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Abstract

The aim of this paper is to study the L-
convergence of modified cosine sums [4] . The
results obtained generalize the results of [4] and
deduce a well known result [6] as a corollary.

1. Introduction. Consider the cosine series

a 00
(1.1) -0 2., coskx.
2 Kk
Let S,(x) denote the partial sum of (1.1) and

f(X) = limy—00 Sn(X) .

The problem of L' — convergence, via Fourier
coefficients, consists of finding the properties of
Fourier coefficients such that the necessary and
sufficient condition for

I Sn(x) — f(x) [ = o(2),

form a, log n = o(1), n—>00 , where
| . || denotes the L*-norm.

n—»00, is given in the

Convex sequence. A sequence {ay} is said to be
convex if

A%a >0 for every k where A%a, = A ac— A ar
and A ay = ax — agey.

Quasi- Convex sequence A sequence {as} is said
to be quasi-convex if

S K | Aa| <o,
k=1

The class of all such sequences is an extension of
the class of convex null sequences. The class of
quasi-convex sequences is a subclass of BV class

[ee]

(D |Aay| < 00), the class of all null sequences of
k=1

bounded variation.
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The class S[5.cf .1]. A null sequence {ay} belongs
to the class S if there exists a sequence {Ay} such
that

12 A0, koo,

(L3) iAk <00,
k=0
(1.4) | Aa | < A forall k.

The class S is the extension of the class of quasi-
convex sequences. Since a quasi-convex null
sequence satisfies conditions of the class S, if we

o0
choose A,= | A%ay|.

m=n

Concerning the convergence of (1.1) in L-metric,
the following results are known.

Theorem A [1]. If {ac} is a null convex sequence,
then the cosine series (1.1) is the Fourier series of
its sum f, and

| Sn(}) — f(x) | = o(1), n—>0
if and only if

aplogn= 0(1), n—>00.

Theorem B [1]. Ifax= o(1), k —> o0, and the

o0
series Y k | A% | < 00. then the cosine series

k=1
(1.2) is the Fourier series of its sum f, and
[ Su() = ) || = o(1), n—o,
if and only if

a,logn=o0(1), n—>»o0

Teljakovskii generalized Theorem B by establishing
the following Theorem :

Theorem CJ[6]. Let {a} belong to the class S.
Then the cosine series (1.1) is the Fourier series of
its sum fand

| Sn(}) — f(x) [ = 0(1), n—>00
if and only if

aplogn = o(1), n—>»00 .

Teljakovskii, thus showed that the class S is also a
class of L'-convergence which in turn led to
numerous, more general results.
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Kumari and Ram [4] introduced a new modified

cosine sum
fo(x) =
a n n a j
2y Y A k cos kx
2 k1 jk j
and proved

Theorem D. Let (1.1) belong to the class S.
If limp—o |ans1|logn =0, then
| () = fa(x) || = 0(1), n—>00 .

2. Lemmas

The following lemmas are required for the
proofs of our results.

Lemma 1.[2]. If|c| <1, then

T

[ | ZeD(x)
0 k=0

where C is a positive constant.

dx < C (n+1) ,

Lemma 2[3]. Let D,(X), Dn(x) and K,(X) denote
Dirichlet, conjugate Dirichlet and Fejer kernels
respectively, then

Ko(x) =Dp(x) = (1/(n+1)) D'(x)

3. Results .We prove the following theorem :

Theorem . Let {ac} belong totheclass S. Then
| f(x) — fo(X) || = 0(1), n —>00 .

Corllary . If {ac} belongs to the class S, then

I Sa(X) = f(x) [| = 0, n —0
if and only if

a, logn = o(1), n—00,

The theorem generalizes Theorem D and corollary
is Theorem C of Teljakovskii.

Proof of Theorem . We have

3.1) fu(x) =

-0
2 k1 j=k

n a a
:—O 3 keoskx | —% — —mL
2 ka1 k n+1
a n
= ?0+ > acos kx
k=1
a n
— LS Kcos kx
n+1«a
a n
= ?O + . @ cos kx
k=1
n+1 ~
— 3D (X)
n+1
a =
=8,00 — "= D'o(¥).

Using Abel transformation and lemma 2,

n-1
0= > Aa,D,(x)+a,D,(x)

k=0
n+l v
— - DW(¥
+1
n-1
=Y Aa,D, (x) +a,D, (¥)
k=0
n+lD (X) + an+lKn (X)

n-1
= ZAa‘k Dk (X) + an+lKn (X)
k=0

So,
f(x) - fa(%)
= z Aa‘k Dk (X) - an+l|<n (X)

k=n+1

Abel transformation with lemmal yield,
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ﬁf(x)— £, (0] dx

ak D, (x)

dx +J‘|an+lKn (X)| dx

AkﬂD (X)| dx

+|an+1| _[ Kn (X)

Z JD(X)

k=n J:O J

dx+n |an +1|

<C i(k +DAA, +nla,,|

k=n+1

since JKH(X) =n, {aJ is null sequence and

=4

under the assumed hypothesis

3 (K +1)AA,

k=n+1
converges, the right hand side tends to zero as n—>»

00 and this gives

1Moo j | £ (x) — £, (x)] dx=0.
0
This completes the proof of our theorem.
Proof of Corollary . We have
T

[ 1100 — S000) | dx =
0

[ f(x) — fa(X) + () — Sa(x) | dx

o +—3

| f(x) — fa(x) [dx

IA
o +—3

+ [ 16,00 — Sa(¥) dx
0

a

<[ 18500 —Fa) [dx+ [ Janss D]l
0

o

T
+ [ JanaKa(x) dx
—T

and

T

[ 1 am Do) dx
0

a

<[ 1H00=S0) [dx + | | anaKa(x) | dx

—-T

o

< [ 10 =Su) [dx + [ | anaKa(x) [dx .
0

T

T
Since _f | Dn(x) |dx behave like a,.;log n for large

-1
values of n and lim,—seo ]i| f(x)-f, (X)| dx=0 by
our theorem, the corollaryofollows.
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