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ABSTRACT 
The effect of thermophoresis particle 

deposition on unsteady free convective, heat and 

mass transfer in a viscoelastic fluid along a semi-

infinite vertical plate is investigated. The 

Walters-B liquid model is employed to simulate 

medical creams and other rheological liquids 

encountered in biotechnology and chemical 

engineering. The dimensionless unsteady, 

coupled and non-linear partial differential 

conservation equations for the boundary layer 

regime are solved by an efficient, accurate and 

unconditionally stable finite difference scheme of 

the Crank-Nicolson type. The behavior of 

velocity, temperature and concentration within 

the boundary layer   has been studied for 

variations in the Prandtl number (Pr), 

viscoelasticity parameter (), Schmidt number 

(Sc), buoyancy ration parameter (N) and 

thermophoretic parameter ( ). The local skin-

friction, Nusselt number and Sherwood number 

are also presented and analyzed graphically. It is 

observed that, an increase in the thermophoretic 

parameter ( ) decelerates the velocity as well as 

concentration andaccelerates  temperature. In 

addition, the effect of the thermophoresis is also 

discussed for the case of Newtonian fluid. 

 

Key words: Finite difference method,semi-infinite 

vertical plate, Thermophoresis effect, Walters-B 

fluid, unsteady flow. 

 

1. INTRODUCTION 
Prediction of particle transport in non-

isothermal gas flow is important in studying the 

erosion process in combustors and heat exchangers, 

the particle behavior in dust collectors and the 

fabrications of optical waveguide and 

semiconductor device and so on. Environmental 

regulations on small particles have also become 

more stringent due to concerns about atmospheric 

pollution. 

When a temperature gradient is established 

in gas, small particles suspended in the gas migrate 

in the direction of decreasing temperature. The 
phenomenon, called thermophoresis, occurs because 

gas molecules colliding on one side of a particle 

have different average velocities from those on the 

other side due to the temperature gradient. Hence 

when a cold wall is placed in the hot particle-laden  

 

 

gas flow, the thermophoretic deposition plays an 

important role in a variety of applications such as 

the production of ceramic powders in high 

temperature aerosol flow reactors, the production of 

optical fiber performs by the modified chemical 

vapor deposition (MCVD) process and in a polymer 
separation. Thermophoresis is considered to be 

important for particles of 10 m in radius and 

temperature gradient of the order of 5 K/mm. 

Walker et al. [1] calculated the deposition efficiency 

of small particles due to thermophoresis in a laminar 

tube flow. The effect of wall suction and 

thermophoresis on aerosol-particle deposition from 

a laminar boundary layer on a flat plate was studied 

by Mills et al. [2]. Ye et al. [3] analyzed the 

thermophoretic effect of particle deposition on a free 

standing semiconductor wafer in a clean room. 
Thakurta et al. [4] computed numerically the 

deposition rate of small particles on the wall of a 

turbulent channel flow using the direct numerical 

simulation (DNS). Clusters transport and deposition 

processes under the effects of thermophoresis were 

investigated numerically in terms of thermal plasma 

deposition processes by Han and Yoshida [5]. In 

their analysis, they found that the thickness of the 

concentration boundary layer was significantly 

suppressed by the thermophoretic force and it was 

concluded that the effect of thermophoresis plays a 

more dominant role than that of diffusion. Recently, 
Alam et al. [6] investigated numerically the effect of 

thermophoresis on surface deposition flux on 

hydromagnetic free convective heat mass transfer 

flow along a semi- infinite permeable inclined flat 

plate considering heat generation. Their results show 

that thermophoresis increases surface mass flux 

significantly. Recently, Postalnicu [7] has analyzed 

the effect of thermophoresis particle deposition in 

free convection boundary layer from a horizontal 

flat plate embedded in porous medium. 

The study of heat and mass transfer in non-
Newtonian fluids is of great interest in many 

operations in the chemical and process engineering 

industries including coaxial mixers, blood 

oxygenators [8], milk processing [9], steady-state 

tubular reactors and capillary column inverse gas 

chromatography devices mixing mechanism bubble-

drop formation processes [10] dissolution processes 

and cloud transport phenomena. Many liquids 

possess complex shear-stress relationships which 
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deviate significantly from the Newtonian (Navier-

