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ABSTRACT 
Micro Electric Discharge Machining 

(micro EDM) is a non-traditional machining 

process which can be used for drilling micro 

holes in high strength to weight ratio materials 

like Titanium super alloy. However, the process 

control parameters of the machine have to be set 

at an optimal setting in order to achieve the 

desired responses. This present research study 

deals with the single and multiobjective 

optimization of micro EDM process using 

Genetic Algorithm. Mathematical models using 

Response Surface Methodology (RSM) is used to 

correlate the response and the parameters. The 

desired responses are minimum tool wear rate 

and minimum overcut while the independent 

control parameters considered are pulse on time, 

peak current and flushing pressure. In the 

multiobjective problem, the responses conflict 

with each other. This research provides a Pareto 

optimal set of solution points where each solution 

is a non dominated solution among the group of 

predicted solution points thus allowing flexibility 

in operating the machine while maintaining the 

standard quality. 

 

Keywords: Micro electric discharge machining 

(micro EDM), Response Surface methodology                    

(RSM), Genetic Algorithm (GA), Pareto Optimal. 

 

1. INTRODUCTION 
Micro-EDM is a recently developed 

process which is used to produce micro-parts in the 

range of 50μm -100μm. In this process, metal is 

removed from the workpiece by melting and 

vaporization due to pulse discharges that occur in a 

small gap between the workpiece and the electrode. 

It is a novel machining process used for fabrication 

of a micro-metal hole and can be used to machine 

hard electrically conductive materials like Titanium 

super alloy. The characteristic of non-contact 

between the tool and the work piece in this process 

eliminates the chance of stress being developed on 

the work piece by the cutting tool force.  

However, to achieve the desired responses, 

the independent control parameters which affect the 

responses are to be set at an optimal value. Such 

problems can be solved by first developing 

mathematical models correlating the responses and 

the parameters. The second step is to choose a  

 

 

suitable optimization technique to search for correct 

parameter values for the desired responses. 

Hung et al. [1] while using a helical micro-tool 

electrode with Micro-EDM combined with 

ultrasonic vibration found that it can substantially 

reduce the EDM gap, variation between entrance 

and exit and machining time, especially during deep 

micro-hole drilling. Jeong et al. [2] proposed a 

geometric simulation model of EDM drilling 

process with cylindrical tool to predict the 

geometries of tool and drilled hole matrix. The 

developed model can be used in offline 

compensation of tool wear in the fabrication of a 

blind hole..  

Mukherjee and Ray [3] presented a generic 

framework for parameter optimization in metal 

cutting processes for selection of an appropriate 

approach. In practice, a robust optimization 

technique which is immune with respect to 

production tolerances is desirable [4]. Karthikeyan 

et al. [5] conducted general factorial experiments to 

provide an exhaustive study of parameters on 

material removal rate (MRR) and tool wear rate 

(TWR) while investigating performance of micro 

electric discharge milling process.  Taguchi method 

is used for experiment design to optimize the cutting 

parameters [6]. Experimental methods increase the 

cost of investigation and at times are not feasible to 

perform all the experiments specially when the 

number of parameters and their levels are more. 

RSM is employed to design the experiments with a 

reduced number of experimental runs to achieve 

optimum responses [7]. Lalwani et al. [8] applied 

RSM to investigate the effect of cutting parameters 

on surface roughness in finish hard turning of 

MDN250 steel using coated ceramic tool.  

Yildiz [9] compared state-of-the-art 

optimization techniques to solve multi-pass turning 

optimization problems. The results show the 

superiority of the hybrid approach over the other 

techniques in terms of convergence speed and 

efficiency. Yusup et al. [10] discussed evolutionary 

techniques and basic methodology of each technique 

in optimizing machining process parameters for 

both traditional and modern machining. Application 

of evolutionary techniques in optimizing machining 

process parameters positively gives good results as 

observed in the literature. Samanta and Chakraborty 

[11] proved the applicability and suitability of 
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evolutionary algorithm in enhancing the 

performance measures of nontraditional machining 

processes. Jain et al. [12] used GA for optimization 

of process parameters of mechanical type advanced 

machining processes. Traditional optimization 

methods are not suitable to solve problems where 

the formulated objective functions and constraints 

are very complicated and implicit functions of the 

decision variables.. 

