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Abstract 
Multiplication is an important 

fundamental function in arithmetic operations. It 

can be performed with the help of different 

multipliers using different techniques. The 

objective of good multiplier is to provide a 

physically compact high speed and low power 

consumption. To save significant power 

consumption of multiplier design, it is a good 

direction to reduce number of operations thereby 

reducing a dynamic power which is a major part 

of total power dissipation. The main objective of 

this Dissertation is to design “Simulation of IEEE 

754 standard double precision multiplier” using 

VHDL. 
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I. INTRODUCTION 
Every computer has a floating point 

processor or a dedicated accelerator that fulfils the 

requirements of precision using detailed floating 

point arithmetic. The main applications of floating 

points today are in the field of medical imaging, 

biometrics, motion capture and audio applications. 

Since multiplication dominates the execution time of 

most DSP algorithms, so there is a need of high 
speed multiplier with more accuracy. Reducing the 

time delay and power consumption are very essential 

requirements for many applications. Floating Point 

Numbers: The term floating point is derived from 

the fact that there is no fixed number of digits before 

and after the decimal point, that is, the decimal point 

can float. There are also representations in which the 

number of digits before and after the decimal point 

is set, called fixed-point representations.  

 

Floating Point Numbers are numbers that 
can contain a fractional part. E.g. following numbers 

are the floating point numbers: 3.0, -111.5, ½, 3E-5 

etc. IEEE Standard for Binary Floating Point 

Arithmetic. The Institute of Electrical and 

Electronics Engineers (IEEE) sponsored a standard 

format for 32-bit and larger floating point numbers, 

known as IEEE 754 standard. 

This paper presents a new floating-point 

multiplier which can perform a double-precision 

floating-point multiplication or simultaneous single 

precision floating-point multiplications. Since in 

single precision floating-point multiplication results  

 

 

are generated in parallel, the multiplier’s 

performance is almost doubled compared to a 

conventional floating point multiplier. 

A. Floating Point Arithmetic 
The IEEE Standard for Binary Floating-

Point Arithmetic (IEEE 754) is the most widely used 

standard for floating-point computation, and is 
followed by many CPU and FPU implementations. 

The standard defines formats for representing 

floating-point number (including ±zero and 

denormals) and special values (infinities and NaNs) 

together with a set of floating-point operations that 

operate on these values. It also specifies four 

rounding modes and five exceptions. IEEE 754 

specifies four formats for representing floating-point 

values: single-precision (32-bit), double-precision 

(64-bit), single-extended precision (≥ 43-bit, not 

commonly used) and double-extended precision (≥ 
79-bit, usually implemented with 80 bits). Many 

languages specify that IEEE formats and arithmetic 

be implemented, although sometimes it is optional. 

For example, the C programming language, which 

pre-dated IEEE 754, now allows but does not require 

IEEE arithmetic (the C float typically is used for 

IEEE single-precision and double uses IEEE double-

precision). 

B. Double Precision Floating Point Numbers 

Thus, a total of 64 bits is needed for 

double-precision number representation. To achieve 

a bias equal to 2
1n

− 1 is added to the actual 
exponent in order to obtain the stored exponent. This 

equal 1023 for an 11-bit exponent of the double 

precision format. The addition of bias allows the use 

of an exponent in the range from −1023 to +1024, 

corresponding to a range of 0.2047 for double 

precision number. The double precision format 

offers a range from 2−1023 to 2+1023, which is 
equivalent to 10−308 to 10+308. 

Sign: 1-bit wide and used to denote the sign of the 

number i.e. 0 indicate positive number and 1 

represent negative number. 

Exponent: 11-bit wide and signed exponent in 

excess- 1023 representation. Mantissa: 52-bit wide 

and fractional component 

           1                      11                         52                                                                              

64 

Fig.1 Double Precision Floating Point Format 

Sign 
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C. Floating-Point Multiplication 

Multiplication of two floating point 

normalized numbers is performed by multiplying the 

fractional components, adding the exponents, and an 

exclusive or operation of the sign fields of both of 

the operands The most complicated part is 

performing the integer-like multiplication on the 
fraction fields . Essentially the multiplication is done 

in two steps, partial product generation and partial 

product addition. For double precision operands (53-

bit fraction fields), a total of 53 53-bit partial 

products are generated. 