Stokes) model. External thermal convection flows in 

such fluids have been studied extensively using 

mathematical and numerical models and often 

employ boundary-layer theory. Many geometrical 

configurations have been addressed including flat 

plates, channels, cones, spheres, wedges, inclined 
planes and wavy surfaces. Non-Newtonian heat 

transfer studies have included power-law fluid 

models [11-13] i.e. shear-thinning and shear 

thickening fluids, simple viscoelastic fluids [14, 15], 

Criminale-Ericksen-Fibley viscoelastic fluids [16], 

Johnson-Segalman rheological fluids [17], Bingham 

yield stress fluids [18], second grade (Reiner-Rivlin) 

viscoselastic fluids [19] third grade viscoelastic 

fluids [20], micropolar fluids [21] and bi-viscosity  

rheological fluids [22]. Viscoelastic properties can 

enhance or depress heat transfer rates, depending 

upon the kinematic characteristics of the flow field 
under consideration and the direction of heat 

transfer. The Walters-B viscoelastic model [23] was 

developed to simulate viscous fluids possessing 

short memory elastic effects and can simulate 

accurately many complex polymeric, 

biotechnological and tribological fluids. The 

Walters-B model has therefore been studied 

extensively in many flow problems. Soundalegkar 

and Puri[24] presented one of the first mathematical 

investigations for such a fluid considering the 

oscillatory two-dimensional viscoelastic flow along 
an infinite porous wall, showing that an increase in 

the Walters elasticity parameter and the frequency 

parameter reduces the phase of the skin-friction. 

Roy and Chaudhury [25] investigated heat transfer 

in Walters-B viscoelastic flow along a plane wall 

with periodic suction using a perturbation method 

including viscous dissipation effects. Raptis and 

Takhar [26] studied flat plate thermal convection 

boundary layer flow of a Walters-B fluid using 

numerical shooting quadrature. Chang et al [27] 

analyzed the unsteady buoyancy-driven flow and 

species diffusion in a Walters-B viscoelastic flow 
along a vertical plate with transpiration effects. 

They showed that the flow is accelerated with a rise 

in viscoelasticity parameter with both time and 

distances close to the plate surface and that 

increasing Schmidt number suppresses both velocity 

and concentration in time whereas increasing 

species Grashof number (buoyancy parameter) 

accelerates flow through time. Hydrodynamic 

stability studies of Walters-B viscoelastic fluids 

were communicated by Sharma and Rana [28] for 

the rotating porous media suspension regime and by 
Sharma et al [29] for Rayleigh-Taylor flow in a 

porous medium. Chaudhary and Jain [30] studied 

the Hall current and cross-flow effects on free and 

forced Walters-B viscoelastic convection flow with 

thermal radiative flux effects. Mahapatra et al [31] 

examined the steady two-dimensional stagnation-

point flow of a Walters-B fluid along a flat 

deformable stretching surface. They found that a 

boundary layer is generated formed when the 

inviscid free-stream velocity exceeds the stretching 

velocity of the surface and the flow is accelerated 

with increasing magnetic field. This study also 

identified the presence of an inverted boundary layer 

when the surface stretching velocity exceeds the 
velocity of the free stream and showed that for this 

scenario the flow is decelerated with increasing 

magnetic field. Rajagopal et al [32] obtained exact 

solutions for the combined nonsimilar 

hydromagnetic flow, heat, and mass transfer 

phenomena in a conducting viscoelastic Walters-B 

fluid percolating a porous regime adjacent to a 

stretching sheet with heat generation, viscous 

dissipation and wall mass flux effects, using 

confluent hypergeometricfunctions for different 

thermal boundary conditions at the wall.  

Steady free convection heat and mass 
transfer flow of an incompressible viscous fluid past 

an infinite or semi-infinite vertical plate is studied 

since long because of its technological importance. 

Pohlhausen [33], Somers [34] and Mathers et al. 

[35] were the first to study it for a flow past a semi-

infinite vertical plate by different methods. But the 

first systematic study of mass transfer effects on free 

convection flow past a semi-infinite vertical plate 

was presented by Gebhart and pera [36] who 

presented a similarity solution to this problem and 

introduced a parameter N which is a measure of 
relative importance of chemical and thermal 

diffusion causing a density difference that drives the 

flow. Soundalgekar and Ganesan [37] studied 

transient free convective flow past a semi-infinite 

vertical flat plate with mass transfer by using 

Crank–Nicolson finite difference method. In their 

analysis they observed that, an increase in N leads to 

an increase in the velocity but a decrease in the 

temperature and concentration. Prasad et al. [38] 

studied Radiation effects on MHD unsteady free 

convection flow with mass transfer past a vertical 

plate with variable surface temperature and 
concentration Owing to the significance of this 

problem in chemical and medical biotechnological 

processing (e.g. medical cream manufacture). 

Therefore the objective of the present paper is to 

investigate the effect of thermophoresis on an 

unsteady free convective heat and mass transfer 

flow past a semi infinite vertical plate using the 

robust Walters-B viscoelastic rheologicctal material 

model.A Crank-Nicolson finite difference scheme is 

utilized to solve the unsteady dimensionless, 

transformed velocity, thermal and concentration 
boundary layer equations in the vicinity of the 

vertical plate. The present problem has to the 

author’ knowledge not appeared thus far in the 

literature. Another motivation of the study is to er 

observed high heat transfer performance commonly 

attributed to extensional investigate thestresses in 

viscoelastic boundary layers [25]  
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2. CONSTITUTIVE EQUATIONS FOR 

