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Abstract 
In this paper, we consider the solution of 

first and second order Linear integro-differential 

by the use of trial solution formulated as 

Chebyshev form of Fourier cosine series. The 

behaviour of solution for different degrees (N) of 

the trial solution is carefully studied and 

illustrative examples are included to demonstrate 

the validity and applicability of the techniques. 
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1 INTRODUCTION 
The profound use of first-kind Chebyshev 

polynomials especially in approximation theory has 

been on a vast increase since its discovery. In recent 

years, it enjoys major application in formulation of 

basis function as well as perturbation tools. 

This in essence is due to the pivotal role of minimax 

approximation of function by polynomials which 

these polynomials efficiently play in the field of 
approximation (see ref. [2] and [11]). 

On a general note, orthogonal functions 

and polynomials have received considerable 

attention especially in the solution of differential 

and integral  problems, where the main 

characteristics of the technique is to reduce these 

problems to those of solving a system of algebraic 

equations, thus greatly simplifying the problem. 

 

The aim of this work however, is to apply 

the first kind of this orthogonal polynomial in the 
solution of integro-differential equation of the form: 

     

P y″ (x) + Q y′ (x) + R y(x) +                       K(x, t) y(t)d t = f(x)  ∫ג 

(1) 

together with the boundary conditions: 

 

y(a) + y′ (a) = A 

y(b) + y′ (b) = B 

 

For a given interval, (1) has a unique solution y(x) : 

[a, b] → R which is continuously differentiable(see 

[2], [5]). 
To solve the problem of this sort, [5] 

applied collocation method with collocation points 

chosen as prescribed in [3], while [6] applied 

Galerkin weighted residual method. 

 

 

In order to enhance produced results, a number of 

authors have equally carried out a perturbed version 

of the above method [9, 11], while others applied 

methods like (see [1], [8], and [10]). Quite a number 

of these methods go with complex derivations [2]. 
On the other hand, many researchers have 

successfully constructed trial solution with 

Chebyshev polynomial for the solution of 

differential equations, for instance Fox and Parker 

[7] applied it for the solution of second order IVP 

while others applied it to higher order differential 

equations. In all of these, it is noticed that solution 

with the use of high degree approximating 

polynomials. 

In a bid to further enhance the solution of 

equation (1) with less complexity, we employ in this 
work a derived trial solution formulated with 

Chebyshev basis function. The application of this 

polynomial is therefore to utilize its error 

minimizing capability in enhancing the solution of 

the considered problem in the interval [a, b] within 

which the used Chebyshev polynomial are shifted 

from the natural interval [-1, 1]. 

 

2 DERIVATION OF TRIAL SOLUTION 

USING CHEBYSHEV POLYNOMIALS 
The word “trial solution” here refers to the 

specific form which the solution (1) is to take. From 

Fourier series, it follows that: 

 

PN (x) = 1 a0 + ∑ (ak coskx + bk sinkx),             

        2                                            (2) 

    

With the Fourier coefficients, defined by; 

 
 

is the least square approximation to f(x), with unit 

weight function in  

–π ≤ x ≤ π. 

 

From the work of Fox and Parker [7], it is 

established that the cosine series; 

 

                        

                                                                                    

a 

b 

∞ 

K=1                      
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has a very high rate of convergence and in 

Chebyshev form; it is written as: 

              

  y N  (x, a) =
2

1
a0+ ∑ ar Tr (x)  (5) 

        

where x represents all the independent variables in 

the problems coefficients are the Degree Of 

Freedom (DOF). 

T r  (x) are Chebyshev polynomials in variable x, 

defined as a set of orthogonal polynomials of degree 

r given by: 

 

Tr(x) = cos {rcos
–1

 (2x – b – a)};            (6) 
                                    b – a  

 

and satisfies the recurrence relation;  

 

Tr +1(x) = 2(2x-b-a)Tr(x) – Tr -1(x);    (7)                                                                                                    

                    b – a 

 

which is valid within the interval a≤ x≤ b. 

 

3    NUMERICAL TECHNIQUES 

This technique involves the determination 

of approximants ar by first sub-stituting (5) into (1) 

so as to yield a residual equation of the form: 

 
It should be noted that equation (5) is 

substituted in both x and t that is for y(x) and y(t) so 

that we have residual equation of the form (8). And 
the attached initial/boundary conditions are equally 

imposed on the trial solution (5) to yield a system of 

equations that is equal to the boundary conditions in 

number. 

The residual equation (8) is thereafter 

collocated at the zeros of a Chebyshev polynomial 

Tr(x) which is chosen to have r in such a way that its 

addition to the number of given initial/boundary 

conditions is equal to the number if unknown 

approximates ar in (5). This is to ensure a number of 

collocation equations that is equal to the number of 

unknown ar. 
Collocation at zeros of Chebyshev 

polynomial as suggested by Gauss-Lobatto [12]. 