Unlike conventional optimization 

techniques, GA is a robust, global and can be 

applied without recourse to domain-specific 

heuristics. Tansela et al. [13] proposed Genetically 

Optimized Neural Network System (GONNS) for 

selection of optimal cutting conditions for micro end 

milling operation. Singh and Rao [14] presented a 

multi-objective optimization technique based on GA 

to optimize the cutting parameters in turning 

processes since undertaking frequent tests or many 

experimental runs is not economically justified. Zain 

et al [15] applied GA to optimize cutting conditions 

for minimizing surface roughness in end milling 

machining process. Ghoreishi et al [16] applied GA 

for solving multi-objective optimization problems in 

Robust Control of Distillation Column. Hence, due 

to the multifacet advantages of GA, an attempt has 

been made to optimize the micro EDM process in 

this research paper using this technique. In this 

present research work in order to simultaneously 

optimize both the conflicting objectives, multi 

objective GA is used to predict the non dominated 

Pareto optimal set of solution while drilling 

microholes in a Titanium super alloy. 

 

2. PROCESS MODELLING 

2.1 RSM Modeling 

Pradhan and Bhattacharya [17] developed 

mathematical models as shown by equations 1 and 2 

below based on second order polynomial equation 

for correlating the interactions of micro EDM 

control parameters, such as pulse on time, peak 

current and flushing pressures and their effects on 

some responses, such as tool wear rate and overcut 

during micro hole machining of titanium alloy (Ti–

6Al–4V). 

Table 1 lists the values for process control 

parameters of pulse on time, peak current and 

flushing pressures with five levels for each 

parameter. A sum of twenty experimental runs is 

designed using Center composite design. The 

combinatorial effects of process control parameters 

at different levels on the measured response are 

listed in Table 2.  

 

 

 

 

 

 

Table 1   Coded and Actual control parameter values 

at different levels 

 Levels 

1 2 3 4 5 

Coded 

value 

-1.682 -1 0 1 1.682 

Pulse-on-

time (µs) 

1 5 12 18 22 

Peak 

current (A) 

0.4 0.7 1.2 1.7 2.0 

Flushing 

pressure 

(Kg/cm
2
) 

0.1 0.2 0.3 0.4 0.5 

 

Table 2   Design of experiments matrix showing 

coded values and observed responses 

 

 

Sl. 

No 

Coded values of parameters Actual values of Responses 

 

Pulse 

on 

time 

(µs) 

 

Peak 

current 

(A) 

 

Flushin

g  

pressure 

(Kg/cm
2

) 

 

 

Tool wear 

rate 

(mg/min) 

 

Overcut 

(mm) 

1 -1 -1 -1 0.00033 0.0510 

2 1 -1 -1 0.00040 0.0390 

3 -1 1 -1 0.00047 0.0455 

4 1 1 -1 0.00136 0.0340 

5 -1 -1 1 0.00149 0.0490 

6 1 -1 1 0.00127 0.0367 

7 -1 1 1 0.00062 0.0415 

8 1 1 1 0.00123 0.0297 

9 -1.682 0 0 0.00062 0.0665 

10 1.682 0 0 0.00112 0.0503 

11 0 -1.682 0 0.00066 0.0321 

12 0 1.682 0 0.00089 0.0195 

13 0 0 -1.682 0.00060 0.0385 

14 0 0 1.682 0.00150 0.0372 

15 0 0 0 0.00081 0.0402 

16 0 0 0 0.00074 0.0382 

17 0 0 0 0.00077 0.0399 

18 0 0 0 0.00078 0.0400 

19 0 0 0 0.00082 0.0410 

20 0 0 0 0.00078 0.0412 

 

The mathematical model correlating the tool wear 

rate with the process control parameters is 

developed as: 

 

Yu(twr) = 0.000708 + 0.000070(x1) - 0.000058(x2) + 

0.000296(X3) + 0.000011(x1
2
)  -   

                

0.000004(x2
2
)+0.000095(x3

2
)+0.000112(x1x2)-

0.000038(x1x3)–0.000252(x2x3).        (1) 

 

Similarly, the mathematical model for overcut is 

developed as: 
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Yu(oc) =  0.044513 - 0.006398(x1) - 0.0035(x2) - 

0.001071(x3)+0.001980(x1
2
)-0.005609(x2

2
)- 

               0.000841(x3
2
) + 0.000054(x1x2)-

0.00002(x1x3)-0.0005(x2x3).                                       

(2)     

       

Where x1, x2 and x3 are pulse on time, peak 

current and flushing pressure and Yu(twr) and 

Yu(oc) are the responses for tool wear rate and 

overcut respectively. The effects of linear, higher 

order and the interaction of the independent process 

variables are represented in equations (1) and (2). 