THE WALTERS-B VISCOELASTIC    

FLUID  
Walters [23] has developed a physically 

accurate and mathematically amenable model for 

the rheological equation of state of a viscoelastic 

fluid of short memory. This model has been shown 

to capture the characteristics of actual viscoelastic 

polymer solutions, hydrocarbons, paints and other 

chemical engineering fluids. The Walters-B model 

generates highly non-linear flow equations which 

are an order higher than the classical Navier-Stokes 
(Newtonian) equations. It also incorporates elastic 

properties of the fluid which are important in 

extensional behavior of polymers. The constitute 

equations for a Walters-B liquid in tensorial form 

may be presented as follows:   
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where ikp is the stress tensor, p is arbitrary isotropic pressure,

ikg  is the metric tensor of a fixed coordinate system xi,
 1

ike  is 

the rate of strain tensor and  N  is the distribution function 

of relaxation times, . The following generalized form of (2) has 

been shown by Walters [23] to be valid for all classes of motion 

and stress.  
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in which  * * *, ,i ix x x t t denotes the position at 

time t* of the element which is instantaneously at 
the position, xi, at time, t. Liquids obeying the 

relations (1) and (4) are of the Walters-B’ type. For 

such fluids with short memory i.e. low relaxation 

times, equation (4) may be simplified to:  
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in which  0

0

N d  


   defines the limiting 

Walters-B’ viscosity at low shear rates,

 0

0

k N d  


  is the Walters-B’ viscoelasticity 

parameter and 
t




is the convected time derivative. 

This rheological model is very versatile and robust 

and provides a relatively simple mathematical 

formulation which is easily incorporated into 

boundary layer theory for engineering applications 

[25, 26].  

 

3. MATHEMATICAL MODEL:  
An unsteady two-dimensional laminar free 

convective flow of a viscoelastic fluid past a semi-

infinite vertical plate is considered. The x-axis is 

taken along the plate in the upward direction and the 

y-axis is taken normal to it. The physical model is 

shown in Fig.1a.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Initially, it is assumed that the plate and the 

fluid are at the same temperature T
  and 

concentration level C
 everywhere in the fluid. At 

time, t>0, Also, the temperature of the plate and 

the concentration level near the plate are raised to 

wT   and wC  respectively and are maintained 

constantly thereafter. It is assumed that the 

concentration C of the diffusing species in the 

binary mixture is very less in comparison to the 

other chemical species, which are present, and hence 

the Soret and Dufour effects are negligible. It is also 

assumed that there is no chemical reaction between 

the diffusing species and the fluid. Then, under the 

above assumptions, the governing boundary layer 

equations with Boussinesq’s approximation are  
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The initial and boundary conditions are                                                                                                                                     
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Where u, v are velocity components in x 

and y directions respectively, t - the time, g – the 

acceleration due to gravity,   - the volumetric 

coefficient of thermal expansion, 
* - the 

volumetric coefficient of expansion with 

concentration, T   -the temperature of the fluid in 

the boundary layer, C  -the species concentration 

in the boundary layer, wT   - the wall temperature,

T
  - the free stream temperature far away from the 

plate, wC - the concentration at the plate, C
 - the 

free stream concentration in fluid far away from the 

plate,   - the kinematic viscosity,  - the thermal 

diffusivity,  - the density of the fluid and  D - the 

species diffusion coefficient.  

    In the equation (4), the thermophoretic velocity 

tV  was given by Talbot et al. [39] as 

T

w w
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V kv

T T y

 
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Where wT is some reference temperature, the value 

of kv represents the thermophoretic diffusivity, and 

k is the thermophoretic coefficient which ranges in 

value from 0.2 to 1.2 as indicated by Batchelor and 

Shen [40] and is defined from the theory of Talbot 

et al [39] by  
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 A thermophoretic parameter   can be defined (see 

Mills et al  2  and Tsai [41]) as follows; 
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 Typical values of  are 0.01, 0.05 and 0.1 

corresponding to approximate values of          
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temperature of 0T =300 k. 
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Equations (6), (7), (8), (9) and (10) are reduced to 

the following non-dimensional form 
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The corresponding initial and boundary conditions 

are 
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Where Gr is the thermal Grashof number, 

Pr is the fluid Prandtl number, Sc is the Schmidt 

number, N is the buoyancy ratio parameter,  is the 

viscoelastic parameter and  is the thermophoretic 

parameter. 

To obtain an estimate of flow dynamics at the 

barrier boundary, we also define several important 
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rate functions at Y = 0. These are the dimensionless 

wall shear stress function, i.e. local skin friction 

function, the local Nusselt number (dimensionless 

temperature gradient) and the local Sherwood 

number (dimensionless species, i.e. contaminant 

transfer gradient) are computed with the following 

mathematical expressions [48]  
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We note that the dimensionless model 

defined by Equations (12) to (15) under conditions 

(16) reduces to Newtonian flow in the case of 

vanishing viscoelasticity i.e. when  = 0 

 

4.NUMERICAL SOLUTION 
In order to solve these unsteady, non-linear 

coupled equations (12) to (15) under the conditions 

(16), an implicit finite difference scheme of Crank-

Nicolson type has been employed. This method was 

originally developed for heat conduction problems 

[42]. It has been extensively developed and remains 

one of the most reliable procedures for solving 

partial differential equation systems. It is 
unconditionally stable. It utilizes a central 

differencing procedure for space and is an implicit 

method. The partial differential terms are converted 

to difference equations and the resulting algebraic 

problem is solved using a triadiagonal matrix 

algorithm. For transient problems a trapezoidal rule 

is utilized and provides second-order convergence. 