 The general form of the representation of floating 

point is: 

                                      (-1) S * M * 2E  

Where 

S represents the sign bit, M represents the mantissa 

and E represents the exponent. 

Given two FP numbers n1 and n2, the product of 
both, denoted as n, can be expressed as: 

n = n1 × n2 

= (−1) S1 · p1 · 2E1 × (−1) S2 · p2 · 2E2 

= (−1) S1+S2 · (p1 · p2) · 2E1+E2 

In order to perform floating-point multiplication, a 

simple algorithm is realized: 

 Add the exponents and subtract 1023. 

 Multiply the mantissas and determine the 

sign of the result. 

 Normalize the resulting value, if necessary. 

 

D. Model Sim Overview  

ModelSim is a verification and simulation 

tool for VHDL, Verilog, SystemVerilog, SystemC, 

and mixed-language designs. ModelSim VHDL 

implements the VHDL language as defined by IEEE 

Standards 1076-1987, 1076-1993, and 1076-2002. 

ModelSim also supports the 1164-1993 Standard 

Multivalue Logic System for VHDL Interoperability, 

and the 1076.2-1996 Standard VHDL Mathematical 

Packages standards. Any design developed with 

ModelSim will be compatible with any other VHDL 

system that is compliant with the 1076 specifications 
 

II. LITERATURE SURVEY 
A few research work have been conducted 

to explain the concept of Floating Point Numbers. D. 

Goldberg [11] explained the concept of Floating 

Point Numbers used to describe very small to very 

large numbers with a varying level of precision. 

They are comprised of three fields, a sign, a fraction 

and an exponent field. B. Parhami [8] proposed 
IEEE-754 standard defining several floating point 

number formats and the size of the fields that 

comprise them. This Standard defines several 

rounding schemes, which include round to zero, 

round to infinity, round to negative infinity, and 

round to nearest. Michael L. Overton [7] performed 

the multiplication of two floating point normalized 

numbers by multiplying the fractional components, 

adding the exponents, and an Exclusive OR 

operation of the sign fields of both of the operands. 

Cho, J. Hong et al. and N. Besli et al.[5][6] 

multiplied double precision operands (53-bit fraction 

fields),in which a total of 53 53-bit partial products 

are generated . To speed up this process, the two 

obvious solutions are to generate fewer partial 

products and to sum them faster. Sumit Vaidya et 
al.[1] compared the different multipliers on the basis 

of power, speed, delay and area to get the efficient 

multiplier. It can be concluded that array Multiplier 

requires more power consumption and gives 

optimum number of components required, but delay 

for this multiplier is larger than Wallace Tree 

Multiplier. Hasan Krad et al.[4] presented a 

performance analysis of two different multipliers for 

unsigned data, one uses a carry-look-ahead adder 

and the second one uses a ripple adder. In this author 

said that the multiplier with a carry-look-ahead 

adder has shown a better performance over the 
multiplier with a ripple adder in terms of gate delays. 

In other words, the multiplier with the carrylook-

ahead adder has approximately twice the speed of 

the multiplier with the ripple adder, under the worst 

case. Soojin Kim et al.[2] described the pipeline 

architecture of high-speed modified Booth 

multipliers. The proposed multiplier circuits are 

based on the modified Booth algorithm and the 

pipeline technique which are the most widely used to 

accelerate the multiplication speed. In order to 

implement the optimally pipelined multipliers, many 
kinds of experiments have been conducted. P. 

Assady [3] presented a new high-speed algorithm. 

As multipler has to do three important steps, which 

include partial product generation, partial product 

reduction, and final addition step. In partial product 

generation step, a new Booth algorithm has been 

presented. In partial product reduction step, a new 

tree structure has been designed and in final addition 

step, a new hybrid adder using 4-bit blocks has been 

proposed. 

