
 Padmaja K / International Journal of Engineering Research and Applications (IJERA) ISSN:

2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.001-006

1 | P a g e

A Study on web Applications & Protection against Vulnerabilities

Padmaja K

Abstract
Web applications are widely adopted and

their correct functioning is mission critical for

many businesses. Online banking, emails, e-

shopping, has become an integral part of today’s

life. Vulnerabilities in web application can lead to

a variety of erroneous behavior at dynamic run

time. We encounter the problem of forceful

browsing in many web applications, username

enumeration can help an attacker who attempts

to use guessable passwords, such as test/test,

admin/admin, guest/guest, and so on. These

accounts are often created by developers for

testing purposes, and many times the accounts

are never disabled or the developer forgets to

change the password, hacking reduces the

performance or function of the application,

further more, the modified system itself becomes

a constraint to counter newer types of

vulnerabilities that may crop up from time to

time. Hence, the best solution would be to finds

the steps to solve that are web-based (firewall)

independent for protecting against vulnerabilities

in web applications. In our work algorithm is to

analyze vulnerabilities that are caused by

breaking of the data dependency using problem

which work efficient with existing one.

Keywords – Web Application, Vulnerabilities,

Forceful browsing, Testing, Dynamic Testing

INTRODUCTION I
Web applications are collections of static

files linked with each other by means of HTML

references. With this dynamic feature was

traditionally implemented by CGI scripts were added

to web page to accept the user input, changing

presentation and content of the pages accordingly.

Currently more often web sites are created

dynamically, to send the sites content is stored in

database entries and present them to the user. While
in the beginning user interaction was typically

limited to simple request-response pairs, web

applications today often require a multitude of

intermediate steps to achieve the desired results.

When developing software, an increase in

complexity typically leads to a growing number of

bugs. Of course, web applications are no exception.

Moreover, web applications can be quickly deployed

to be accessible to a large number of users on the

Internet, and the available development frameworks

make it easy to produce (partially correct) code that
works only in most cases. As a result, web

application vulnerabilities have sharply increased.
For example, in the last two years, the three top

positions in the annual Common Vulnerabilities and

Exposures (CVE) list published by Mitre [3] were

taken by web application vulnerabilities. To

identify and correct bugs and security

vulnerabilities, developers have a variety of testing

tools at their disposal. These programs can be

broadly categorized as based on black-box

approaches or white-box approaches. White-box

testing tools, such as those presented in [1] use static

analysis to examine the source code of an

application. They aim at detecting code fragments
that are patterns of instances of known vulnerability

classes [2]. Since these systems do not execute the

application, they achieve large code coverage, and,

in theory, can analyze all possible execution paths

[4]. A drawback of white-box testing tools is that

each tool typically supports only very few (or a

single) programming language. A second limitation

is the often significant number of false positives.

Since static code analysis faces undecidable

problems, approximations are necessary. Especially

for large software applications, these approximations
can quickly lead to warnings about software bugs

that do not exist [5].

Attacks against Web applications come in a

variety of forms, but it is important to understand

that viewing Web application security with merely

an attack-verses-vulnerability perspective results in

an overly narrow focus. Studies such as conducted

by Erickson and Howard reinforce the point that the

overall security posture of a Web application

depends on a variety of factors such as proper

configuration, continuity within application logic
and workflow, as well as factors such as competent

administration and observance to security policies on

the part of corporations that own and manage

application data. Several organizations have

published lists of the top categories of Web

application vulnerabilities, notably the OWASP Top

107 and the WASC Threat Classification8.

However, each list differs both in the level of

abstraction and types of Web application

vulnerabilities included among its top threats. The

Cenzic Intelligent Analysis (CIA) Lab uses its own

framework for classifying the top vulnerability threat
classes, the methodology having been derived from

its proprietary HARM system, the Hailstorm®

Application Risk Metric (ARC™), which is

explained in detail later in this document. Analysis

provided below will show vulnerability information

from all three categories, for comparative purposes,

 Padmaja K / International Journal of Engineering Research and Applications (IJERA) ISSN:

2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.001-006

2 | P a g e

so that organizations using any one of the threat

classification systems will have Q1 2007 data related

to the methodology they are presently using.