The Crank-Nicolson Method (CNM) scheme has 

been applied to a rich spectrum of complex 

multiphysical flows. Kafousias and Daskalakis [43] 

have employed the CNM to analyze the 
hydromagnetic natural convection Stokes flow for 

air and water. Edirisinghe [44] has studied 

efficiently the heat transfer in solidification of 

ceramic-polymer injection moulds with CNFDM. 

Sayed-Ahmed [45] has analyzed the laminar 

dissipative non-Newtonian heat transfer in the 

entrance region of a square duct using CNDFM. 

Nassab [46] has obtained CNFDM solutions for the 

unsteady gas convection flow in a porous medium 

with thermal radiation effects using the Schuster-

Schwartzchild two-flux model. Prasad et al [47] 

studied the combined transient heat and mass 
transfer from a vertical plate with thermal radiation 

effects using the CNM method. The CNM method 

works well with boundary-layer flows. The finite 

difference equations corresponding to equations (12) 

to (15) are discretized using CNM as follows 
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Here the region of integration is considered as a 

rectangle with max 1X  , max 14Y   and where 

maxY corresponds to Ywhich lies well outside 

both the momentum and thermal boundary layers. 

The maximum of Y was chosen as 14, after some 

preliminary numerical experiments such that the last 

two boundary conditions of (19) were satisfied 

within the tolerance limit
510

. The mesh sizes have 

been fixed 

asXYwith time 

step t0.01. The computations are executed 

initially by reducing the spatial mesh sizes by 50% 

in one direction, and later in both directions by 50%. 

The results are compared. It is observed that, in all 

the cases, the results differ only in the fifth decimal 

place. Hence, the choice of the mesh sizes is verified 

as extremely efficient. The coefficients of 

, ,

k k

i j i jU andV ,appearing in the finite difference 

equations are treated as constant at any one-time 

step. Here i designates the grid point along the X-

direction, j along the Y-direction and k in the time 

variable, t. The values of U, V, T and C are known at 

all grid points when t = 0 from the initial conditions. 
The computations for U, V, T and C at a time level 

(k + 1), using the values at previous time level k are 

carried out as follows. The finite-difference equation 

(21) at every internal nodal point on a particular 

ilevel constitutes a tri-diagonal system of 

equations and is solved by Thomas algorithm as 

discussed in Carnahan et al. [45]. Thus, the values 

of C are known at every nodal point at a particular i 

at  1
th

k   time level. Similarly, the values of U 

and T are calculated from equations (19), (20) 

respectively, and finally the values of V are 

calculated explicitly by using equation (18) at every 

nodal point on a particular i level at  1
th

k   

time level. In a similar manner, computations are 

carried out by moving along i -direction. After 

computing values corresponding to each i at a time 

level, the values at the next time level are 
determined in a similar manner. Computations are 

repeated until steady state is reached. The steady 

state solution is assumed to have been reached when 

the absolute difference between the values of the 

velocity U, temperature T, as well as concentration 

C at two consecutive time steps are less than 
510

at 

all grid points. The scheme is unconditionally stable. 

The local truncation error is 
2 2 2( )O t X Y    and it tends to zero as t, 

X, and Ytend to zero. It follows that the 

CNM scheme is compatible. Stability and 

compatibility ensure the convergence. 

 

 

 

5.RESULTS AND DISCUSSION 
In order to get a physical insight into the 

problem, a parametric study is carried out to 

illustrate the effect of various governing 

thermophysical parameters on the velocity, 
temparature, concentration, skin-friction, Nusselt 

number and Sherwood number are shown in figures 

and tables. 

 In figures 2(a) to 2(c) we have presented 

the variation of velocity U, temparature T and 

concentration C versus (Y) with collective effects of 

thermophoretic parameter () at X = 0 for opposing 

flow (N<0). In case of Newtonian fluids ( = 0), an 

increase in  from 0.0 through 0.5 to maximum 

value of 1.0 as depicted in figure 2(a) for opposing 

flow (N < 0) . Clearly enhances the velocity U 

which ascends sharply and peaks in close vicinity to 
the plate surface (Y=0). With increasing distance 

from the plate wall however the velocity U is 

adversely affected by increasing thermophoretic 

effect i.e. the flow is decelerated. Therefore close to 

the plate surface the flow velocity is maximized for 

the case ofBut this trend is reversed as 

we progress further into the boundary layer regime. 