 

3. SINGLE OBJECTIVE OPTIMIZATION 
3.1. Optimization using GA 

Genetic algorithm is an evolutionary 

algorithm which applies the idea of survival of the 

fittest amongst an interbreeding population to create 

a robust search strategy. Initially a finite population 

of solutions to a specified problem is maintained. It 

then iteratively creates new populations from the old 

by ranking the solutions according to their fitness 

values and interbreeding the fittest to create new 

offsprings which are optimistically closer to the 

optimum solution to the problem at hand. It uses 

only the fitness value and no other knowledge is 

required for its operation. It is a robust search 

technique different to the problem solving methods 

used by more traditional algorithms which tend to 

be more deterministic in nature and get stuck up at 

local optima. As each generation of solutions is 

produced, the weaker ones fade away without 

producing offsprings, while the stronger mate, 

combining the attributes of both parents, to produce 

new and perhaps unique offsprings to continue the 

cycle. Occasionally, mutation is introduced into one 

of the solution strings to further diversify the 

population in search for a better solution. 

The present research work optimizes the 

desired response and control parameters by writing 

the mathematical models as developed in equations 

1 and 2 as .M-files and then solved by GA using the 

MATLAB software. The initial population size 

considered while running the GA is 20. A test of 10 

runs has been conducted and the results are listed in 

Tables 3 and 4 for minimum tool wear rate and 

minimum overcut respectively.  

The GA predicted value of minimum tool 

wear rate and the corresponding control parameter 

values are shown in Figure 1. It is observed from the 

figure that the best minimum tool wear rate 

predicted using GA is 0.00082663 mg/min with the 

corresponding control parameter values of 1µs for 

pulse on time, 0.4 A for peak current and 0.1 

kg/cm
2
. 
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Fig. 1  GA predicted plot for minimum tool wear 

rate and the control parameter values 

The results predicted using GA for 

minimum tool wear rate is listed in Table 3. Trial 

and error method for the selection of initial 

population size found the best result when the initial 

population size of 20 was chosen. 

Table 3  GA predicted results for minimum tool 

wear rate 

 

 

Trial 

number 

Control parameters  

Tool wear 

rate 

    (mg/min) 

 

Pulse 

on 

time 

(µs) 

 

Peak 

current 

(A) 

 

Flushing  

pressure 

       

(Kg/cm
2
) 

 

1 18 1.7 0.4 0.00195386 

2 18 1.7 0.4 0.00199364 

3 18 1.7 0.4 0.00225604 

4 12 1.2 0.3 0.00285234 

5 12 1.2 0.3 0.00452525 

6 12 1.2 0.3 0.00625264 

7 5 0.7 0.2 0.00975433 

8 5 0.7 0.2 0.00094524 

9 1 0.4 0.1 0.00089732 

10 1 0.4 0.1 0.00082663 

     

     

Similarly, the GA predicted value of 

minimum overcut and the corresponding control 

parameter values are shown in Figure 2. The GA 

predicted value of minimum overcut and the 

corresponding control parameter values are shown 

in Figure 2. It is observed from the figure that the 
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minimum overcut  predicted using GA is 

0.00098289 mm with the corresponding control 

parameter values of 1.5µs for pulse on time, 1.9 A 

for peak current and 0.5 kg/cm
2
. The results 

predicted using GA for minimum overcut is listed in 

Table 4. 
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Fig. 2  GA predicted plot for minimum overcut and 

the control parameter values 

 

 

 

 

 

 

 

Table 4  GA predicted results for minimum overcut 

 

 

Trial 

number 

Control parameters  

Overcut    

(mg/min) 
 

Pulse 

on 

time 

(µs) 

 

Peak 

current 

(A) 

 

Flushing  

pressure 

       

(Kg/cm
2
) 

 

1 18 0.7 0.1 0.0526562 

2 18 0.7 0.1 0.0517556 

3 12 0.7 0.2 0.0462829 

4 12 1.2 0.2 0.0482794 

5 12 1.2 0.3 0.0358922 

6 5 1.2 0.3 0.0278363 

7 5 1.2 0.4 0.0265262 

8 1 1.7 0.4 0.0144687 

9 1 1.7 0.5 0.0128623 

10 1.5 1.9 0.5 0.0098289 

 

3.2 Validity of GA predicted results 

Validation of the simulation results with 

the experimental results is done in order to conform 

the simulation results to the actual working 

conditions and to know how much is it varying with 

the actual experimental results which is measured by 

the percentage of prediction error. 

