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ABSTRACT 
The problem of CMOS op-amp circuit sizing is 

addressed here. Given a circuit and its 

performance specifications, the goal is to 

automatically determine the device sizes in order 

to meet the given performance specifications 

while minimizing a cost function, such as a 

weighted sum of the active area and power 

dissipation. The approach is based on the 

observation that the first order behavior of a 

MOS transistor in the saturation region is such 

that the cost and the constraint functions for this 

optimization problem can be modeled as 

posynomial in the design variables. The problem 

is then solved efficiently as a convex optimization 

problem. Second order effects are then handled 

by formulating the problem as one of solving a 

sequence of convex programs. Numerical 

experiments show that the solutions to the 

sequence of convex programs converge to the 

same design point for widely varying initial 

guesses. This strongly suggests that the approach 

is capable of determining the globally optimal 

solution to the problem. Accuracy of 

performance prediction in the sizing program 

(implemented in MATLAB) is maintained by 

using a newly proposed MOS transistor model 

and verified against detailed SPICE simulation.             

 

INTRODUCTION 

The current trend in microelectronics is to 

integrate a complete system that previously 

occupied one or more boards on one or a few chips. 

Although most of the functionality in an integrated 

system is implemented in digital circuitry, analog 

circuits are needed to interface between the core 
digital system and the real world. Analog interface 

circuits have, thus, become vital and indispensable 

parts of most digital circuits. They provide the 

necessary signal conditioning and modification so 

that they can be processed digitally. Interface 

circuits span a wide variety of functions and 

applications such as data acquisition systems, A/D 

and D/A converters, particle and radiation detection 

circuits, automotive electronics, biomedical 

instrumentation and control circuits, robot sensing, 

industrial process monitoring, implantable 
biomedical instruments, preamplifiers, compressors, 

power drivers, etc. Therefore, to realize an  

 

 

integrated system on a single chip, the digital and 

analog circuits are combined together. This 

integration of analog and digital circuits results in so 

called mixed-signal integrated circuits. Though in an 

integrated system, the analog circuitry occupies a 
small physical area compared to the digital 

counterpart and becomes the bottleneck in design 

time reduction. The main reason for this is that the 

number of performance functions in an analog 

circuit is much larger than that in a digital circuit. 

Further, analog performances are very sensitive to 

the design variables and variation in the 

performance across the design space is quite high. 

Increase of design complexity and, at the same time, 

demand of design cycle time reduction due to highly 

competitive market can be managed only by the use 
of computer aided design. CAD tools specifically 

made to analog integrated circuit design promise to 

improve the design process in a variety of ways:-- 

1) By shortening design times: 

2) By simplifying the design process: 

3) By improving the likelihood of error-free designs 

from the first fabrication run: 

4) By reducing design and production cost: 

5) By improving manufacturing yield: 

6) By allowing easier tracking of fabrication 

processe 

 

Design Formulation for Two-Stage CMOS 

OP-AMP Sizing   
Two stage refers to the number of gain 

stages. First gain stage is a differential input single 

ended output stage. The second gain stage is 

normally a common source gain stage that has an 

active load. Capacitor Cc is included to ensure 
stability when the op-amp is used with feedback. 

Because Cc  is between the input and the output of 

the high gain second stage, it is often called Miller 

capacitance. Since it’s effective capacitive load on 

the first stage is larger than its physical value In the 

class of two-stage op-amps, there is a basic 

structural similarity, namely the  hierarchical 

structure of different configurations is the same. It is 

only the sub  circuits, which are the leaf cells of the 

hierarchy that are different across the      various 

topologies. A two-stage op-amp consists of an input 
stage, a second stage, and a compensating circuit. 

The input stage has three parts:-- 
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1. Current Source, 

2. Differential Pair 

3. Current Mirror.  

The second stage has two parts:-- 

1. Transconductance Amplifier  

2. Active Load. 

 
Each one of the four sub circuits, namely 

differential pair, current mirror, transconductance 

amplifier, and active load, can be either simple or 

cascoded. For a cascoded current mirror, a level 

shifter is required between the input stage and the 

second stage. The compensating circuit consists of a 

capacitor and a resistor. The transistors in the 

differential pair can either be n-type or p-type. The 

choice of polarity of the transistors in the differentia 

l pair also determines the polarity of the transistors 

in the other subcircuits.  

 
Fig .Two Stage CMOS Op-Amp 

 

 Basic geometric programming 
 Monomial and posynomial functions 

Let x1,…….., xn denote n real positive 
variables and x = (x1,…….., xn) a vector with 

components  xi. A real valued function f of x, with 

the form 

 

f(x) = cx1
a

1…… xn
a

n                                         (1)  

 

where c > 0 and ai  R, is called a 

monomial function, or more informally, a monomial 

(of the variables x1,…….., xn).  Constant c is 

referred as the coefficient of the monomial, the 

constants (a1,…, an) are referred as the exponents of 
the monomial. Any positive constant is a monomial, 

as is any variable. Monomials are closed under 

multiplication and division i.e. if f and g are both 

monomials then so are f*g and f/g. (This includes 

scaling by any positive constant.) A monomial 

raised to any power is also a monomial:- 

 

              f(x
 
)

 γ
 =( cx1

a
1…… xn

a
n )

γ
         

                               

The term `monomial', which is used here (in the 

context of geometric programming) is similar to, but 

differs from the standard definition of `monomial' 

used in algebra. In algebra, a monomial has the form 

(1), but the exponents ai must be nonnegative 

integers, and the coefficient c is one. 

