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Fig. 1(a) Idealized course of boundary stream lines  

and (b) pressure profile for a sudden expansion. 
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ABSTRACT 

Pressure drop through sudden 

expansions are numerically investigated for two-

phase flow of oil/water emulsions. Two-phase 

computational fluid dynamics (CFD) 

calculations, using Eulerian–Eulerian model are 

employed to calculate the velocity profiles and 

pressure drop across sudden expansion. Axial 

pressure drops have been determined by 

extrapolating the computed axial pressure 

profiles in the regions of fully developed pipe 

flow upstream and downstream of the pipe 

expansion, to the transitional cross section. The 

oil concentration is varied over a wide range of 

0-97.3 % by volume. From the pressure-loss and 

velocity data, the loss coefficients are obtained. 

The loss coefficients for the emulsions are found 

to be independent of the concentration and type 

of emulsions. The numerical results are 

validated against experimental data from the 

literature and are found to be in good 

agreement.  

Keywords-  Two-phase flow, pressure drop, loss 

coefficient, velocity head, concentration, 

emulsion. 

 

I.INTRODUCTION 

Industrial piping systems are often 

charged with two-phase flows. In contrast to the 

well-known axial pressure profiles in the 

transitional region between the flow separation and 

reattachment for single-phase liquid flow, the 

pressure profiles and the shape of streamlines in 

two-phase flow through sudden change in flow area 

are still unknown. Due to inherent complexity of 

two-phase flows through such sections, from a 

physical as well as numerical point of view, 
generally applicable computational fluid dynamics 

(CFD) codes are non-existent. Two-phase flow of 

oil/water emulsions find application in a number of 

industries, such as petroleum, pharmaceutical, 

agriculture and food industries etc. In many 

applications, pumping of emulsions through pipes 

and pipe fittings is required. Since a detailed 

physical description of the flow mechanism is still 

not possible for two-phase flow, a considerable 

effort is generally needed to calculate the pressure 

drop along the flow path. Several papers have been  

 

published on flow of two-phase gas/liquid and 

liquid/liquid mixtures through pipe fittings. Hwang 

& Pal1 studied experimentally the flow of oil/water 

emulsions through sudden expansions and 
contractions and found that the loss coefficient for 

emulsions is independent of the concentration and 

type of emulsions. Wadle2 carried out a theoretical 

and experimental study on the pressure recovery in 

abrupt expansions. He proposed a formula for the 

pressure recovery based on the superficial 

velocities of the two phases and verified its 

predictive accuracy with measured experimental 

steam-water and air-water data.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Tapucu et al.3 observed that emulsions can 
be treated as pseudo-homogeneous fluids with 

suitably averaged properties as the dispersed 

droplets of emulsions are small and are well 

dispersed. Consequently, the pressure loss for 

emulsion flow in expansion and contraction should 

be determinable in the same way as for single-

phase fluid flow. Acrivos and Schrader4 observed 

that significant velocity slip occurs at both sides of 

the enlargement for two phase flow mixtures. Attou 

et al.5 developed a semi-analytical model for two-

phase pressure drop in sudden enlargements, based 
on the solution of one-dimensional conservation 

equations downstream of the enlargement. They 

compared the predictions of three models 

(homogeneous flow; frozen flow; and bubbly flow) 

with experimental data, with the latter model 

providing the best agreement with data. Abdelall et 

al.6 studied the pressure drop caused by abrupt flow 

area expansion and contraction in small channels 
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and developed an empirical correlation for two-

phase flow pressure drop through sudden area 

contraction. They indicated a significant velocity 

slip at the vicinity of the change of flow area. 

Salcudean et al.7 studied the effect of various flow 

obstructions on pressure drops in horizontal two-

phase flow of air-water mixtures and derived 
pressure loss coefficients and two-phase 

multipliers.  

In the present study, an attempt has been 

made to simulate the flow through sudden 

expansion using two phase flow models in an 

Eulerian scheme. Fig. 1 shows a cross section of 

the test section. At this section there is a sudden, 

sharp edged expansion. Fig. 1(a) shows the 

schematic diagram of the boundary streamlines for 

the flow through a sudden expansion, while fig. 

1(b) depicts the graph of the static pressure along 

the flow axis for a steady state flow of an 
incompressible fluid across an expansion. 