Collocation methods require that at the zero of the 

relevant polynomial the residual equation is 

satisfied, thus yielding a number of collocation 

equations. These equations in conjunction with the 

resulting equations from imposed conditions are 

solved to determine the unknown approximants ar, 

which are thereafter substituted into the (5) to yield 

the desired approximate solution. 

 

4 NUMERICAL EXAMPLES AND 

RESULTS 
We apply this method on some special problems.  

A varying degree of trial solution is used (N =2, 4 

and 8) to allow for an in dept examination of the 

results produced. The entire solution steps are 

automated with the use of symbolic algebraic 

program MATLAB. 

 The entire process is automated by the use of a 

symbolic algebraic program MATLAB 7.9 

 

Problem 1: 

Solve the integro-differential equation 

   

y′ (x) = - ∫  est y(t)dt + y(x) = 1- e1 + x                           (9)                

         1 + x 

 

Subject to initial condition y(0) = 1 

The analytical solution is given as y(x) = ex 

  

Problem 2: 

Determine the approximate solution the IVP; 

     

 
with initial condition y(0) = 1, 

 

The analytical solution is given as y(x) = cos (2x) 

 

Problem 3: 

Solve the integro-differential equation 

 

y″(x)+xy′(x) – xy(x) = ex - 2sin x + ∫  sin(x)e-tdt  
 

with initial condition y(0) = 1, y′ (0) = 1 

 

the exact solution is y(x) = ex 

 

Remark: All the examples we solved, the exact 

solutions are known in closed form, hence, we have 

defined our error as: 

 

Error = | y(x) – yN(x) |; a≤ x≤ b  
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TABLES OF ERRORS 
Tables 1: Table of error for problem 1 

X  N=2 N=4 N=8 

0 3.1974e-16 8.9038e-06 1.0121e-05 

0.1 5.4094e-04 8.6603e-06 8.9536e-06 

0.2 4.4562e-04 3.7704e-05 1.0636e-05 

0.3 2.7736e-04 9.7740e-05 1.5452e-05 

0.4 1.6202e-03 1.9104e-04 2.3657e-05 

0.5 3.5758e-03 3.2046e-04 3.5492e-05 

0.6 6.1379e-03 4.8940e-04
 5.1178e-05 

0.7 9.3006e-03 7.0180e-04 7.0924e-05 

0.8 1.3059e-02 9.6218e-04 9.4922e-05 

0.9 1.7407e-02 1.2756e-03 1.2336e-04 

1.0 2.2343e-02 1.6476e-03 1.5641e-04 

  

Tables 2: Table of error for problem 2 

X  N=2 N=4 N=8 

0 1.0779e-02 2.0063e-04 1.4642e-05 

0.1 7.3867e-03 6.5487e-04 2.1026e-05 

0.2 8.0231e-03 6.2818e-04 3.0939 e-05 

0.3 1.0779e-02 5.0912e-05 6.8622 e-05 

0.4 1.3293e-02 7.0673e-04 1.5941 e-06 

0.5 1.3655e-02 1.3261e-03 2.1612 e-06 

0.6 1.1137e-02 1.6132e-03 2.2515 e-06 

0.7 6.4669e-03 1.5262e-03 2.8817 e-06 

0.8 1.5556e-03 1.1480e-03 2.2002 e-06 

0.9 1.2367e-03 6.1306e-04 4.2080 e-06 

1.0 4.4409e-02 1.7188e-05 9.5997 e-07 

 

Tables 3: Table of error for problem 3 

X  N=2 N=4 N=8 

0 2.2204e-16 8.8818e-16      0 

0.1 6.5101e-03 2.4023e-04 4.1727e-06 

0.2 2.5321e-02 1.9743 e-03 1.2527e-05 

0.3 5.5270e-02 6.6394 e-03 6.8321e-05 

0.4 9.5072e-02 1.5553 e-02 2.9425e-04 

0.5 1.4330e-01 2.9898 e-02 3.1836e-04 

0.6 1.9840e-01 5.0714 e-02 3.9837e-04 

0.7 2.5862e-01 7.8873 e-02 5.3651e-04 

0.8 3.2205e-01 1.1507 e-01 8.6212e-04 

0.9 3.8656e-01 1.5980 e-01 1.6454e-04 

1.0 4.4980e-01 2.1334 e-01 3.1826e-03 

 

5 CONCLUSION 
Table 1, 2, and 3 show the numerical solutions 

obtained in term of errors for the integro-differential 

equations solved through Chebyshev Polynomial 

basis function. We observed from the examples 

solved that for varying degrees of N that as N 

increases the results obtained converge closely to 

the exact solution, this is clearly portrayed in the 

tables of results given above. In practical situation, 

accuracy of a numerical method is determined by 

the consistency of successive approximations and 
the rate of decrease of the coefficients in the various 

series. These are clearly noticed in this method. We 

thus conclude that the numerical method is feasible 

and effective for the class of problems considered. 
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