The switchover in behavior corresponds to 

approximately Y =3.5, with increasing velocity 

profiles decay smoothly to zero in the free stream at 

the edge of the boundary layer. The opposite effect 
is caused by an increase in time.A rise in  from 

6.36, 7.73 to 10.00 causes a decrease in flow 

velocity U near the wall in this case the maximum 

velocity arises for the least time progressed.With 

more passage of time t = 10.00 the flow is 

decelerated.Again there is a reverse in the response 

at Y =3.5, and thereafter velocity is maximized with 

the greatest value of time. A similar response is 

observed for the non-Newtonian fluid ( 0  ), but 

clearly enhances the velocity very sharply and peaks 

highly in close vicinity to the plate surface 

compared in case of Newtonian fluid.  

In figure 2(b), in case of Newtonian fluids 

(=0) and non-Newtonian fluids ( 0  ), the 

thermophoretic parameter is seen to increase 

temperature throughout the bounder layer.All 

profiles increases from the maximum at the wall to 

zero in the free stream. The graphs show therefore 

that increasing thermophoretic parameter   heated 

the flow. With progression of time, however the 

temperature T is consistently enhanced i.e. the fluid 

is cool as time progress. 
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In figure 2(c) theopposite response is 

observed for the concentration field C. In case of 

Newtonian fluids (=0) and non-Newtonian fluids (

0  ), the thermophoretic parameter  

increases, the concentration throughout the 

boundary layer regime (0<Y<14) decreased. 

 

 
 

  In figures 3(a) to 3(c) we have presented 

the variation of velocity U, temparature T and 

concentration C versus (Y) with collective effects of 

thermophoretic parameter at X = 0 for aiding 

flow. In case of Newtonian fluids ( = 0), an 

increase in  from 0.0 through 0.5 to maximum 

value of 1.0 as depicted in figure 3(a) for aiding 

flow (N>0). Clearly enhances the velocity U which 
ascends sharply and peaks in close vicinity to the 

plate surface (Y=0). With increasing distance from 

the plate wall however the velocity U is adversely 

affected by increasing thermophoretic effect i.e. 

theflow is decelerated. Therefore close to the plate 

surface the flow velocity is maximized for the case 

of But this trend is reversed as we progress 

further into the boundary layer regime. 

 
 

The switchover in behavior corresponds to 

approximately Y =3.5, with increasing velocity 

profiles decay smoothly to zero in the free stream at 

the edge of the boundary layer.The opposite effect is 

caused by an increase in time. A rise in time t from 

6.36, 7.73 to 10.00  causes a decrease in flow 

 
 

velocity U near the wall in this case the 

maximum velocity arises for the least time 

progressed.With more passage of time t = 10.00 the 

flow is decelerated. Again there is a reverse in the 

response at Y =3.5, and thereafter velocity is 

maximized with the greatest value of time. A similar 

response is observed for the non-Newtonian fluid (

0  ), but clearly enhances the velocity very 

sharply and peaks highly in close vicinity to the 

plate surface compared in case of Newtonian fluid.  
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In figure 3(b), in case of Newtonian fluids 

(=0) and non-Newtonian fluids ( 0  ), the 

thermophoretic parameter   is seen to decrease 

temperature throughout the bounder layer. All 

profiles decreases from the maximum at the wall to 

zero in the free stream. The graphs show therefore 

that increasing thermophoretic parameter   cools the 

flow. With increasing of time t, the temperature T is 

consistently enhanced i.e. the fluid is heated as time 

progress. 

In figure 3(c) a similar response is 

observed for the concentration field C. In case of 
Newtonian fluids (=0) and non-Newtonian fluids (

0  ), the thermophoretic parameter   increases, 

the concentration throughout the boundary layer 

regime (0<Y<14) decreased. All profiles decreases 

from the maximum at the wall to zero in the free 

stream. 
Figures 4(a) to 4(c) illustrate the effect of 

Prandtl number (Pr), Viscoelastic parameter () and 

time t  on velocity (U), temperature (T) and 

concentration (C) without thermophoretic effect 

(=0) at  X=1.0.Pr defines the ratio of momentum 

diffusivity () to thermal diffusivity. In case of air 

based solvents  i.ePr = 0.71, an increase in  from 

0.000, 0.003 and the maximum value of 0.005 as 

depicted in figure 4(a), clearly enhances the velocity  

U  which ascends sharply and peaks in close vicinity 

to the plate surface (Y=0),with increasing distance 

from the plate wall the velocity U is adversely 

affected by increasing viscoelasticity i.e. the flow is 

decelerated. Therefore close to the plate surface the 

flow velocity is maximized for the case ofnon- 

Newtonian fluid( 0  ). The switchover in 

behavior corresponds to approximately Y=2.  

 

 
With increasing Y, velocity profiles decay 

smoothly to zero in the free stream at the edge of 

theboundary layer. Pr<1 physically corresponds to 

cases where heat diffuses faster than momentum. In 

the case of water based solvents i.e. Pr = 7.0, a 

similar response is observed for the velocity field in 

figure 4(a). 