SECTION II
2. Software vulnerabilities: vulnerabilities occurs

in different ways hardware, sites, software,

organizations, we focusing on software in input

validation errors such as

2.1. Format String: The Format String exploit

occurs when the submitted data of an input string is

evaluated as a command by the application. In this
way, the attacker could execute code, read the stack,

or cause a segmentation fault in the running

application, causing new behaviors that could

compromise the security or the stability of the

system.

To understand the attack, it‟s necessary to

understand the components that constitute it.

• The Format Function is an ANSI C conversion

function, like printf, fprintf, which converts a

primitive variable of the programming language

into a human-readable string representation.
• The Format String is the argument of the Format

Function and is an ASCII Z string which contains

text and format parameters, like: printf ("The

magic number is: %d\n", 1911);

• The Format String Parameter, like %x %s defines

the type of conversion of the format function.

The attack could be executed when the

application doesn‟t properly validate the submitted

input. In this case, if a Format String parameter,

like %x, is inserted into the posted data, the string is

parsed by the Format Function, and the conversion
specified in the parameters is executed. However,

the Format Function is expecting more arguments as

input, and if these arguments are not supplied, the

function could read or write the stack.

If the application uses Format Functions in the

source-code, which is able to interpret formatting

characters, the attacker could explore the

vulnerability by inserting formatting characters in a

form of the website. For example, if the printf

function is used to print the username inserted in

some fields of the page, the website could be
vulnerable to this kind of attack, as showed below:

printf (username);

2.2. SQL Injection: It have more severe

consequences than XSS due to the fact that a

successful SQL injection can comprise the integrity

of a database. Vulnerable in web application is a

SQL injection if unvalidated user input is used to

generate SQL queries . typical SQL query used to

generate dynamic web pages

 SELECT * FROM ARTICLES
 WHERE id=‟<user input>‟

An attacker user input control e.g enter

 ,;DROP („articles‟);

Adds a command to the SQL query which then

becomes:

SELECT * FROM articles WHERE id=‟
„;DROP(„articles‟);‟;

These SQL commands will select some

data, delete the table articles in the database and then

generate an SQL error due to the single quotation

mark. SQL injection gives an attacker the

opportunity to manipulate the database and in

special cases execute arbitrary code on the database

server. It is therefore an effective attack on web

applications. Typical attack are logins, search forms

and the URL of dynamically generated pages e.g

http://vulnerableSite.com/article?id=42 could result
in a SQL query similar to the one in the example.

SQL injection can be avoided through user input

validation, ensuring appropriate handling of

characters with a special meaning in SQL.

2.3. Cross-site Scripting: The main purpose of

cross-site scripting is a XSS attacks [5]. To steal the

credentials i.e cookies of an authenticated user.

.request in the web contains an authentication cookie

is treated by the server as a request of the

corresponding user as long as does not explicitly log
out. Everyone who manages to steal cookies is able

to impersonate its owner for the current sessions.

The browser automatically sends a cookie only to

the web sites that created it, but with JavaScript

program are restricted by the same origin policy.

XSS attacks circumvent the same –origin policy by

injecting malicious java script into the output of

vulnerable applications. In this case, the malicious

code appears to originate from the trusted site and

thus, has complete access to all (sensitive) data

related to this site. For example, consider the

following simple PHP script, where a user‟s search
query is displayed after submitting it:

echo "You searched for " . $_GET[’s’];

The user‟s search query is retrieved from a

GET parameter. Therefore, it can also be supplied in

a specifically crafted URL such as the following,

which results in the

user‟s cookie being sent to

“evilserver.com”:

http://vulnerable.com/post.php?s=<script>d

ocument.location
=‟evilserver.com/steal.php?‟+document.

