desktop machines, which is

used in embedded systems have some differences,

such as memory capacity and limited compared to

desktop computers, so how to transform Linux into

a small capacity, high stability and easy the

development of embedded operating system

becomes a critical issue. This also means that the

embedded Linux operating system, used in digital

products and industrial control fields of a lot of

work needs to be done

II. INTRODUCTION TO S3C2440
 Embedded operating system and drivers

transplant, need to be transplanted to the target

hardware platform is more in-depth understanding.

This optional use of Samsung's embedded

development platform based on ARM9 core

S3C2440 microprocessors, is designed for PDA,

Internet equipment, and handheld devices such as

the development of high-performance, low-power

microprocessor. This chapter analyzes the main

characteristics of S3C2440 microprocessor, the

system's overall structure and characteristics, and a

brief introduction of the system of storage space
allocation.

Introduction 2.1.1 S3C2440 Processor

Samsung’s S3C2440A is designed to

provide hand-held devices and general applications

with low-power, and high-performance

microcontroller solution in small die size. To reduce

total system cost, the S3C2440A includes the

following components. The S3C2440A is developed

with ARM920T core, 0.13um CMOS standard cells

and a memory complier. Its low power, simple,

elegant and fully static design is particularly suitable
for cost- and power-sensitive applications. It adopts

a new bus architecture known as Advanced Micro

controller Bus Architecture (AMBA).The

S3C2440A offers outstanding features with its CPU

core, a 16/32-bit ARM920T RISC processor

designed by Advanced RISC Machines, Ltd.

The ARM920T implements MMU, AMBA

BUS, and Harvard cache architecture with separate

16KB instruction and 16KB data caches, each with

an 8-word line length. By providing a complete set
of common system peripherals, the S3C2440A

minimizes overall system costs and eliminates the

need to configure additional components. The

integrated on-chip functions that are described in

this document include:

 Around 1.2V internal, 1.8V/2.5V/3.3V

memory, 3.3V external I/O microprocessor

with 16KB I-Cache/16KB DCache/

 MMU

 External memory controller (SDRAM

Control and Chip Select logic)

 LCD controller (up to 4K color STN and
256K color TFT) with LCD-dedicated

DMA

 4-ch DMA controllers with external

request pins

 3-ch UART’s (IrDA1.0, 64-Byte Tx FIFO,

and 64-Byte Rx FIFO)

 2-ch SPl’s

 IIC bus interface (multi-master support)

 IIS Audio CODEC interface

 AC’97 CODEC interface

 SD Host interface version 1.0 & MMC

Protocol version 2.11 compatible

 2-ch USB Host controller / 1-ch USB

Device controller (ver 1.1)

 4-ch PWM timers / 1-ch Internal timer /

Watch Dog Timer

G.Sravani,

B. Karunaiah, Prof K V Murali Mohan / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue6, November- December 2012, pp.1391-1395

1393 | P a g e

 8-ch 10-bit ADC and Touch screen

interface

 RTC with calendar function

 Camera interface (Max. 4096 x 4096 pixels

input support. 2048 x 2048 pixel input

support for scaling)

 130 General Purpose I/O ports / 24-ch
external interrupt source

 Power control: Normal, Slow, Idle and

Sleep mode

 On-chip clock generator with PLL

III. EMBEDDED SYSTEM BOOT

PROCESS AND BOOTLOADER

TRANSPLANT
This chapter is rooted in the embedded

development board of the Boot Loader systematic

theoretical explanation.

Boot loader to run after the system power-

on the first paragraph of the code. PC, the boot

loader is located in the hard disk from the BIOS and

the MBR in the OS Boot Loader component. BIOS

Upon completion of the hardware detection and
resource allocation will be the hard disk MBR in the

Boot Loader to read the system RAM, and then

jump to kernel entry point to the operation, which

started operating. In embedded systems, generally

do not like the BIOS firmware like that, so start the

task of loading the entire system is entirely

completed by the Boot Loader.

Boot Loader is used to complete the system

startup and system software loads the operating

procedures of the target platform stored in the

nonvolatile storage medium, before the operating
system kernel to run, its task is to initialize the

hardware device through the establishment of

memory space maps, the system's hardware and

software environment into an appropriate state, for

the final call to the operating system kernel to

prepare the right environment, then, Boot Loader

will have served its purpose and its life cycle also

stop there. Can be seen, it is the underlying

hardware and the upper application software, a

middleware between the software, the completion of

processors and peripheral circuits to be running the
initialization work; can shield the underlying

hardware differences, so that the upper application

software easier to write and transplantation ; not

only have similar PC-BIOS function, but also has

some debugging features.