The percentage of prediction error is calculated as 

Prediction error%  

100
result  alExperiment

result predictedGA  -result  alExperiment


 

In order to validate the test results 

predicted by GA, five random experimental results 

are compared with the GA predicted results as 

shown in Table 5. 

 

Table 5 Comparison of Experimental and GA predicted results 

 

Sl.no. 

Experimental result GA predicted result Prediction error % 

Tool wear rate overcut Tool wear rate overcut Tool wear rate overcut 

1 0.00112 0.0665 0.00109 0.06483 2.678 2.511 

2 0.00136 0.0503 0.00128 0.0542 5.882 7.195 

3 0.00089 0.0321 0.00083 0.0315 6.741 1.869 

4 0.00152 0.0195 0.00148 0.0191 2.631 2.051 

5 0.00082 0.0402 0.0008263 0.0413 0.762 2.663 

Average percentage of error 3.738 3.257 

 

It is observed from the table that average prediction 

percentage error is well within acceptable limits 

thus establishing the results predicted using GA to 

be valid. 

 

4. MULTI OBJECTIVE OPTIMIZATION 
Multi-objective optimization is the process 

of simultaneously optimizing two or more 

conflicting objectives subject to certain constraints.  

 

Multiobjective optimization problems are also found 

in machining processes. For nontrivial 

multiobjective problems, such as minimizing tool 

wear rate and minimizing overcut while drilling 

microholes by microEDM on a Titanium alloy, it is 

difficult to identify a single solution that 

simultaneously optimizes each objective. While 

searching for solutions, one reaches points where 

upon an attempt to improve an objective further 

deteriorates the second objectives. A tentative 
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solution during such cases is called non-dominated, 

Pareto optimal, if it cannot be eliminated by 

replacing it with another solution which improves an 

objective without worsening the other. The main 

objective when setting up and solving a 

multiobjective optimization problem is to find such 

non-dominated solutions. 

Friedrich et al [18] performed runtime 

analyses and observed that a fair Multi Objective 

Evolutionary Algorithm has a marked preference for 

accepting quick small improvements. This helps to 

find new solutions close to the current population 

quicker. Different types of multi objective GA 

developed for specific purpose differ from each 

other mainly by using specialized fitness functions 

and introducing methods to promote solution 

diversity. An elitist multiobjective GA ensures that 

the best solution does not deteriorate in the 

succeeding generations. This approach uses a 

priority-based encoding scheme for population 

initialization. 

Eiben and Smit [19] observed that adoption 

of parameter tuners would enable better 

evolutionary algorithm design. Using tuning 

algorithms one can obtain superior parameter values 

as well as information about problem instances, 

parameter values, and algorithm performance. This 

information can serve as empirical evidence to 

justify design decisions. Lianga and Leung [20] 

integrated GA with adaptive elitist-population 

strategies for multimodal function optimization. 

Adaptive Elitist GA is shown to be very efficient 

and effective in finding multiple solutions of 

complicated benchmark and real-world multimodal 

optimization problems. 

Zio and Bazzo [21] proposed a clustering 

procedure for reducing the number of representative 

solutions in the Pareto Front of multiobjective 

optimization problems. The procedure is then 

applied to a redundancy allocation problem. The 

results show that the reduction procedure makes it 

easier for the decision maker to select the final 

solution and allows him or her to discuss the 

outcomes of the optimization process on the basis of 

his or her assumed preferences. The clustering 

technique is shown to maintain the Pareto Front 

shape and relevant characteristics. Su and Hou [22] 

showed that the integrated multi population 

intelligent GA approach can generate the Pareto-

optimal solutions for the decision maker to 

determine the optimal parameters to assure a stable 

process and product qualities in the nano-particle 

milling process.  