Cookie</script>

All that the attacker has to do is to trick a

user into clicking this link, for example, by sending

it to the victim via email. As soon as the user clicks

on this link, her browser visits the page post.php on

the vulnerable site, with the GET parameter “s” set

http://vulnerablesite.com/article?id=42

 Padmaja K / International Journal of Engineering Research and Applications (IJERA) ISSN:

2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.001-006

3 | P a g e

to the malicious JavaScript code. As a result, the

malicious code is embedded in the application‟s

reply page, and now has access to the user‟s cookie.

The JavaScript code sends the cookie to the attacker,

who can now use it to impersonate the victim. The

particular type of XSS vulnerability discussed above
is called reflected XSS,

since the attacker‟s malicious input is

immediately returned (i.e., reflected) to the victim.

There also exists a second type of XSS, where the

application first stores the input into a database or

the file system. At a later stage, the application

retrieves this data through database queries or files

reads, and finally sends it to the victim. For instance,

such stored XSS vulnerabilities often occur in web

guest books or forums, where a visitor leaves a

comment that is later accessed by another visitor. In

general, an XSS vulnerability is present in a web
application if malicious content (e.g., JavaScript)

received by the application is not properly stripped

from the output sent back to a user. When speaking

in terms of the sketched class of taint-style

Vulnerabilities, XSS can be roughly described by the

following properties:

• Entry points into the program: GET,

POST and COOKIE arrays.

• Sanitization routines: PHP functions such

as htmlentities () and htmlspecialchars (),
and type casts that destroy potentially malicious

characters or transform them into harmless ones

(such as casts to integer).

• Sensitive sinks: All routines that display

data on the screen, such as echo(), print() and

printf().

This tool can only handle reflected XSS

vulnerabilities. However, it is straight forward to use

it for the detection of stored XSS as well, given a

certain program policy with regard to the taint status

of persistently stored data. For instance, it is

customary that data is not sanitized before it is
stored to a database or to the file system, which

means that it has to be sanitized after its later

retrieval. In the System, this can be modeled by

adding the corresponding data retrieval functions to

the set of entry points. Analogously, the

application‟s policy can demand that all data is

sanitized before it is stored. In this case, data storage

functions have to be defined as sensitive sinks.

Mixed policies are more difficult to handle. For

instance, an application could expect a certain

database table to contain only sanitized values,
whereas some other table might also be allowed to

contain unsanitized values. Here, the analysis would

also have to resolve the names of the tables that are

used for storage and retrieval.

2.4.HTTP Header Injection: It allows attackers to

split a HTTP response into multiple ones by

injecting malicious response HTTP headers. This

can deface web sites, poison cache and trigger cross-

site scripting.

Normally,

http://www.mysite.com/test/default.aspx?text=esiu

sets the cookie

 //Query parameter text is not checked before saving
in user cookie

NameValue collection request =

RequestQuerystring:

 //Adding cookies to the response

Response.Cookies[“UserName”]Value=request[“tex

t”];

Set-Cookie header is used in HTTP response to

request browser to save a cookie, %0D%0A is a new

line character

On a HTTP response encoded by URL encoding,

this is usually represented as “\r\n” in code.

2.5. HTTP Response Splitting: attack involved in

3 types

 Web server which has a security hole

enabling HTTP Response splitting

 Target – Entity that interacts with the web

server perhaps on behalf of the attacker. Typically

this is a cache server forward/reverse proxy or

browser attacker which initiates the attack.

2.6. Forceful Browsing: Forceful browsing is

making several requests to the web server with the
URL patterns of typical web application components

such as CGI programs. The common with many of

the exploits is that lack of server side validation

makes them possible. Client side validation doesn‟t

provide real protection as it is always possible to

create a custom user agent or use an intermediary

tool. These attacks against web[9] applications are

that there are so many things can do wrong.

