
Puneet Paruthi, Tanvi Kumar,

Himanshu Singh / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1761-1766

1761 | P a g e

Simulation of IEEE 754 Standard Double Precision Multiplier

using Booth Techniques

1
Puneet Paruthi,

2
Tanvi Kumar,

 3
Himanshu Singh

1,2Dept. of ECE, BMSCE, Mukhsar, 3Asstt. Professor,ISTK,Kalawad.

Abstract
Multiplication is an important

fundamental function in arithmetic operations. It

can be performed with the help of different

multipliers using different techniques. The

objective of good multiplier is to provide a

physically compact high speed and low power

consumption. To save significant power

consumption of multiplier design, it is a good

direction to reduce number of operations thereby

reducing a dynamic power which is a major part

of total power dissipation. The main objective of

this Dissertation is to design “Simulation of IEEE

754 standard double precision multiplier” using

VHDL.

Keywords - IEEE floating point arithmetic;

Rounding; Floating point multiplier

I. INTRODUCTION
Every computer has a floating point

processor or a dedicated accelerator that fulfils the

requirements of precision using detailed floating

point arithmetic. The main applications of floating

points today are in the field of medical imaging,

biometrics, motion capture and audio applications.

Since multiplication dominates the execution time of

most DSP algorithms, so there is a need of high
speed multiplier with more accuracy. Reducing the

time delay and power consumption are very essential

requirements for many applications. Floating Point

Numbers: The term floating point is derived from

the fact that there is no fixed number of digits before

and after the decimal point, that is, the decimal point

can float. There are also representations in which the

number of digits before and after the decimal point

is set, called fixed-point representations.

Floating Point Numbers are numbers that
can contain a fractional part. E.g. following numbers

are the floating point numbers: 3.0, -111.5, ½, 3E-5

etc. IEEE Standard for Binary Floating Point

Arithmetic. The Institute of Electrical and

Electronics Engineers (IEEE) sponsored a standard

format for 32-bit and larger floating point numbers,

known as IEEE 754 standard.

This paper presents a new floating-point

multiplier which can perform a double-precision

floating-point multiplication or simultaneous single

precision floating-point multiplications. Since in

single precision floating-point multiplication results

are generated in parallel, the multiplier’s

performance is almost doubled compared to a

conventional floating point multiplier.

A. Floating Point Arithmetic
The IEEE Standard for Binary Floating-

Point Arithmetic (IEEE 754) is the most widely used

standard for floating-point computation, and is
followed by many CPU and FPU implementations.

The standard defines formats for representing

floating-point number (including ±zero and

denormals) and special values (infinities and NaNs)

together with a set of floating-point operations that

operate on these values. It also specifies four

rounding modes and five exceptions. IEEE 754

specifies four formats for representing floating-point

values: single-precision (32-bit), double-precision

(64-bit), single-extended precision (≥ 43-bit, not

commonly used) and double-extended precision (≥
79-bit, usually implemented with 80 bits). Many

languages specify that IEEE formats and arithmetic

be implemented, although sometimes it is optional.

For example, the C programming language, which

pre-dated IEEE 754, now allows but does not require

IEEE arithmetic (the C float typically is used for

IEEE single-precision and double uses IEEE double-

precision).

B. Double Precision Floating Point Numbers

Thus, a total of 64 bits is needed for

double-precision number representation. To achieve

a bias equal to 2
1n

− 1 is added to the actual
exponent in order to obtain the stored exponent. This

equal 1023 for an 11-bit exponent of the double

precision format. The addition of bias allows the use

of an exponent in the range from −1023 to +1024,

corresponding to a range of 0.2047 for double

precision number. The double precision format

offers a range from 2−1023 to 2+1023, which is
equivalent to 10−308 to 10+308.

Sign: 1-bit wide and used to denote the sign of the

number i.e. 0 indicate positive number and 1

represent negative number.

Exponent: 11-bit wide and signed exponent in

excess- 1023 representation. Mantissa: 52-bit wide

and fractional component

 1 11 52

64

Fig.1 Double Precision Floating Point Format

Sign

 Exponent Mantissa

Puneet Paruthi, Tanvi Kumar,

Himanshu Singh / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1761-1766

1762 | P a g e

C. Floating-Point Multiplication

Multiplication of two floating point

normalized numbers is performed by multiplying the

fractional components, adding the exponents, and an

exclusive or operation of the sign fields of both of

the operands The most complicated part is

performing the integer-like multiplication on the
fraction fields . Essentially the multiplication is done

in two steps, partial product generation and partial

product addition. For double precision operands (53-

bit fraction fields), a total of 53 53-bit partial

products are generated.