The chief advantage of GA when applied to 

solve multi-objective optimization problems is the 

computation of an approximation of the entire 

Pareto front in a single algorithm run. Thus, 

considering the advantages of GA for solving 

multiobjective problems, it is applied to optimize 

the process of microhole drilling by micro EDM.  

4.1 Multiobjective Optimization using Genetic 

Algorithm 

GA is run in MATLAB for generating 

Pareto optimal solution points for minimizing tool 

wear rate and overcut while drilling micro holes by 

micro EDM in Titanium super alloy. Equation for 

creating a fitness function for the multi objective 

optimization is written in a .M file. The range of the 

process parameters is placed as bounds on the three 

input control variables and the following algorithm 

options are set.  

Selection function  : Tournament of 

size 2 

Crossover function  : scattered 

Mutation function  : Adaptive 

feasible 

Direction of migration : Forward with migration    

                                                  function 0.2 

Distance measure function  : distance 

crowding 

Population size  : 75 

The variant of GA used to solve this 

multiobjective optimization problem is a controlled 

elitist genetic algorithm (a variant of NSGA-II). 

Elitist GA favors individuals with better fitness 

value. A controlled elitist GA maintains the 

diversity of population for convergence to an 

optimal Pareto front.  

Weighted average change in the fitness 

function value over 150 generations is used as the 

criteria for stopping the algorithm. The optimized 

pareto front achieved after 50 iterations is shown in 

Figure 1. Input control parameters corresponding to 

each of the pareto optimal set of solutions are 

tabulated in Table 6 .  
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Fig. 3 Pareto-optimal set of solutions obtained for 

multi objective optimization 
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The two conflicting responses of minimizing tool 

wear rate and overcut are marked along x-axis and 

y-axis respectively as shown in Figure 3. The 

individual star marks between these axes depict 

individual non dominated solution point among the 

pareto optimal set of all the star points which form 

the pareto front. The observed responses and the 

corresponding control parameter values are listed in 

Table 6. 

From the table, it is observed that an 

improvement in minimizing tool wear rate 

deteriorates the quality of overcut and vice versa. 

Thus, each solution point is a unique non dominated 

solution point. 

 

Table 6    Process decision variables corresponding 

to each of  the pareto optimal solution point                

and  the predicted responses using GA 

 

 

Sl 

no. 

 

Control parameters 

 

Responses 

Pulse on time (µs) Peak current 

(A) 

Flushing pressure 

(Kg/cm
2
) 

Tool wear rate 

(mg/min) 

Overcut  

(mm) 

1 13.722 0.752 0.1 0.000786 0.00965 

2 13.730 0.760 0.108 0.00079 0.0096 

3 13.736 0.768 0.115 0.000798 0.00958 

4 13.743 0.775 0.122 0.000799 0.00952 

5 13.756 0.780 0.128 0.000804 0.0095 

6 13.766 0.787 0.132 0.000805 0.00948 

7 13.773 0.796 0.139 0.000806 0.00946 

8 13.782 0.80 0.142 0.000816 0.00944 

9 13.788 0.806 0.148 0.000817 0.00942 

10 13.792 0.810 0.153 0.000821 0.0094 

11 14.805 0.817 0.159 0.000823 0.00938 

12 14.808 0.825 0.164 0.000826 0.00936 

13 14.818 0.836 0.169 0.000827 0.00934 

14 14.824 0.844 0.173 0.00083 0.0093 

15 14.830 0.853 0.182 0.000836 0.00929 

16 14.842 0.862 0.192 0.00084 0.00928 

17 14.848 0.868 0.198 0.000844 0.00926 

18 14.858 0.870 0.2 0.000846 0.00924 

19 14.862 0.877 0.204 0.00085 0.0092 

20 14.873 0.885 0.209 0.000856 0.00919 

21 15.878 0.894 0.214 0.000859 0.00918 

22 15.885 0.898 0.218 0.000861 0.00917 

23 15.886 0.90 0.225 0.000862 0.00916 

24 15.894 0.906 0.229 0.000869 0.00915 

25 15.902 0.914 0.234 0.00087 0.0091 

26 15.906 0.918 0.238 0.000881 0.00908 

27 15.918 0.926 0.242 0.000884 0.00906 

28 15.927 0.935 0.249 0.0009 0.00903 

29 15.931 0.943 0.253 0.000901 0.00901 

30 15.957 0.953 0.259 0.000924 0.00898 

31 15.958 0.960 0.264 0.000932 0.00897 

32 15.959 0.972 0.269 0.000944 0.00896 

33 15.96 0.998 0.274 0.000954 0.00895 

 