SECTIONIII

3. Problem definition: Today‟s life hectic with our

schedules we go for online banking, emails, chats, e-

shopping become an integral part. Thus web-based

techniques are widely adopted and their correct

functioning is mission critical for many business

applications, vulnerabilities are readily exploited by

attackers. Unfortunately software failures occur to

reduce system availability and efficiency of the

system as a whole. Here we have method to solve

the vulnerabilities.

 Figure 1. User Login Screen

http://www.mysite.com/test/default.aspx?text=esiu

 Padmaja K / International Journal of Engineering Research and Applications (IJERA) ISSN:

2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.001-006

4 | P a g e

Username enumeration can help an attacker

who attempts to use some trivial usernames with

easily guessable passwords, such as test/test,

admin/admin, guest/guest, and so on. These accounts

are often created by developers for testing purposes,

and many times the accounts are never disabled or

the developer forgets to change the password.

During testing assignments, have found such

accounts are not only common and have easily

guessable passwords, but at times they also contain

sensitive information like valid credit card numbers,
passport numbers, and so on. Needless to say, these

could be crucial details for social engineering

attacks.

3.1. Email Vulnerabilities: Email is one of the most

widely used applications on the Internet due to its

convenience, cost effectiveness, and time saving

ability. Because of its ubiquitous capability it can be

left open to many different types of vulnerability.

There are multiple ways that hackers can

attack your email clients. Some of these methods
include distribution of malware such as spyware,

adware, Trojans, and viruses, to name a few types.

Other attacks on your email client can include

phishing, spam that is laced with malware, and

denial of service attacks which are the result of

sending a massive amount of messages to a server

causing it to crash. Attacks can also cause a lot of

damage to your other applications, data, and

ultimately the PC operating system itself.

3.2. Protect from email vulnerabilities: Our
computer operating system is used as a platform for

email client. Regardless of what type of client we

use such as Microsoft Outlook, Outlook Express,

Eudora, or other, there are steps we can take to

protect email client against vulnerabilities

3.2.1. Plain Text: When checking our email

message, use plain text format instead of formats

such as HTML or rich text format that can open up

email client to vulnerabilities hackers to exploit.

3.2.2. Automatic Updates: Always use the latest
version of the mail client software and make sure

you have the automatic update feature enabled.

3.23.3.Antivirus Software: Use antivirus software

that includes a virus signature for monitoring your

email files. Depending upon the program we are

using, often can configure the automatic update for

virus signatures.

3.2.4. Do Not Unsubscribe: If we receive

unsolicited email do not click to unsubscribe to the
list as it could contain malware or lead you to a

website that is infected with malware. Simply delete

the unsolicited message or if it ended up in your

spam folder, clear the folder altogether.

3.2.5. Administrator: Avoid running email client

under administrator privileges. If this is not possible,

try to restrict the privileges while logged on as

administrator. The administrator privileges can open

up your email clients to exploits by a hacker.

3.2.6Attachments: Make sure attachments are
scanned by your antivirus program before you open

them. Most antivirus programs contain this feature

and will let you know if there is a threat of a virus

before you open the attachment.

3.2.7. Receipts and Confirmations: Configure the

settings in email client so it does not automatically

send return receipts or read confirmations. If an

email is infected automatically opening or sending a

message could spread the infection to the recipient's

email client.

3.2.8.Use Encryption: To ensure that confidential

information is secure, use encryption for sending

these types of messages.

3.3. Protect from Web Vulnerabilities: All the

Consequences of the most common web application

security vulnerabilities we present a basic methods

to protect against these vulnerabilities to secure

coding security program

3.3.1Inject flaws: Injection occurs when user-
supplied data is sent to an interpreter as part of a

query. The attackers hostile data tricks the

interpreter into executing unintended queries or

changing data.

3.3.2. Malicious File Execution: Code vulnerable to

remote file inclusion allows attackers to include

hostile code and data resulting in devastating attacks

such as total server compromise malicious file

execution attacks affect PHP, XML and any

framework which accepts filenames or files from
users

3.3.3. Insecure Direct Object: A direct object

reference occurs when a developer exposes a

reference to an internal implementation object, such

as a file directory database record or key as a URL

or form parameter. Attacker can manipulate those

 Padmaja K / International Journal of Engineering Research and Applications (IJERA) ISSN:

2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.001-006

5 | P a g e

references to access other objects without

authorization.