 The general form of the representation of floating

point is:

 (-1) S * M * 2E

Where

S represents the sign bit, M represents the mantissa

and E represents the exponent.

Given two FP numbers n1 and n2, the product of
both, denoted as n, can be expressed as:

n = n1 × n2

= (−1) S1 · p1 · 2E1 × (−1) S2 · p2 · 2E2

= (−1) S1+S2 · (p1 · p2) · 2E1+E2

In order to perform floating-point multiplication, a

simple algorithm is realized:

 Add the exponents and subtract 1023.

 Multiply the mantissas and determine the

sign of the result.

 Normalize the resulting value, if necessary.

D. Model Sim Overview

ModelSim is a verification and simulation

tool for VHDL, Verilog, SystemVerilog, SystemC,

and mixed-language designs. ModelSim VHDL

implements the VHDL language as defined by IEEE

Standards 1076-1987, 1076-1993, and 1076-2002.

ModelSim also supports the 1164-1993 Standard

Multivalue Logic System for VHDL Interoperability,

and the 1076.2-1996 Standard VHDL Mathematical

Packages standards. Any design developed with

ModelSim will be compatible with any other VHDL

system that is compliant with the 1076 specifications

II. LITERATURE SURVEY
A few research work have been conducted

to explain the concept of Floating Point Numbers. D.

Goldberg [11] explained the concept of Floating

Point Numbers used to describe very small to very

large numbers with a varying level of precision.

They are comprised of three fields, a sign, a fraction

and an exponent field. B. Parhami [8] proposed
IEEE-754 standard defining several floating point

number formats and the size of the fields that

comprise them. This Standard defines several

rounding schemes, which include round to zero,

round to infinity, round to negative infinity, and

round to nearest. Michael L. Overton [7] performed

the multiplication of two floating point normalized

numbers by multiplying the fractional components,

adding the exponents, and an Exclusive OR

operation of the sign fields of both of the operands.

Cho, J. Hong et al. and N. Besli et al.[5][6]

multiplied double precision operands (53-bit fraction

fields),in which a total of 53 53-bit partial products

are generated . To speed up this process, the two

obvious solutions are to generate fewer partial

products and to sum them faster. Sumit Vaidya et
al.[1] compared the different multipliers on the basis

of power, speed, delay and area to get the efficient

multiplier. It can be concluded that array Multiplier

requires more power consumption and gives

optimum number of components required, but delay

for this multiplier is larger than Wallace Tree

Multiplier. Hasan Krad et al.[4] presented a

performance analysis of two different multipliers for

unsigned data, one uses a carry-look-ahead adder

and the second one uses a ripple adder. In this author

said that the multiplier with a carry-look-ahead

adder has shown a better performance over the
multiplier with a ripple adder in terms of gate delays.

In other words, the multiplier with the carrylook-

ahead adder has approximately twice the speed of

the multiplier with the ripple adder, under the worst

case. Soojin Kim et al.[2] described the pipeline

architecture of high-speed modified Booth

multipliers. The proposed multiplier circuits are

based on the modified Booth algorithm and the

pipeline technique which are the most widely used to

accelerate the multiplication speed. In order to

implement the optimally pipelined multipliers, many
kinds of experiments have been conducted. P.

Assady [3] presented a new high-speed algorithm.

As multipler has to do three important steps, which

include partial product generation, partial product

reduction, and final addition step. In partial product

generation step, a new Booth algorithm has been

presented. In partial product reduction step, a new

tree structure has been designed and in final addition

step, a new hybrid adder using 4-bit blocks has been

proposed.

III. METHODOLOGY
A. Methods for multiplication

There are number of techniques that can be

used to perform multiplication. In general, the

choice is based upon factors such as latency,

throughput, area, and design complexity.

a) Array Multiplier b) Booth Multiplier

Booth's multiplication algorithm is a

multiplication algorithm that multiplies two signed
binary numbers in two's complement notation. The

algorithm was invented by Andrew Donald Booth..

1) Booth Multiplier

Conventional array multipliers, like the

Braun multiplier and Baugh Woolley multiplier

achieve comparatively good performance but they

require large area of silicon, unlike the add-shift

algorithms, which require less hardware and exhibit

Puneet Paruthi, Tanvi Kumar,

Himanshu Singh / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1761-1766

1763 | P a g e

poorer performance. The Booth multiplier makes use

of Booth encoding algorithm in order to reduce the

number of partial products by considering two bits

of the multiplier at a time, thereby achieving a speed

advantage over other multiplier architectures. This

algorithm is valid for both signed and unsigned

numbers. It accepts the number in 2's complement
form.