5. RESULT AND ANALYSIS 
While drilling micro holes by micro EDM 

in a Titanium (Ti-6Al-4V) super alloy, two 

objectives, tool wear rate and overcut are considered 

to be important as they affect the machining 

efficiency and the quality of the product 

respectively. While optimizing the responses 

individually, the GA predicted value of minimum 

tool wear rate is 0.00082663 mg/min with the  

 

 

corresponding control parameter values of 1µs for 

pulse on time, 0.4 A for peak current and 0.1 

kg/cm
2
. It is observed that the all three of the control 

parameters are to be set at low values in order to 

obtain minimum tool wear rate. 

Similarly, the minimum overcut  predicted 

using GA is 0.00098289 mm with the corresponding 

control parameter values of 1.5µs for pulse on time, 

1.9 A for peak current and 0.5 kg/cm
2.
. It is 

observed that pulse on time is to be set at low value 
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while the peak current and flushing pressure are to 

be set at maximum values to obtain minimum 

overcut. 

Also, the average  percentage prediction 

error of GA when compared with the experimental 

results as shown in Table 5 is 3.738 % and 3.257% 

for tool wear rate and overcut respectively . Thus, 

the GA predicted results are within acceptable limits 

establishing the validity of the GA as an appropriate 

optimization technique for the micro EDM process.  

The two objectives are conflicting in nature. This 

multi objective problem is then optimized using the 

multiobjective GA  in  MATLAB software. The 

solution obtained is a set of pareto optimal points as 

shown in Fig. 3 where each point is non dominated. 

The observed responses were obtained in a single 

process parametric combination setting. Table 6 

records the range of values for responses at different 

parametric combination. It is observed that an 

increase in peak current increases the available 

discharge energy, hence the tool wear rate also 

increases. While the peak current decreases, the 

available discharge energy also decreases. This 

results in increase of the machining time which in 

turn increases the overcut. Higher pulse on time 

suggests more machining time, hence increase in 

pulse on time increases both the overcut and the tool 

wear rate. It is also observed that larger the flushing 

pressure, more is the amount of heat energy taken 

away by the dielectric and correspondingly larger 

will be the machining time. Hence, as flushing 

pressure increases the overcut increases but due to 

the cooling effect, the tool wear rate decreases. 

From the response values as listed in Table 

6, it is observed that an improvement in minimizing 

tool wear rate  deteriorates the quality of overcut 

and vice versa. Thus, each solution point is a unique 

non dominated solution point. Therefore, instead of 

a single solution point, a set of solution points are 

predicted for simultaneously optimizing both the 

responses. A change in the value of any one of the 

considered control parameters further improves any 

one of the responses at the cost of degrading the 

second response. 

In real life situations, as in this case of 

multiobjective optimization of micro EDM process, 

the responses often conflict with each other. At such 

situations it is often difficult and at times impossible 

to predict a single solution point that optimizes both 

the responses. Pareto optimal set of solution 

provides a novel approach for solving such 

problems. This result is helpful as it provides a wide 

range of optimal setting of control parameters for 

simultaneously optimizing both the responses. 

Hence, flexibility in the operation of the machine is 

achieved by presenting different parametric 

combinations for the range of predetermined desired 

responses. 

 

 

6. CONCLUSION 
Titanium super alloy has a wide range of 

applications in engineering due to its characteristic 

of high strength to weight ratio. Micro EDM offers a 

suitable process for drilling microholes in Titanium 

alloy mainly due to its characteristic of non contact 

between the tool and the work piece. The qualities 

required during micro hole drilling in Titanium alloy 

is to decrease the tool wear rate and overcut while 

drilling a microhole. The tool wear rate can be 

considered as a measure of machining efficiency 

and the overcut a measure of the quality of the hole 

produced. Thus, it is a min-min two objective 

optimization problem. Also, the two objectives are 

conflicting in nature.  Solution to such optimization 

problems is best described by a set of pareto optimal 

non dominated points as presented in this research 

work . The decision maker is left with the choice of 

trade off between these two objectives which further 

increase the flexibility to select the optimal cutting 

parameters.  
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