Most of Boot Loader contains two different

modes of operation.

Figure 1. Typical solid-state storage device structure
of spatial distribution

(1) Boot loader (Boot Loading) model:

namely, autonomy (Autonomous) mode. Boot

Loader from the target machine to solid-state

storage devices will be loaded into RAM to run the

operating system, the entire process and no user

intervention. The Boot Loader mode is the normal

operating mode, so when the embedded product

releases, Boot Loader obviously have to work in that

mode.
(2) Download (Down Loading) mode: Boot

Loader on the target machine through the serial port

connection or network connection communication

means such as downloading files from the host.

Downloaded file from the host is usually the

preferred Boot Loader has been saved to the target

machine's RAM, and then Boot Loader was written

to FLASH on the target machine class solid-state

storage device. This mode is usually the first to

install the kernel with the ROOT FS was used; In

addition, the future system update will also use this

mode. Working in this mode, the Boot Loader to its
end users usually provides a simple command

interface[6].

After the system power-on or reset, CPU is

usually from a pre-arranged by the manufacturer's

address on the instruction fetch. CPU-based

embedded systems usually have built a solid-state

storage devices (such as: ROM, E2PROM, or

FLASH, etc.) are mapped to this prearranged

address. Thus, in the system after power, CPU will

be the preferred implementation of the Boot Loader

program. Shown in Figure 1 shall be also equipped
with a Boot Loader, the kernel boot parameters, the

kernel image and ROOT FS image of a typical

solid-state storage device space allocation chart[7].

G.Sravani,

B. Karunaiah, Prof K V Murali Mohan / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue6, November- December 2012, pp.1391-1395

1394 | P a g e

IV. SOFTWARE PLATFORM
Due to the tireless efforts of a large number

of software elite, Linux in embedded systems

applications more and more widely. 2.6 kernel in a

large number of new features to make them more
suitable for embedded systems. It is based on tried

and innovative considerations, the system uses a

2.6.11 kernel, as well as YAFFS file system. The

system's hardware circuit is based on SMDK2440,

and its related knowledge points, have been the

other detail. The following introduces the software

environment migration tasks.

(1) Access to Linux kernel source file and its

corresponding patch Linux kernel's official

website is www.kemel.org. Any change on

the kernel to update this site has been subject

to.
(2) To obtain the source code YAFFS

http://husaberptoby-churchill.com/h can

obtain the necessary source code.

(3) Start transplantation Extract the source files,

and marked with the corresponding patch.

We assume that all documents are saved in

the

/home/yourmame directory

#cd /home/yourmame

#tar-zxvf linux-2.6.11.12.tar.gz

#cp -a ./linux-2.6.11.12 /usr/src
#cp patch-2.6.11.12.tar.gz /usr/src/

#mkdir /usr/local/arm/

#tar -jxvf arm-linux-gcc-3A1.tar. 6z2

#cp ./3.4.1 /usr/local/ann/

#tar-zxvf yaffs.tar.gz

#cp -a ./yaffs fusr/src/linux-2.6.11.12/fslyaffs

#cd /usr/sre/linux-2.6.11.12/

#zcat../patch-2.6.11.12.tar.gz!patch -pl -f

V. LED MATRIX DRIVER DEVELOPMENT

A. OverviewLinux Driver

After determining the basic functions of the

kernel, the remaining work is to develop the user's

specific device driver. With the support of device

driver, hardware devices can work properly. The

driver actually controls the I / O devices, which

contains a series of functions that are used to control

the peripheral. Linux will be the right function of

the operation of equipment in the form of a unified
interface to the file expression. Therefore, in Linux,

all of the devices are files; the file can be achieved

through the operation of the device control. Such as

the application requires the use of equipment, with

the system call open ()

opens a device file, and build up the target device

connection. For the implementation of the

application process is concerned, to establish a

connection on the performance of an already open

file. We can use after VFS Virtual File System calls

related to the device handler in. A typical driver has

the following features:

(1) By a series of functions and data

structure, it has to communicate with hardware

devices ,at the same time it has to follow the Unified

interface provided by operating system kernel.