 

III. METHODOLOGY 
A. Methods for multiplication 

There are number of techniques that can be 

used to perform multiplication. In general, the 

choice is based upon factors such as latency, 

throughput, area, and design complexity.  

a) Array Multiplier b) Booth Multiplier 

 

Booth's multiplication algorithm is a 

multiplication algorithm that multiplies two signed 
binary numbers in two's complement notation. The 

algorithm was invented by Andrew Donald Booth..  

 

1) Booth Multiplier 

Conventional array multipliers, like the 

Braun multiplier and Baugh Woolley multiplier 

achieve comparatively good performance but they 

require large area of silicon, unlike the add-shift 

algorithms, which require less hardware and exhibit 
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poorer performance. The Booth multiplier makes use 

of Booth encoding algorithm in order to reduce the 

number of partial products by considering two bits 

of the multiplier at a time, thereby achieving a speed 

advantage over other multiplier architectures. This 

algorithm is valid for both signed and unsigned 

numbers. It accepts the number in 2's complement 
form. 

 

2) Array Multiplier 

Array multiplier is an efficient layout of a 

combinational multiplier. Multiplication of two 

binary number can be obtained with one micro-

operation by using a combinational circuit that forms 

the product bit all at once thus making it a fast way 

of multiplying two numbers since only delay is the 

time for the signals to propagate through the gates 

that forms the multiplication array. In array 

multiplier, consider two binary numbers A and B, of 
m and n bits. There are mn summands that are 

produced in parallel by a set of mn AND gates. n x n 

multiplier requires n (n-2) full adders, n half-adders 

and n2 AND gates. Also, in array multiplier worst 

case delay would be (2n+1) td.  

 

B. Booth Multiplication(Proposed work) 

Booth's algorithm involves repeatedly 

adding one of two predetermined values A and S to a 

product P, then performing a rightward arithmetic 

shift on P. Let m and r be the multiplicand and 
multiplier, respectively; and let x and y represent the 

number of bits in m and r. 

Determine the values of A and S, and the 

initial value of P. All of these numbers should have 

a length equal to (x + y + 1). Fill the most significant 

(leftmost) bits with the value of m. Fill the 

remaining (y + 1) bits with zeros.  

1) Fill the most significant bits with the value 

of (−m) in two's complement notation. Fill 

the remaining (y + 1) bits with zeros.  

2) P: Fill the most significant x bits with zeros. 

To the right of this, append the value of r. 
Fill the least significant (rightmost) bit with 

a zero.  

3) Determine the two least significant 

(rightmost) bits of P.  

a. If they are 01, find the value of 

P + A. Ignore any overflow.  

b. If they are 10, find the value of 

P + S. Ignore any overflow.  

c. If they are 00, do nothing. Use P 

directly in the next step.  

d. If they are 11, do nothing. Use P 
directly in the next step.  

4) Arithmetically shift the value obtained in 

the 2nd step by a single place to the right. 

Let P now equal this new value.  

5) Repeat steps 2 and 3 until they have been 

done y times.  

6) Drop the least significant (rightmost) bit 

from P. This is the product of m and r.  

 
Figure 2: Block Diagram of the Multiplier 

 

C. Double Precision Booth Multiplication 

Let's suppose a multiplication of 2 floating-

point numbers A and B, where A=-18.0 and B=9.5 

Binary representation of the operands: 

A = -10010.0 

B = +1001.1 

 

Normalized representation of the operands: 

A = -1.001x24 

B = +1.0011x23 

IEEE representation of the operands: 

A = 

110000000011001000000000000000000000000000

0000000000000000000000 

B = 

010000000010001100000000000000000000000000

0000000000000000000000 

 

Multiplication of the mantissas: 

•we must extract the mantissas, adding an1 as most 

significant bit, for normalization 
A= 

100100000000000000000000000000000000000000

00000000000 

B= 

100110000000000000000000000000000000000000

00000000000 

the 106-bit result of the multiplication is: 

