
Dr. B. Krishna Gandhi, Dr. M.Aparna / International Journal of Engineering Research and 

Applications (IJERA) ISSN: 2248-9622   www.ijera.com  
  Vol. 2, Issue 5, September- October 2012, pp.1767-1771 

1767 | P a g e  

Analytic Representations Of Convex And Starlike Functions 
 

Dr. B. KRISHNA GANDHI, Dr. M.APARNA 
 

 

ABSTRACT 
 In this paper we investigated the 

properties of functions defined in terms of the 

quotient of the analytic representations of convex 

and starlike functions. In particular, we consider 

the class Gb consisting of normalized functions f. 

We determine values of b for which 

)(* SGb  , 12/1   and also find values 

of b for which Gb  K. It is known that K

S*(1/2), showing that KSG  )2/1(*1 . We 

also find values of b for which Gb is not starlike 

and not univalent.  
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1. INTRODUCTION: 
A function f of the complex variable „z‟ is 

analytic in an open disc if it is analytic at each point 

in that disc. 

An analytic function f on a domain D is 

said to be univalent if it does not take the same 

value twice i.e., )()( 21 zfzf  for all pairs of 

distinct points z1 and z2 in D. 

A conformal mapping of the unit disc onto 

a domain starlike with respect to the origin is said to 

be starlike function. 

Let S denote the class of functions f normalized by 

f(0) = 01)0( f that are analytic and univalent 

in the unit disk  1:  zz . A function f in S 

is said to be starlike of order ,10,  and is 

denoted by S*     if   Re   ,)(/)(  zfzfz

z  
 and is said to be convex and is denoted by K if  Re 

   zzfzfz ,0)(/)(1 . Mocanu studied 

linear combinations of the representations of convex 

and starlike functions and defined the class of  -

convex functions. S.S. Miller was shown that if 

     0)(/)(1)(/)(1Re  zfzfzzfzfz 

 for z , then f is starlike for    real and convex 

for 1 . 

 In this paper we investigated the properties 
of functions defined in terms of the quotient of the 

analytic representations of convex and starlike 

functions. In particular, we consider the class Gb 

consisting of normalized functions f defined by  
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We determine values of b for which 

)(* SGb  , 12/1   and also find values 

of b for which Gb K It is known that K S*(1/2). 

Show that KSG  )2/1(*1  we also find 

values of b for which Gb is not starlike and not 

univalent. 

Let T (P) denote the class of function f(z) of the 

form 
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 Which are analytic and P-valent in the open 

unit disk  1:  zandczzU  

 In this paper 
q
zD  denotes the qth- order 

differential operator, for a function )()( PTzf  . 
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To prove our result, we need the following Lemma 

given by jack. 

1.2. Lemma: Suppose ''  is analytic for 
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1.3. Theorem: Let
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Proof: It is well known that if )(z  is analytic in 
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if and only if )(z is a Schwarz function, i.e. 

1)( z  for z  with 0)0(  . 

 Let p (z) be an analytic function defined by  
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 Differences on both sides we get 
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and  

(1.3.2)               

    

    

      22
,211

,12)(

zqp

zzqp

qpzp

zpz













 






















1

)(/)(

)(/)(1

zfzfz

zfzfz

    

    

      22
,211

,12)(

zqp

zzqp

qpzp

zpz













 

If  qpSf ,* , then by Lemma 1.2 there is a 

0z for which   10 z and 

   000 zzz   . It follows from (1.3.2) that  
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Which contradicts our hypothesis. 
This completes the proof of the Theorem. 

By taking p=1, q=0, we have the following corollary 

which states as follows 

1.4. Corollary: If  
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By  above theorem,  we have the following corollary 

1.5. Corollary: )2/1(*
1 SG   

Proof: By putting b=1, p=1, q=0 in Theorem 1.3 we 

get the proof of the corollary. 
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Where w (z) is a Schwarz function. We need to find 

the largest disk Rz   for           

which       
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Dieudonne found the region of values for the 

derivatives of Schwarz functions. This led to the 

sharp bound. 
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(1.6.1) 
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Which completes the proof of the theorem. 

1.7. Theorem: KG 1  

Proof: )2/1(*

1 SG  , for  1Gf   satisfies 
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for some Schwarz function w(z). 

Putting  =1/2 in (1.3.2) we get 

1)(1  zwzGf  for z , which means 
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Which completes the proof of the theorem. 
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Where w is a Schwarz function. For ,bGf   we 

take 2/1  in (1.3.2) to obtain 

2/2)(  zwz  and 

 zzw ,2/2)( . 

We have to show that 
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the result follows. 
 Mac Gregor found the radius of convexity 

for )2/1(*S   to be   68.0332
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