 

II.Mathematical  Formulations 
The two-fluid or Euler - Euler technique is 

considered for the present formulation. The 

different phases are treated mathematically as 

interpenetrating continua, with each computational 

cell of the domain containing respective fractions 

of the continuous and dispersed phases. We have 
adopted the following assumptions in our study 

which are very realistic for the present situation. 

1. The fluids in both phases are Newtonian, 

viscous and incompressible.  

2. The physical properties remain constant. 

3. No mass transfer between the two phases. 

4. The pressure is assumed to be common to 

both the phases. 

5. The realizable k- turbulent model is applied 
to describe the behavior of each phase. 

6. The surface tension forces are neglected, 

therefore, the pressure of both phases are 

equal at any cross section. 
7. The flow is assumed to be isothermal, so the 

energy equations are not needed.  

With all the above assumptions the governing 

equations for phase q can be written as (Drew8): 

 

Continuity equation: 

    0q q q q qv
t
   


 




   (1) 

The volume fractions are assumed to be continuous 

functions of space and time and their sum is equal 

to one. 

1q p        (2) 

Momentum equation: 

 ( ) ( )q q q q q q q q q q q qv v v p g M
t
       


      



   

                                                        (3) 

q , is the qth phase stress tensor 

q =  eff T

q q q qv v   
 

  (4) 

,

eff

q q t q       (5) 

Where qM  is the interfacial momentum transfer 

term, which is given by: 
d VM L

q q q qM M M M      (6) 

Where the individual terms on the right hand side 

of Eq. (6) are, respectively, the drag force, virtual 

mass force and lift force. The drag force is 

expressed as, 

 
3

4

d

q p q D p q p q

p

M C v v v v
d

   
   

  (7) 

The drag coefficient CD depends on the particle 

Reynolds number as given below (Wallis9; Ishii 

and Zuber10): 

CD  = 24(1+0.15Re0.687)/Re,    Re  1000 
      = 0.44,      Re > 1000

                                                           (8) 

Relative Reynolds number for primary phase q and 

secondary phase p is given by 

Re = 
q q p p

q

v v d




 

   (9) 

The second term in Eq. (6) represents the virtual 

mass force, which can be described by the 
following expression (Drew8 ): 

q q p pVM VM

q p VM p q

d v d v
M M C

dt dt
 

 
    

 

 

  (10) 

where VMC  is the virtual mass coefficient, which 

for a spherical particle is equal to 0.5.  

The third term in Eq. (6) is the lift force, and is 

given by (Drew and Lahey11) 

   L L

q p L p q p q qM M C v v v      
  

       (11) 

where LC  is the lift force coefficient, which for 

shear flow around a spherical droplet is equal to 0.5 

2.1 Turbulence modeling  

Here we considered the realizable per-phase k   

turbulence model. 

Transport Equations for k (FLUENT 6.2 

Manual12): 
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                                                           (12) 

Transport Equations for  : 
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Where, 
qU


 is the phase-weighted velocity. Here, 

 
0.5

1  max 0.43, ,  ,  2
5

ij ij

k
C S S S S




 

 
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The terms pqC  and qpC  can be approximated as 

2, 2
1

pq

pq qp

pq

C C




 
   

  

                 (14) 

Where pq  is defined as 

,

,

t pq

pq

F pq





                  (15) 

Where, the Langrangian integral time scale ( ,t pq ), 

is defined as 

 
,

,
21

t q

t pq

C








                 (16) 

Where, 
,

,

pq t q

t q

v

L


 



                 (17) 

Where ,t q  is a characteristic time of the energetic 

turbulent eddies and is defined as: 

,

3

2

q

t q

q

k
C


     (18)                              

And 
21.8 1.35cosC                   (19)                  

Where, θ is the angle between the mean particle 

velocity and the mean relative velocity. The 

characteristic particle relaxation time connected 

with inertial effects acting on a dispersed phase p is 

defined as 

1

,

p

F pq p q pq V

q

K C


  



 

   
 

  (20) 

Where, 0.5VC    

The eddy viscosity model is used to calculate 

averaged fluctuating quantities. The Reynolds 

stress tensor for continuous phase q is given as: 

   , ,

2

3

T
q q q q t q q q t q q qk U I U U            

  

 

(21) 

The turbulent viscosity ,t q  is written in terms of 

the turbulent kinetic energy of phase q: 
2

,

q

t q q

q

k
C 


   (22) 