In figure 4(b), in case of air based solvents 
i.e. Pr = 0.71, an increase in viscoelasticity  

increasing from 0.000, 0.003 to 0.005, temperature 

T is markedly reduced throughout the boundary 

layer. In case of water based solvents i.e. Pr = 7.0 

also a similar response is observed, but it is very 

closed to the plate surface. The descent is 

increasingly sharper near the plate surface for higher 

Pr values a more gradual monotonic decay is 

witnessed smaller Pr values in this case, cause a 

thinner thermal boundary layer thickness and more 

uniform temperature distributions across the 

boundary layer. Smaller Pr fluids possess higher 
thermal conductivities so that heat can diffuse away 
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from the plate surface faster than for higher Pr fluids 

(thicker boundary layers). Our computations show 

that a rise in Pr depresses the temperature function, 

a result constant with numerous other studies on 

coupled heat and mass transfer. For the case of Pr = 

1, thermal and velocity boundary layer thickness are 

equal. 
A similar response is observed for the 

concentration field C in figure 4(c). In both cases Pr 

= 0.71 and Pr = 7.0, when  increasing from 0.000, 

0.003 to 0.005, concentration C also reduced 

throughout the boundary layer regime (0<Y<14). 

All profiles decreases from the maximum at the wall 

to zero in the free stream.    

 

 

 
 

Figures 5(a) to 5(c) illustrate the effect of 

Prandtl number (Pr), Viscoelastic parameter () and 

time t  on velocity U, temperature T and 

concentration C with thermophoretic effect ( = 

0.5)  at  X=1.0. In case of air based solvents  i.ePr = 

0.71, an increase in  from 0.000, 0.003 and the 
maximum value of 0.005 as depicted in figure 5(a), 

clearly enhances the velocity  U  which ascends 

sharply and peaks in close vicinity to the plate 

surface (Y=0). With increasing Y, velocity profiles 

decay smoothly to zero in the free stream at the edge 

of the boundary layer.  

In figure 5(b), in case of air based solvents 

i.e. Pr = 0.71, an increase in viscoelasticity  

increasing from 0.000, 0.003 to 0.005, temperature 

T is markedly reduced throughout the boundary 

layer. In case of water based solvents i.e. Pr = 7.0 

also a similar response is observed, but it is very 

closed to the plate surface. A similar response is 

observed for the concentration field C in figure 

5(c).In both cases Pr = 0.71 and Pr = 7.0, when  

increasing from 0.000, 0.003 to 0.005, concentration 
C also reduced throughout the boundary layer 

regime (0<Y<14). All profiles decreases from the 

maximum at the wall to zero in the free stream.   

 
Figures 6(a) to 6(c) depict the distributions 

of velocity U, temperature T and concentration C  

versus coordinate (Y) for various Schmidtnumbers 

(Sc) with collective effects of thermophoretic 

parameter () in case of Newtonian fluids (=0) 

and time (t), close to the leading edge at X = 1.0, are 

shown. Correspond to Schmidt number Sc=0.6  an 

increase in from 0.0 through 0.5 to 1.0 as 

depicted in figure 6(a), clearly enhances the velocity 

U which ascends sharply and peaks in close vicinity 
to the plate surface (Y=0). With increasing distance 

from the plate wall however the velocity U is 

adversely affected by increasing thermophoretic 

effect i.e. the flow is decelerated. 

 
Therefore close to the plate surface the 

flow velocity is maximized for the case of 

But this trend is reversed as we progress 

further into the boundary layer regime. The 

switchover in behavior corresponds to 
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approximately Y =3.5, with increasing velocity 

profiles decay smoothly to zero in the free stream at 

the edge of the boundary layer.A similar response is 

observed in case of Schmidt number Sc=2.0 also. 

 

 
 

With higher Sc values the gradient of 

velocity profiles is lesser prior to the peak velocity 

but greater after the peak. 

In figure 6(b), in case of Newtonian fluids 

(=0) and for Schmidt number Sc=0.6, and 2.0 the 

increasing in thermophoretic parameter is seen to 

decrease the temperature throughout the bounder 

layer. All profiles decreases from the maximum at 

the wall to zero in the free stream. The graphs show 

therefore that decreasing thermophoretic parameter   
cools the flow. With progression of time, however 

the temperature T is consistently enhanced i.e. the 

fluid is heated as time progress. 

In figure 6(c) a similar response is 

observed for the concentration field C. In case of 

Newtonian fluids (=0) and for Schmidt number 

Sc=0.6, and 2.0, the increasing in thermophoretic 

parameter  increases the concentration 

throughout the boundary layer regime (0<Y<14). 