2) Array Multiplier

Array multiplier is an efficient layout of a

combinational multiplier. Multiplication of two

binary number can be obtained with one micro-

operation by using a combinational circuit that forms

the product bit all at once thus making it a fast way

of multiplying two numbers since only delay is the

time for the signals to propagate through the gates

that forms the multiplication array. In array

multiplier, consider two binary numbers A and B, of
m and n bits. There are mn summands that are

produced in parallel by a set of mn AND gates. n x n

multiplier requires n (n-2) full adders, n half-adders

and n2 AND gates. Also, in array multiplier worst

case delay would be (2n+1) td.

B. Booth Multiplication(Proposed work)

Booth's algorithm involves repeatedly

adding one of two predetermined values A and S to a

product P, then performing a rightward arithmetic

shift on P. Let m and r be the multiplicand and
multiplier, respectively; and let x and y represent the

number of bits in m and r.

Determine the values of A and S, and the

initial value of P. All of these numbers should have

a length equal to (x + y + 1). Fill the most significant

(leftmost) bits with the value of m. Fill the

remaining (y + 1) bits with zeros.

1) Fill the most significant bits with the value

of (−m) in two's complement notation. Fill

the remaining (y + 1) bits with zeros.

2) P: Fill the most significant x bits with zeros.

To the right of this, append the value of r.
Fill the least significant (rightmost) bit with

a zero.

3) Determine the two least significant

(rightmost) bits of P.

a. If they are 01, find the value of

P + A. Ignore any overflow.

b. If they are 10, find the value of

P + S. Ignore any overflow.

c. If they are 00, do nothing. Use P

directly in the next step.

d. If they are 11, do nothing. Use P
directly in the next step.

4) Arithmetically shift the value obtained in

the 2nd step by a single place to the right.

Let P now equal this new value.

5) Repeat steps 2 and 3 until they have been

done y times.

6) Drop the least significant (rightmost) bit

from P. This is the product of m and r.

Figure 2: Block Diagram of the Multiplier

C. Double Precision Booth Multiplication

Let's suppose a multiplication of 2 floating-

point numbers A and B, where A=-18.0 and B=9.5

Binary representation of the operands:

A = -10010.0

B = +1001.1

Normalized representation of the operands:

A = -1.001x24

B = +1.0011x23

IEEE representation of the operands:

A =

110000000011001000000000000000000000000000

0000000000000000000000

B =

010000000010001100000000000000000000000000

0000000000000000000000

Multiplication of the mantissas:

•we must extract the mantissas, adding an1 as most

significant bit, for normalization
A=

100100000000000000000000000000000000000000

00000000000

B=

100110000000000000000000000000000000000000

00000000000

the 106-bit result of the multiplication is:

0x558000000000

only the most significant bits are useful:

after normalization (elimination of the most

significant 1), we get the 52-bit mantissa of the
result. This normalization can lead to a correction of

the result's exponent

In our case, we get:

Puneet Paruthi, Tanvi Kumar,

Himanshu Singh / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1761-1766

1764 | P a g e

01

010101100000000000000000000000000000000000

0000000000
00

000000000000

 Addition of the exponents:

exponent of the result is equal to the sum of the
operands exponents. A 1

can be added if needed by the normalization of the

mantissas multiplication (this is not the case in our

example)

As the exponent fields (Ea and Eb) are

biased, the bias must be removed in order to do the

addition. And then, we must to add again the bias, to

get the value to be entered into the exponent field of

the result (Er):

Er = (Ea-1023) + (Eb-1023) + 1023

= Ea + Eb – 1023
In our example, we have:

Ea 10000000011

Eb 10000000010

-1023 10000000001

Er 10000000110

what is actually 7, the exponent of the result

Calculation of the sign of the result:

The sign of the result (Sr) is given by the exclusive-

or of the operands signs

(Sa and Sb):

Sr = Sa ⊕ Sb
In our example, we get:

Sr = 1 ⊕ 0 = 1

i.e. a negative sign

Composition of the result: the setting of the 3

intermediate results (sign, exponent and

mantissa) gives us the final result of our

multiplication:

1 10000000110

010101100000000000000000000000000000000000

0000000000
AxB = -18.0x9.5 = -1.0101011 x 2

1030-1023
= -

10101011.0 = -171.010

Figure 3: Schematic Diagram of Double Precision

Multiplier

IV. SYNTHESIS RESULTS
This design has been implemented,

simulated on ModelSim and synthesized for VHDL.