The production of turbulent kinetic energy, ,k qG  is 

computed from 

 , , :T

k q t q q q qG v v v   
  

  (23) 

Unlike standard and RNG k   models, C  is 

not a constant here. It is computed from: 

0

1

s

C
kU

A A










                (24) 

Where  * ij ij ij ijU S S       (25) 

And  2ij ij ijk k       

     

          ij ij ijk k      

      

Where, ij  is the mean rate of rotation tensor 

viewed in a rotating reference frame with the 

angular velocity k  .The constants A0   and   As are 

given by 

A0= 4.04, As= 6 cos          

Where   11
cos 6 ,

3
W   

3

ij jk kiS S S
W

S
 , 

ij ijS S S , 
1

2

j i
ij

i j

u u
S

x x

  
  

   

 

The constants used in the model are the following:  

C1 = 1.44; C2 = 1.9; k = 1.0;  = 1.2. 

2.2 Boundary conditions 
Velocity inlet boundary condition is 

applied at the inlet. A no-slip and no-penetrating 

boundary condition is imposed on the wall of the 

pipe. At the outlet, the boundary condition is 

assigned as outflow, which implies diffusion flux 

for the entire variables in exit direction are zero. 

Symmetry boundary condition is considered at the 

axis, which implies normal gradients of all flow 

variables are zero and radial velocity is zero at the 

axis. 
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III. NUMERICAL SOLUTION 

PROCEDURE 
The objective of the present work is to 

simulate the flow through sudden expansion in 

pipes numerically by using two phase flow models 

in an Eulerian scheme. The flow field is assumed to 

be axisymmetric and solved in two dimensions. 

The two-dimensional equations of mass, 

momentum, volume fraction and turbulent 

quantities along with the boundary conditions have 

been integrated over a control volume and the 

subsequent equations have been discretized over 

the control volume using a finite volume technique 

to yield algebraic equations which are solved in an 
iterative manner for each time step. The finite 

difference algebraic equations for the conservation 

equations are solved using Fluent 6.2 double 

precision solver with an implicit scheme for all 

variables with a final time step of 0.001 for quick 

convergence. The discretization form for all the 

convective variables are taken to be first order up 

winding initially for better convergence. Slowly as 

time progressed the discretization forms are 

switched over to second order up winding and then 

slowly towards the QUICK scheme for better 

accuracy. The Phase-Coupled SIMPLE algorithm 
is used for the pressure-velocity coupling. The 

velocities are solved coupled by the phases, but in a 

segregated fashion. The block algebraic multigrid 

scheme is used to solve a vector equation formed 

by the velocity components of all phases 

simultaneously. Pressure and velocities are then 

corrected so as to satisfy the continuity constraint. 

The realizable per-phase k-ε model has been used 

as closure model for turbulent flow. Fine grids are 

used near the wall as well as near the expansion 

section to capture more details of velocity and 
volume fraction changes. 

IV. RESULTS AND DISCUSSIONS 
The sudden expansion considered in this 

work is made from two straight pipes having inner 

diameters of 2.037cm and 4.124cm. Axial static 
pressure profiles are computed both upstream and 

downstream from the expansion plane. By 

extrapolating these pressure profiles to the 

expansion plane the pressure drop is calculated. 

The pressure differentials are computed with 

respect to the reference pressure at 25D1 upstream 

position. The oil used in the present computational 

work is Bayol-35 (Esso Petroleum, Canada), which 

is a refined white mineral oil with a density of 780 

kg/m3 and a viscosity of 0.00272 Pa-s at 25°C. 

Density and viscosity of water are taken as 998.2 

kg/m3 and 0.001003 Pa-s, respectively. The volume 
fraction of oil is taken as 0, 0.2144, 0.3886, 0.6035, 

0.6457, 0.6950, 0.8042, and 0.9728. The emulsions 

are considered as oil-in-water (O/W) type (water is 

taken as the continuous phase and oil as dispersed 

phase) up to an oil concentration of 62 % by 

volume and water-in-oil (W/O) type (oil is taken as 

the continuous phase and water as dispersed phase) 

beyond 64 % by volume (Hwang and Pal1).  