All profiles increases from the maximum at the wall 

to zero in the free stream. Sc defines the ratio of 
momentum diffusivity () to molecular diffusivity 

(D). For Sc<1, species will diffuse much faster than 

momentum so that  

 

 
 

maximum concentrations will be associated 

with this case (Sc = 0.6).For Sc > 1, momentum will 

diffuse faster than species causing progressively 

lower concentration values. With a increase in 
molecular diffusivity concentration boundary layer 

thickness is therefore increased. For the special case 

of Sc = 1, the species diffuses at the same rate as 

momentum in the viscoelastic fluid. Both 

concentration and boundary layer thicknesses are 

the same for this case. An increase in Schmidt 

number effectively depresses concentration values 

in the boundary layer regime since higher Sc values 

will physically manifest in a decrease of molecular 

diffusivity (D) of the viscoelastic fluid i.e. a 

reduction in the rate of mass diffusion. Lower Sc 
values will exert the reverse influence since they 

correspond to higher molecular diffusivities. 

Concentration boundary layer thickness is therefore 

considerably greater for Sc = 0.6 than for Sc = 2.0. 

Figures 7(a) to 7(c) depict the distributions of 

velocity U, temperature T and concentration C 

versus coordinate (Y) for various Schmidt numbers 

(Sc) with collective effects of thermophoretic 

parameter () in case of non-Newtonian fluids(

0  )  and time (t), close to the leading edge at X 

= 1.0, are shown. Correspond to Schmidt number 

Sc=0.6 an  
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increase in from 0.0 through 0.5 to 1.0 

as depicted in figure 7(a),clearly enhances the 

velocity U which ascends sharply and peaks in close 

vicinity to the plate surface (Y=0). With increasing 
distance from the plate wall however the velocity U 

is adversely affected by increasing thermophoretic 

effect i.e. the flow is decelerated. Therefore close to 

the plate surface the flow velocity is maximized for 

the case of But this trend is reversed as we 

progress further into the boundary layer regime. The 

switchover in behavior corresponds to 

approximately Y =3.5, with increasing velocity 

profiles decay smoothly to zero in the free stream at 

the edge of the boundary layer. A similar response is 

observed in case of Schmidt number Sc=2.0 also. 
All profiles descend smoothly to zero in the free 

stream. With higher Sc values the gradient of 

velocity profiles is lesser prior to the peak velocity 

but greater after the peak. 

In figure 7(b), in case of non-Newtonian 

fluids ( 0  ) and for Schmidt number Sc=0.6, and 

2.0 the increasing in thermophoretic parameter is 

seen to decrease the temperature throughout the 

bounder layer. All profiles decreases from the 

maximum at the wall to zero in the free stream. The 

graphs show therefore that decreasing 

thermophoretic parameter cools the flow. With 

progression of time, however the temperature T is 

consistently enhanced i.e. the fluid is heated as time 

progress. 

In figure 7(c) a similar response is observed for the 

concentration field C. In case of non-Newtonian 

fluids ( 0  ) and for Schmidt number Sc=0.6, and 

2.0, the increasing in thermophoretic parameter  

increases the concentration throughout the boundary 

layer regime (0<Y<14). All profiles increases from 

the maximum at the wall to zero in the free stream. 

Sc defines the ratio of momentum diffusivity (n) to 

molecular diffusivity (D). For Sc<1, species will 

diffuse much faster than momentum so that 

maximum concentrations will be associated with 

this case (Sc = 0.6). For Sc > 1, momentum will 

diffuse faster than species causing progressively 
lower concentration values. With a increase in 

molecular diffusivity concentration boundary layer 

thickness is therefore increased. For the special case 

of Sc = 1, the species diffuses at the same rate as 

momentum in the viscoelastic fluid. Both 

concentration and boundary layer thicknesses are 

the same for this case. An increase in Schmidt 

number effectivelydepresses concentration values in 

the boundary layer regime since higher Sc values 

will physically manifest in a decrease of molecular 

diffusivity (D) of the viscoelastic fluid i.e. a 

reduction in the rate of mass diffusion. Lower Sc 
values will exert the reverse influence since they 

correspond to higher molecular diffusivities. 

Concentration boundary layer thickness is therefore 

considerably greater for Sc = 0.6 than for Sc = 2.0. 

Figures 8a to 8c present the effects of buoyancy 

ratio parameter, N on U, T and C profiles. The 

maximum time elapse to the steady state scenario 

accompanies the only negative value of N i.e. N = -

0.5. For N = 0 and then increasingly positive values 

of N up to 5.0, the time taken, t, is steadily reduced. 

As such the presence of aidingbuoyancy forces 
(both thermal and species buoyancy force acting in 

unison) serves to stabilize the transient flow regime. 

The parameter 
 

 

*

w

w

C C
N

T T









 


 
and expresses 

the ratio of the species (mass diffusion) buoyancy 

force to the thermal (heat diffusion) buoyancy force. 

When N = 0 the species buoyancy term, NC 
vanishes and the momentum boundary layer 

equation (13) is de-coupled from the species 

diffusion (concentration) boundary layer equation 

(15). Thermal buoyancy does not vanish in the 

momentum equation (13) since the term T is not 

affected by the buoyancy ratio.  
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When N < 0 we have the case of opposing 

buoyancy. An increase in N from -0.5, through 0, 1, 

2, 3, to 5 clearly accelerates the flow i.e. induces a 
strong escalation in stream wise velocity, U, close to 

the wall; thereafter velocities decay to zero in the 

free stream. At some distance from the plate surface, 

approximately Y = 2.0, there is a cross-over in 

profiles. Prior to this location the above trends are 

apparent. However after this point, increasingly 

positive N values in fact decelerate the flow. 