The HDL code uses VHDL 2001 constructs that

provide certain benefits over the VHDL 95 standard
in terms of scalability and code reusability.

Simulation based verification is one of the methods

for functional verification of a design. In this

method, test inputs are provided using standard test

benches. The test bench forms the top module that

instantiates other modules. Simulation based

verification ensures that the design is functionally

correct when tested with a given set of inputs.

Though it is not fully complete, by picking a random

set of inputs as well as corner cases, simulation

based verification can still yield reasonably good

results.

Table 1. The comparison of Multipliers

The following snapshots are taken from

ModelSim after the timing simulation of the floating

point multiplier core.
Consider the inputs to the floating point multiplier

are:

1) A = -18.0 = -1.001x24

A = 1 10000011

001000000000000000000000000000000000000000

0000000000000 = 0x40F00000

B = 9.5 = 1.0011x23

B = 0 10000010

001100000000000000000000000000000000000000

0000000000000 = 0x41780000

AxB = -171.0 = -1.0101011 x27

AxB = 1 10000110
010101100000000000000000000000000000000000

00000000000 = 0x42E88000

Figure 4: Simulation of Double Precision Multiplier

Puneet Paruthi, Tanvi Kumar,

Himanshu Singh / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1761-1766

1765 | P a g e

2) A = 134.0625 = 1.00001100001x27

A =

010000000110000011000010000000000000000000

0000000000000000000000

B = -2.25 = -1.001x2
1

B =

110000000000001000000000000000000000000000
0000000000000000000000

AxB = -301.640625 = -1.00101101101001x28

AxB = 1 10000000111

001011011010010000000000000000000000000000

0000000

Figure 5: Simulation of Double Precision Multiplier

V. CONCLUSION
In this study a floating point multiplier

design which is capable of executing a double
precision floating-point multiplication using booth

algorithm. One of the important aspects of the

presented design method is that it can be applicable

to all kinds of floating-point multipliers. The

presented design is compared with a ordinary

floating point array multiplier via synthesis. The

synthesis results showed that proposed design is

more efficient than conventional multiplier and

critical path increment is only one or two gate delay.

Since modern floating-point multiplier designs have

significantly larger area than the standard floating-
point multiplier, the percentage of the extra

hardware will be less for those units. The methods

presented in this study will be used on the design of

floating-point multiplier-adder circuits. Also, the

future work will enhance the proposed designs to

support all IEEE754 rounding modes.

REFERENCES
[1] Sumit Vaidya and Deepak Dandekar,

“ Delay-Power Performance comparison of

multipliers in VLSI circuit

design”,International Journal of Computer

Networks & Communications (IJCNC),

Vol.2, No.4, pg 47-55, July 2010.

[2] Soojin Kim and Kyeongsoon Cho, “Design

of High-speed Modified Booth Multipliers

Operating at GHz Ranges”, World

Academy of Science, Engineering and

Technology 61, 2010.

[3] P. Assady, “A New Multiplication

Algorithm Using High-Speed

Counters”,European Journal of Scientific

Research ISSN 1450-216X, Vol.26

No.3 ,pp.362-368, 2009.
[4] Hasan Krad and Aws Yousif Al-Taie,

“Performance Analysis of a 32-Bit

Multiplier with a Carry-Look-Ahead Adder

and a 32-bit Multiplier with a Ripple Adder

using VHDL”, Journal of Computer

Science 4 , ISSN 1549-3636,pp. 305-308,

2008.

[5] Cho, J. Hong, and G Choi, “54x54-bit

Radix-4 Multiplier based on Modified

Booth Algorithm,” 13th ACM Symp.VLSI,

pp 233-236, Apr. 2003.

[6] N. Besli, R. G. DeshMukh, “A 54*54-bit
Multiplier with a new Redundant Booth’s

Encoding,” IEEE Conf. Electrical and

Computer Engineering, vol. 2, pp 597-602,

12-15 May 2002.

[7] Michael L. Overton, “Numerical

Computing with IEEE Floating Point

Arithmetic,” Published by Society for

Industrial and Applied Mathematics, 2001.

 [8] B. Parhami, “Computer Arithmetic:

Algorithms and Hardware Designs”,

Oxford University Press, 2000.
[9] N. Itoh, Y. Naemura, H. Makino, Y.

Nakase, “A Compact 54*54-bit With

Improved Wallace-Tree Structure,” Dig.

Technical Papers of Symp. VLSI Circuits,

pp 15-16, Jun. 1999.