A sum of one or more monomials, i.e., a function of 
the form 

 

1

K

k

 f(x) =
1

K

k

  ckx1
a
1k…… xn

a
nk                           (2)  

 
where ck > 0, is called a posynomial 

function or, a posynomial (with K terms, in the 

variables x1,…….., xn). The term `posynomial' is 

meant to suggest a combination of `positive' and 

`polynomial'. Any monomial is also a posynomial. 

Posynomials are closed under addition, 

multiplication, and positive scaling. Posynomials 

can be divided by monomials (with the result also a 

posynomial) i.e. if f is a posynomial and g is a 

monomial, then f/g is a posynomial. If    is a 

nonnegative integer and f is a posynomial, then f γ is 

a posynomial (since it is the product of   

posynomials). 

Standard form geometric program 

A geometric program (GP) is an optimization 

problem of the form                

 

 minimize  f0(x) 

subject to fi(x) 1; i = 1,….,m;                 (3) 
gi(x) = 1; i = 1,…,p;                                                   

 

where fi are posynomial functions, gi is 

monomials, and xi is the optimization variables. 

(There is an implicit constraint that the variables are 

positive, i.e., xi > 0.) We refer to the problem (3) as 

a geometric program in standard form. In a standard 

form GP, the objective must be posynomial (and it 

must be minimized)  the equality constraints can 
only have the form of a monomial equal to one, and 

the inequality constraints can only have the form of 

a posynomial less than or equal to one. We can 

switch the sign of any of the exponents in any 

monomial term in the objective or constraint 

functions, and still have a GP. But if we change the 

sign of any of the coefficients, or change any of the 

additions to subtractions, the resulting problem is 

not a GP. 

 

RESULTS  
The CMOS op-amp sizing technique 

described has been implemented  in MATLAB for 

two stage CMOS op-amp. In the implementation 

,convex programming problem is solved by using  

the sequential quadratic programming method which 

is available in optimization toolbox. Experimental 

results are given below. Table 1 consists of spice 



 Harsh Vardhani, Deepak Agrawal, Abhishek Tripathi / International Journal of Engineering 

Research and Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.343-346 

345 | P a g e  

simulation results using optimal design point 

variables against various given specifications.   

   
Figure5 : Common Mode Range 

 

 
Figure6 :  Input Offset Voltage 

 

CONCLUSION 
An efficient technique for sizing CMOS 

op-amps is used .The main concept in this  approach 

is that the CMOS op-amp sizing problem can be 

formulated as a sequence of (convex)geometric 
programs. Such a formulation has two major 

advantages as enumerated below:-- 

 

1) Since the convex programming problem is very 

well understood, it is very straight forward to solve 

it in a robust and computationally efficient manner. 

2) The sequence of solutions generated is a 

sequence of global optimal of convex programming 

sub problems. It suggests that the point to which this 

sequence converges is the globally optimal solution 

of the original problem. This is supported by 
experimental results, where it is shown that the 

method converges to the same final design point for 

widely varying initial design points. This is 

achieved by modeling VGT, gm, and gd as a PoP 

function of the transistor sizes and the bias current at 

a ―relaxed‖ estimate of the dc operating point. 

Because of this iterative formulation, as the iterant 

proceed and approach convergence, the coefficient 
and powers of the first-order PoP model are made 

accurate via the use of second order model 

functions.Restricting the devices to operate in the 

saturation region is done because in standard CMOS 

op-amp design, the mosfets that are used as loads or 

amplification devices are biased in the saturation 

region for, among other reasons, the low gd that is 

achievable in this region. There are specific 

exceptions to this rule, e.g., when a parallel 

connection of an NMOS and PMOS device is used 

to build a resistor, or the common mode feedback 

transistor in a fully differential two-stage op-amp. 
SCP (Sequential Convex Programming) approach 

can be applied to MOS circuits without concerning 

about the region of operation of the individual 

devices, or even for bipolar circuits if the iterative 

model-optimize approach is applied 

appropriately.For this it is required that the derived 

device parameters, e.g., gm and gd , be modeled as 

PoP functions of the independent design variables 

and that these PoP models become accurate 

approximations of the original device models as the 

iterants converge.There are certain performance 
metrics like settling time, which cannot be modeled     

as a suitable analytic function. While it is possible to 

meet a given settling time specification by suitably 

constraining slew rate, unity gain frequency, and 

phase margin (which are modeled as 

posynomials).Effort required to derive analytic 

expressions  of performance metrics (for a new op-

amp) is a hindrance to the widespread use of 

techniques such as described here but  this hurdle 

should be crossed in order to bring the major 

advantages of convex optimization into a truly 

automated circuit-sizing tool. 
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