Therefore further from the plate surface, negative N 

i.e. opposing buoyancy is beneficial to the flow 

regime whereas closer to the plate surface it has a 

retarding effect.  A much more consistent response 

to a change in the N parameter is observed in figure 
8b, where with a rise from -0.5 through 0, 1.0, 2.0, 

3.0 to 5.0 (very strong aiding buoyancy case) the 

temperature throughout the boundary layer is 

strongly reduced. As with the velocity field (figure 

8a), the time required to attain the steady state 

decreases substantially with a positive increase in N. 

Aiding (assisting) buoyancy therefore stabilizes the 

temperature distribution.A similar response is 

evident for the concentration distribution C, Whichs 

shown in figure 8c, also decreases with 

positiveincrease in N but reaches the steady state 
progressively faster.  

In figures 9a to 9c the variation of dimensionless 

local skin friction (surface shear stress), X ,
 Nusselt 

number (surface heat transfer gradient), XNu and 

the Sherwood number (surface concentration 

gradient), XSh , versus axial coordinate (X) for 

various viscoelasticity parameters () and time tare 

illustrated.Shear stress is clearly enhanced with 

increasing viscoelasticity (i.e. stronger elastic 

effects) i.e. the flow is accelerated, a trend 

consistent with our earlier computations in figure 

9a. 

 
The ascent in shear stress is very rapid 

from the leading edge (X = 0) but more gradual as 

we progress along the plate surface away from the 

plane.With an increase in time, t, shear stress, X is 

increased.Increasing viscoelasticity () is observed 

in figure 9b to enhance local Nusselt number, XNu

values whereas they areagain increased with greater 

time.Similarly in figure 9c the local Sherwood 

number XSh  
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values are elevated with an increase in elastic effects  
i.e. a rise in from 0 (Newtonian flow) through 

0.001, 0.003, 0.005 to 0.007 but depressed slightly 

with time.  

 
 

Finally in figures 10a to 10c the influence of 

Thermophoretic parameter and time (t) on X ,

XNu and XSh , versus axial coordinate (X) are 

depicted.  

 

 
An increase in from 0.0 through 0.3, 0.5, 1.0 to 

1.5, strongly increases both X and XNu along the 

entire plate surface i.e. for all X. However with an 

increase in time (t) both Shear stress and local 

Nusselt number are enhanced. 

 

 

 
With increasing  values, local Sherwood number,

XSh , as shown in figure 10c, is boosted 

considerably along the plate surface;gradients of the 

profiles are also found to diverge with increasing X 
values. However an increase in time, t, serves to 

increase local Sherwood numbers. 

 

6. CONCLUSIONS  
A two-dimensional, unsteady laminar 

incompressible boundary layer model has been 

presented for the external flow, heat and mass 

transfer in a viscoelastic buoyancy-driven flow past 

a semi-infinite vertical plate under the influence of 
thermophoresis. The Walters-B viscoelastic model 

has been employed which is valid for short memory 

polymeric fluids. The dimensionless conservation 

equations have been solved with the well-tested, 

robust, highly efficient, implicit Crank Nicolson 

finite difference numerical method. The present 

computations have shown that increasing 

viscoelasticity accelerates the velocity and enhances 

shear stress (local skin friction), local Nusselt 

number and local Sherwood number, but reduces 
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temperature and concentration in the boundary 

layer.  

 

7. NOMENCLATURE  
x, y coordinates along the plate generator and  

normal to the   generator respectively  

u, v velocity components along the x- and y- 

directions respectively 

g gravitational acceleration  

t time 

t  dimensionless time  

Gr  thermal Grashof number   

0k
 

Walters-B viscoelasticity parameter   

L reference length   

XNu Non-dimensional local Nusselt number  

Pr Prandtl number  

T temperature  

T  dimensionless temperature  

C concentration  
C  dimensionless concentration  

D mass diffusion coefficient  

N Buoyancy ratio number  

U, V dimensionless velocity components        along 

the X- and Y- directions respectively  

X, Y dimensionless spatial coordinates along          

the plate generator    and  normal to the 

generator respectively 

Sc Schmidt number  

tV
 

thermophoretic velocity 

XSh
 

non-dimensional local Sherwood number  

 

Greek symbols  
 thermal diffusivity  

 volumetric thermal expansion coefficient  
*
 

volumetric concentration expansion 

coefficient  

 viscoelastic parameter  

  thermophoretic parameter 

 kinematic viscosity  

t dimensionless time-step  

X  dimensionless finite difference grid size    in 

X-direction  

Y dimensionless finite difference grid size    in 
Y-direction 

x  
dimensionless local skin-friction  

Subscripts  
w condition on the wall  

∞  free stream condition  
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