(2) Self-contained components that can be

dynamically added to the operating system kernel or

removed by the kernel.
(3) It is to manage the user program and

data flow between peripherals and control flow.

(4) Belongs to the kernel part customized

through the device file to deal with the user

program.

B. LED Driver Development

(1) Character device driver based on the

right LED control. Showed that some use is a 5X

light-emitting diode dot-matrix, we are frequently

asked for issemination of information, display of

Chinese characters dot matrix LED display usually
has a number of blocks of LED dot matrix display

modules, 8X8 dot matrix display modules, each 64

independent of the light-emitting diodes, in order to

reduce the pin and easy to package a variety of LED

matrix display module have adopted the form of an

array row cloth, that the ranks of the intersection of

the line wherever there display LED. Thus, LED dot

matrix display module of the display driver can only

use dynamic driving method, each line can only lit

LED (of the form yang dot matrix LED display

module), or an LED (total Yin Type LED dot matrix
display module).

(2) I/O Interface

In this development board, the entire LED display

module type as an I/O for control. DATA [0 ... 7],

DATA [8 ... 12] system data lines corresponding to

the low 16-bit, LED_LOCK signal from the system

bus write signal and address signals derived by the

combination of simple logic in the CPLD board to

complete , control of the display module's I / O

address 0x20000000.

Figu
re 3

–

LE

D

Mo

dule

G.Sravani,

B. Karunaiah, Prof K V Murali Mohan / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue6, November- December 2012, pp.1391-1395

1395 | P a g e

VI RESULTS

VI. CONCLUSIONS

VII CONCLUSION
Embedded technology development is

inseparable with operating systems, computer

architecture, VLSI and other basic subjects, at the

same time, embedded systems development provide

a broader development platform for

communications, navigation and other applied
sciences.

The design selected GX-

ARM9experimental system of Beijing's innovative

company as the hardware platform, through the

initial design, post-commissioning, transplant the

embedded system Boot Loader based on

S3C2440and the operating system Linux 2.6 kernel,

as well as LED dot-matrix driver development.

As the new 2.6 kernel has begun to make

new improvements in the new driver programme,

we can used new functions, in order to achieve the
flexibility of the module.

REFERENCES
[1] G. Eason, B. Noble, and I. N. Sneddon,

“On certain integrals of Lipschitz-

Hankel type involving products of

Bessel functions,” Phil. Trans. Roy. Soc.
London, vol. A247, pp. 529–551,

April 1955. (references)

 [2] Song, Yanzhao. Embedded operating

system resentation and the

principle of selection. .2005,23

Industrial control computer (5): 41- 43

 [3] Zhong Xichang. Embedded operating

system in China's development status

and pre-A Information Technology and

Standardization .2006,7 (6): 6-10.

 [4] Yang Rong, Wang Lin Dou, information
appliances based on embedded Linux

operating system, analysis and

application. East- 101 [5] Jiao Quan,

Huang Rural Health, Bao-jun. U-Boot

.Porting the S3C2410. Electronic design

applications, 2006,3:126-128

[6] Zhang Jin, JIANG Wei. U-Boot boot

process analysis And transplant step.

Electric Power Automation Equipment,

2005,25 (7): 68-71
[7] Bill Weinberg. Embedded Linux Is A Hit

In Wireless Entertainment[J] Wireless

System Design,]an 2003.29-32.

G.Sravani Completed

B.Tech in Electronics and

communication Engineering from

St.Ann’s College of Engineering

and Technology,Chirala,JNTU

Kakinada and pursuing

M.Tech in
Embedded systems from Holy

Mary institute of Technology

and science, JNTU Hyderabad.

My interested areas are

Embedded systems

Karaunaiah B is pursuing PhD

from Andhra University,

Visakhapatnam, Andhra

Pradesh in the field of

Antennas.Completed M. Tech in
ECE with specialization

Electronic Instrumentation

from Andhra University,

Visakhapatnam in 2003.

B. Tech in Electronics and

Communication Engineering from

Bapatla Engineering college,

Nagarjuna University, Guntur,

Andhra Pradesh in 1998.Currently

working as Professor in the ECE

Department at Holy Mary Institute
of Technology and Science

(College of Engineering),

Hyderabad. Areas of interest are

optical communication,

microwave communication, radar

engineering, . antenna & wave

propagation, fundamentals of

electronic devices, basic

electronics, EM field theory,

satellite and digital

communication.