0x558000000000 

only the most significant bits are useful: 

after normalization (elimination of the most 

significant 1), we get the 52-bit mantissa of the 
result. This normalization can lead to a correction of 

the result's exponent 

In our case, we get: 
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01 

010101100000000000000000000000000000000000

0000000000  
000000000000000000000000000000000000000000

000000000000  

 Addition of the exponents: 

exponent of the result is equal to the sum of the 
operands exponents. A 1 

can be added if needed by the normalization of the 

mantissas multiplication (this is not the case in our 

example) 

As the exponent fields (Ea and Eb) are 

biased, the bias must be removed in order to do the 

addition. And then, we must to add again the bias, to 

get the value to be entered into the exponent field of 

the result (Er): 

 

Er = (Ea-1023) + (Eb-1023) + 1023 

= Ea + Eb – 1023 
In our example, we have: 

Ea 10000000011 

Eb 10000000010 

-1023 10000000001 

Er 10000000110 

what is actually 7, the exponent of the result 

Calculation of the sign of the result: 

The sign of the result (Sr) is given by the exclusive-

or of the operands signs 

(Sa and Sb): 

Sr = Sa ⊕ Sb 
In our example, we get: 

Sr = 1 ⊕ 0 = 1 

i.e. a negative sign 

Composition of the result: the setting of the 3 

intermediate results (sign, exponent and 

mantissa) gives us the final result of our 

multiplication: 

1  10000000110 

010101100000000000000000000000000000000000

0000000000 
AxB = -18.0x9.5 = -1.0101011 x 2

1030-1023 
= -

10101011.0 = -171.010 

 
Figure 3: Schematic Diagram of Double Precision 

Multiplier 

IV. SYNTHESIS RESULTS 
This design has been implemented, 

simulated on ModelSim and synthesized for VHDL. 

The HDL code uses VHDL 2001 constructs that 

provide certain benefits over the VHDL 95 standard 
in terms of scalability and code reusability. 

Simulation based verification is one of the methods 

for functional verification of a design. In this 

method, test inputs are provided using standard test 

benches. The test bench forms the top module that 

instantiates other modules. Simulation based 

verification ensures that the design is functionally 

correct when tested with a given set of inputs. 

Though it is not fully complete, by picking a random 

set of inputs as well as corner cases, simulation 

based verification can still yield reasonably good 

results. 

 
 

Table 1. The comparison of Multipliers 

The following snapshots are taken from 

ModelSim after the timing simulation of the floating 

point multiplier core. 
Consider the inputs to the floating point multiplier 

are: 

1) A = -18.0 = -1.001x24 

A = 1 10000011 

001000000000000000000000000000000000000000

0000000000000 = 0x40F00000 

B = 9.5 = 1.0011x23 

B = 0 10000010 

001100000000000000000000000000000000000000

0000000000000 = 0x41780000 

AxB = -171.0 = -1.0101011 x27 

AxB = 1 10000110 
010101100000000000000000000000000000000000

00000000000 = 0x42E88000 

 

 
 

Figure 4: Simulation of Double Precision Multiplier 
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2) A = 134.0625 = 1.00001100001x27 

A = 

010000000110000011000010000000000000000000

0000000000000000000000  

B = -2.25 = -1.001x2
1
 

B = 

110000000000001000000000000000000000000000
0000000000000000000000  

AxB = -301.640625 = -1.00101101101001x28 

AxB = 1 10000000111 

001011011010010000000000000000000000000000

0000000  

 
Figure 5: Simulation of Double Precision Multiplier 

 

V. CONCLUSION 
In this study a floating point multiplier 

design which is capable of executing a double 
precision floating-point multiplication using booth 

algorithm. One of the important aspects of the 

presented design method is that it can be applicable 

to all kinds of floating-point multipliers. The 

presented design is compared with a ordinary 

floating point array multiplier via synthesis. The 

synthesis results showed that proposed design is 

more efficient than conventional multiplier and 

critical path increment is only one or two gate delay. 

Since modern floating-point multiplier designs have 

significantly larger area than the standard floating-
point multiplier, the percentage of the extra 

hardware will be less for those units. The methods 

presented in this study will be used on the design of 

floating-point multiplier-adder circuits. Also, the 

future work will enhance the proposed designs to 

support all IEEE754 rounding modes. 
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