3.3.4. Cross Site Request Forgery: A CSRF attack

forces a logged-on victim‟s browser to send a pre-

authenticated request to a vulnerable web application
which forces the victim‟s browser to perform a

hostile action to the benefits of the attacker CSRF

can be as powerful as the web application that it

attacks

3.3.5 Information Leakage & improper Error:
Applications can unintentionally leak information

about their configuration internal workings or violate

privacy through a variety of application problems.

Attackers use this weakness to steal sensitive data or

conduct more serious attacks.

3.3.6. Broken Authentication session

Management: Account credentials and session

tokens are often not properly protected. Attackers

compromise passwords keys or authentication

tokens to assume other users identities.

3.3.7. Insecure Cryptographic Storage: Web

applications rarely use cryptographic functions

properly to protect data and credentials. Attackers

use weakly protected data to conduct identity theft

and other crimes such as credit card fraud

3.3.8. Insecure Communications: Applications

frequently fail to encrypt network traffic when it is

necessary to protect sensitive communications.

3.3.9. Failure to restrict URL access: frequently an

application protects sensitive functionality by

preventing the display of links or URLs to

unauthorized users. Attackers can use this weakness

to access and perform unauthorized operations by

accessing those URLs directory

SECTION IV
4.1. Algorithms for Detecting vulnerabilities:
Content of text SQLMF are a set of n number of

legitimate SQL queries (where, 1≤ n). Each query is

expressed as a sequence of elements {s1, s2,.., sn`}.

Each element is a string of characters. The text

pattern (P) of the dynamic query, is expressed as one

or more elements {s`1,s`2,.. s`n}, where, 1≤ n. An

element may have one or more sub elements,
identifiers and values. A function element count(P)

computes the number of elements in P. Each element

is separated from others by semicolon (;).

Exact Matching

Input : T, P

Output: Safe Query, Attack Alarm I

[1] match_count <- 0;

[2] For i= 1 to n do

Begin

[3] If (P=Ti) then {

- Add 1 to match_count;

- Declare „Safe Query‟;

- Exit; }

[4] End if;

[5] End For Loop;
[6] If (match_count=0) then {

- Declare „Attack Alarm I‟;

- Call Approximate Matching; }

[7] Stop;

 Approximate Matching

Input : T, P, W

Output: Safe Query, Attack Alarm Final

[1] k = element_count(P);

[2] For i = 1 to n do {

[3] For j = 1 to k do {

[4] If (P[j] c T[i][j]) then

[5] D[i] b D[i] + 1 ;
[6] Enf if ; } }

[7] Edit_Distance b 0 ;

[8] For i = 1 to n do {

[9] Edit_Distance = MIN (D[i]); }

[10] If (Edit_Distance < W) then {

- Declare „Safe Query‟ ;

- Execute P; }

[10] Else {

[11] - Declare „Attack Alarm Final‟ ;

[12] - Block P; }

[13] End if;
[14] Stop;

4.2. Dynamic Analysis for vulnerabilities in web

applications:

In context of web applications, static

approaches have limited potential because, web

applications are often written in dynamic scripting

languages that enables on fly creation of code the

issue pose significant challenges to approaches

based on static analysis. Testing of dynamic Web

applications is also challenging because the input

space is large and applications typically require
multiple user interactions. The state of the practice

in validation for Web standard compliance of real

Web applications involves the use of programs such

as HTML Kit5 that validate each generated page, but

require manual generation of inputs that lead to

Dynamic Analysis Testing Tools

4.2.1. DART: (directed automated random testing)

integration of random testing and dynamic test

generation using symbolic reasoning is best

intuitively explained with an example.