[10] R. K. Yu, G. B. Zyner, “167MHz Radix-4

Floating-Point Multiplier,” IEEE Symp. on

Computer Arithmetic, pp 149-154, Jul.

1995.

[11] D. Goldberg, “What every computer

scientist should know about floating-point

arithmetic” ,ACM Computing Surveys vol.
23-1 , pp. 5-48 ,1991.

[12] A. Goldovsky and et al., “Design and

Implementation of 16 by 16 Low-Power

Two’s Complement Multiplier. In Design

and Implementation of Adder/Subtractor

and Multiplication Units for Floating-Point

Arithmetic IEEE International Symposium

on Circuits and Systems, 5, pp 345–348,

2000.

[13] P. Seidel, L. McFearin, and D. Matula.

“Binary Multiplication Radix-32 and
Radix-256”, In 15th Symp. On Computer

Arithmetic, pp 23–32, 2001.

[14] U. Kulisch, “Advanced Arithmetic for the

Digital Computers”, Springer- Verlag,

Vienna, 2002.

[15] M. Schulte, E. Swartzlander, “Hardware

Design and ArithmeticAlgorithms for a

Puneet Paruthi, Tanvi Kumar,

Himanshu Singh / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1761-1766

1766 | P a g e

Variable-Precision, Interval Arithmetic

Coprocessor”, Proc. IEEE 12th Symposium

on Computer Arithmetic (ARITH-12), pp

222-230, 1995.

[16] R. V. K. Pillai, D. A1 - IShalili and A. J.

A1 - Khalili, “A Low Power Approach to

Floating Point Adder Design”, in
Proceedings of the I997 International

Conference on Computer Design, pp. 178-

185.

[17] Kari Kalliojarvi and Yrjo Neovo,

“Distribution of Roundoff Noise in Binary

Floating - Point Addition”, Proceedings of

ISCAS92, pp. 1796-1799.

[18] Wakerly, John F., “Digital Design –

Principles and Practices”, Tata McGraw

Hill Series.

[19] Flores, Ivan, The Logic of Computer

Arithmetic, Prentice Hall, Inc. Englewood
Cliff (N.J.).

[20] G. Todorov, BASIC Design,

Implementation and Analysis of a Scalable

High-radix Montgomery Multiplier,”

Master Thesis, Oregon State University,

USA, December 2000.

[21] L. A. Tawalbeh, “Radix-4 ASIC Design of

a Scalable Montgomery Modular Multiplier

using Encoding Techniques,” M.S. Thesis,

Oregon State University, USA, October

2002.
[22] W. Gallagher and E. Swartzlander, “High

Radix Booth Multipliers Using Reduced

Area Adder Trees”, In Twenty- Eighth

Asilomar Conference on Signals,

Systemsand Computers, 1, PP 545–549,

1994.

[23] B. Cherkauer and E. Friedman, “A Hybrid

Radix-4/Radix- 8 Low Power, High Speed

Multiplier Architecture for Wide Bit

Widths”, In IEEE Intl. Symp. onCircuits

and Systems, 4, pp 53–56, 1996.

[24] Israel Koren, Computer Arithmetic
Algorithms, Prentice Hall, Inc. Englewood

Cliff (N.J.) 1993.

[25] Nabeel Shirazi, A1 Walters, and Peter

Athanas. “Quantitative Analysis of Floating

Point Arithmetic on FPGA Based Custom

Computing Machines”. In IEEE Symposium

on FPGAs for Custom Computing

Machines, pages 155-162, April 1995.

[26] Y.Wang, Y. Jiang, and E. Sha, “On Area-

Efficient Low Power Array Multipliers”, In

The 8th IEEE International Conference on
Electronics, Circuits and Systems, pp

1429– 1432, 2001.

[27] Computer Architecture: A Quantitative

Approach, D.A. Patterson and J.L.

Hennessy, Morgan Kaufman, San Mateo,

C.A. 1996, Appendix A.

[28] K. Yano and et al. A 3.8-ns CMOS 16 _ 16-

b Multiplier Using Complementary Pass-

Transistor Logic. Journal of Solid-State

Circuits, 25:388–395, 1990.

[29] I. Khater, A. Bellaouar, and M. Elmasry,

“Circuit Techniques for CMOS Low-Power

High-Performance Multipliers”, IEEE
Journal of Solid-State Circuits, 31:1535–

1546, 1996.

[30] G.Bewick, “Fast Multiplication:

Algorithms and Implementation”, PhD.

Thesis, Stanford University, 1992