The streamlines and velocity vectors for α = 0.2144 

and v = 6.8 m/s are depicted in figs. 4 and 5 

respectively. The streamlines take a typical 

diverging pattern and a zone of recirculating flow 
with turbulent eddies near the wall of the larger 

pipe are created in the corner. This is due to the fact 

that the fluid particles near the wall due to their low 

kinetic energy can not overcome the adverse 

pressure hill in the direction of flow and hence 

follow up the reverse path under the favourable 

pressure gradient( since upstream pressure is lower 

than the downstream pressure as depicted in figs. 2 

and 3).  

Figs. 6 and 7 show plot of 
eP   versus velocity 

head  2 2V for various differently concentrated 

oil-in-water and water-in-oil emulsions, 

respectively. It can be seen that 
eP   versus 

2 2V data exhibit a linear relationship. 
2K  is the 

slope of 
eP   versus 2 2V  plots. Thus, the loss 

coefficient for expansion eK  which is equal to 

 1 2K K is calculated for various differently 

concentrated oil-in-water and water-in-oil 

emulsions.  

Here,  
4

1 1 21K D D  
 

. The 
eK  values for 

different emulsions are plotted as a function of oil 
concentration in Fig. 8. Clearly, the expansion loss 

coefficient is found to be independent of oil 

concentration and has an average value of 0.432. 
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Fig. 2. Pressure profiles for oil-in-water emulsions 

flowing through a sudden expansion 

Fig. 3. Pressure profiles for water-in-oil 

emulsions flowing through a sudden expansion 

Fig. 4. Stream lines for  = 0.2144 and v = 6.8 m/s 

Fig. 5.Velocity vectors for  = 0.2144 and v = 6.8 m/s 
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Computed as well as experimental pressure profiles 

for oil-in-water and water-in-oil emulsions at 

various fluid velocities are shown in figs. 2 and 3 

respectively. The matching between the 

computation and that of the experimental 

observation for the pressure drop seems to be pretty 

reasonable in all these cases. It can be observed that 
the frictional loss in the inlet section causes the 

decline in pressure. As the fluid reaches the 

transitional section, the fluid is decelerated in the 

enlarged pipe area and there occurs a sudden rise in 

pressure. The pressure change at the expansion 

plane  eP  is obtained by extrapolating the 

computed pressure profiles upstream and 

downstream of the pipe expansion (in the region of 

fully developed pipe flow) to the expansion plane.  

The computed eK  values for emulsions are 

compared with the values obtained from the 

following equations:  

(i) Borda- Camot equation (Perry et al.14): 

 
2

1eK                 (26) 

 (ii) Equation of Wadle2: 

 2 1eK                 (27) 

Where   is the ratio of the cross sectional area of 

small pipe to that of large pipe. The   value for 

the expansion in the present work is 0.244. So the 

value of eK  obtained from Eqs. 26 and 27 are 

0.5715 and 0.3689 respectively. The experimental 

value of eK  obtained by Hwang and Pal (1997) is 

0.47. As shown in Fig. 8, the computed eK  values 

for all emulsions lie in between the two values 

obtained from Eqs. (26) and (27). 
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Fig. 6. ∆Pe/ρ versus V2/2 for oil-in-water 

emulsions flowing through a sudden expansion 
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V. CONCLUSIONS 
The flow through sudden expansion has 

been numerically investigated with oil-water 

emulsions by using two-phase flow model in an 

Eulerian scheme in this study. The major 

observations made relating to the pressure drop in 

the process of flow through sudden expansion can 

be summarized as follows:  

1. The expansion loss coefficient is found to 
be independent of the velocity and hence 

Reynolds number.  

2. The loss coefficient is not significantly 

influenced by the type and concentration of 

oil-water emulsions flowing through sudden 

expansion.  

3. Effect of viscosity is negligible on the 

pressure drop through sudden expansion.  
4. The computed expansion loss coefficient is 

found to lie in between the two values 

obtained from Borda- Carnot equation 

(Perry et al.14) and equation of Wadle2. It is 

in relatively close agreement with the 

predictions of Wadle2. 

5. The pressure drop increases with higher 

inlet velocity and hence with higher mass 

flow rate. 

6. The satisfactory agreement between the 

numerical and experimental results indicates 

that the model may be used as a simple, 
efficient tool for engineering analysis of 

two-phase flow through sudden flow area 

expansions and contractions. 
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Fig.7. ∆Pe/ρ versus V2/2 data for water-in-oil 

emulsions flowing through a sudden expansion 

Fig.8. Expansion loss coefficient as a 

function of oil concentration 
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