Consider the function h in the file below:

int f(int x) f return 2 * x; g

int h(int x, int y) {

if (x != y)

if (f(x) == x + 10)

abort(); /* error */

return 0;}

 Padmaja K / International Journal of Engineering Research and Applications (IJERA) ISSN:

2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.001-006

6 | P a g e

The function h is defective because it may

lead to an abort statement for some value of its input

vector, which consists of the input parameters x and

y. Running the program with random values of x and

y is unlikely to discover the bug. The problem is

typical of random testing: it is difficult to generate
input values that will drive the program through all

its different execution paths. In contrast, DART is

able to dynamically gather knowledge about the

execution of the program in what we call a directed

search. Starting with a random input, a DART-

instrumented program calculates during each

execution an input vector for the next execution.

4.2.2. Apollo: Apollo first executes the Web

application under test with an empty input. During

each execution, Apollo monitors the program to

record path constraints that reflect how input values
affect control flow. Additionally, for each execution,

Apollo determines whether execution failures or

HTML failures occur (for HTML failures, an HTML

validator is used as an oracle). Apollo automatically

and iteratively creates new inputs using the recorded

path constraints to create inputs that exercise

different control flow. Most previous approaches for

concolic execution only detect “standard errors”

such as crashes and assertion failures. This approach

detects such standard errors as well as uses an oracle

which are interactively supplied by the user (e.g., by
clicking buttons in generated HTML pages).

CONCLUSION V
Our work have presented an approach to

improve the best functionality web applications by

the absence of runtime errors, dynamically proposed

solution prevent due to data dependencies on session

data. Algorithm combines to develop program

annotation verification and validation checking to
protect against broken data dependencies in web

applications. In addition, the proposed solution is

interoperable with the existing web infrastructure

and does not interfere with other web security

solutions. Moreover, the proposed solution is able to

leverage the power of existing web security by

providing formal techniques guarantee to prove the

absence of broken data dependencies in a given web

protocol enforcement configuration. To the best of

our knowledge, the research presented in this paper

is the first to improve web application security by

providing an appropriate solution to the specific
problem of broken data dependencies on session

data.

References
[1] A registration page had an an HTML

comment mentioning a file named “

_private/customer.txt”typing

http://www.xxx.com/_private/customer.txt

sent back all customers information

 [2] Appending “~” or back or old to GCI

names may send back an older version of

the source code. For example

www.xxx.com/cgi-bin/admin.jsp~ returns

admin.jsp source code. Here hacking

attempts that every serious business
application should be able

[3] B. Beizer. Software Testing Techniques.

Van Nostrand Reinhold, 1990.

[4] Burp Spider. Web Application Security.

http://portswigger.net/spider/, 2008.

[5] Acunetix. AcunetixWeb Vulnerability

Scanner. http://www.acunetix.com/, 2008.

[6] D. Balzarotti, M. Cova, V. Felmetsger, N.

Jovanov, E. Kirda, C. Kruegel, and G.

Vigna. Saner: Composing Static and

Dynamic Analysis to Validate Sanitization

in Web Applications. In IEEE Security and
Privacy Symposium, 2008.

[7] Karl Forster, Lockstep Systems, Inc., “Why

Firewalls Fail to Protect Web Sites,”

http://www.lockstep.com/products/

webagain/why-firewalls-fail.pdf, 2007.

[8] I. Ristic, “Web Application Firewalls

Primer,” (IN)SECURE, vol. 1, no. 5, pp. 6-

10, Jan. 2006.

[9] Shah, Shreeraj. Hacking Web Services.

2007.

Padmaja K pursuing Ph.D from

JNTU Kakinada. M.Tech(CSE) from

JNTU Kakinada. She is having 10

years of experience in Academics.

Has guided many UG & PG students.

Her research areas include Software

Engineering, Software Security

http://www.xxx.com/_private/customer.txt
http://www.xxx.com/cgi-bin/admin.jsp~%20returns%20admin.jsp
http://www.xxx.com/cgi-bin/admin.jsp~%20returns%20admin.jsp

