
C.V.S.R.SYAVASYA / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1732-1735

1732 | P a g e

An Approach To Estimate Function Point Analysis Using

Unadjusted Function Points And Value Adjustment Factor

C.V.S.R.SYAVASYA
Master of Technology Gitam University, Visakhapatnam, India

ABSTRACT
Function point analysis was developed

by Albercht. In this approach, we calculate

unadjusted function point by obtaining

formulated parameter values for all the five

parameters namely: ILF, EIF, EO, and EQ, EI

based on the complexity and assign the value for

each. After calculating the five parameters, the

UAF value is obtained. On the other side, we

calculate value adjustment factor by observing

fourteen different characteristics and assigning a

value to each characteristic based on its degree of

influence. Finally unadjusted function point is

multiplied by value adjustment factor which

results in Function point analysis. The main

reason in carrying out this approach as it reduces

the risk of "inflation" of the created lines of code,

and thus reducing the value of the measurement

system, if developers are incentivized to be more

productive. FP advocates refer to this as

measuring the size of the solution instead of the

size of the problem.

Keywords - External Interface Files Internal

Logic Files, Unadjusted Function points, Value

Adjusted Function points, Function Point Count

I. INTRODUCTION
Function point analysis is a popular method

for estimating and measuring the size of application

software on the functionality of the software from

the user’s point of view. Through this method, the

size of an application system’s functionality is
calculated in terms of Function Point Count.

[1]Allan J Albrecht [6] of IBM proposed

Function point Count as a size measure in the late

1970s. Systems continue to grow in size and

complexity, becoming increasingly difficult to

understand. As improvements in coding tools allow

software developers to produce larger amounts of

software to meet ever-expanding user requirements,

a method to understand and communicate size must

be used. A structured technique of problem solving,

function point analysis is a method to break systems
into smaller components, so they can be better

understood and analyzed. This book describes

function point analysis and industry trends using

function points. Human beings solve problems by

breaking them into smaller, understandable pieces.

Problems that may initially appear to be difficult are

found to be simple when dissected into their

components, or classes. When the objects to be

classified are the contents of software systems, a set

of definitions and rules, or a scheme of

classification, must be used to place these objects

into their appropriate categories. Function point

analysis is one such technique: FPA is a method to

break systems into smaller components, so they
can be better understood and analyzed. It also

provides a structured technique for problem solving.

Function Point Analysis is a structured method to

perform functional decomposition of a software

application.

Function points are a unit measure for

software much like an hour is to measuring time,

miles are to measuring distance or Celsius is to

measuring temperature. Function Points are interval

measures much like other measures such as

kilometres, Fahrenheit; hours so on and so forth.
Function Points measure software by quantifying its

functionality provided to the user based primarily on

the logical design. Frequently the term end user or

user is used without specifying what is meant. In

this case, the user is a sophisticated user. Someone

that would understand the system from a functional

perspective --- more than likely someone that would

provide requirements or does acceptance testing.

There are a variety of different methods used to

count function point, but this book is based upon

those rules developed by the Alan Albrecht and later

revised by the International Function Point User
Group (IFPUG). The IFPUG rules have much to be

desired, so this book attempts to fill in gaps not

defined by IFPUG.

1.1 OBJECTIVES OF FPA

According to IGPUG [2], the objectives of function

point analysis are as follows:

 Measure functionality of a software system

as seen from the user’s perspective.

 Measure the size of software systems

independent of technology used for
implementation.

 Create a measurement methodology that is

simple enough to minimize the overhead of

the measurement process.

 Create a consistent measure among various

projects and organizations.

II. METHODOLOGY
IDENTIFYING DATA FUNCTIONS AND

TRANSACTION FUNCTIONS

C.V.S.R.SYAVASYA / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1732-1735

1733 | P a g e

2.1 External Inputs [3] [4]:

External Inputs (EI) - is an elementary

process in which data crosses the boundary from

outside to inside. This data is coming external to the

application. The data may come from a data input

screen or another application. The data may be used

to maintain one or more internal logical files. The
data can be either control information or business

information. If the data is control information it does

not have to maintain an internal logical file. If an

external input adds changes and deletes information

on an internal logical file, then this represents three

external inputs. External inputs may be preceded by

an external inquiry. Hence a full function screen is

add, change, delete and inquiry

2.2 External Outputs

External Outputs (EO) - an elementary

process in which derived data passes across the
boundary from inside to outside. Additionally, an

EO may update an ILF. The data creates reports or

output files sent to other applications. These reports

and files are created from information contained in

one or more internal logical files and external

interface files.

Derived Data is data that is processed

beyond direct retrieval and editing of information

from internal logical files or external interface files.

Derived data is usually the result of algorithms, or

calculations. Derived data occurs when one or more
data elements are combined with a formula to

generate or derive an additional data element(s).

This derived data does not appear in any FTR.

2.3 External Inquiries
External Inquiry (EQ) - an elementary

process with both input and output components that

result in data retrieval from one or more internal

logical files and external interface files. The input

process does not update or maintain any FTR’s

(Internal Logical Files or External Interface Files)

and the output side does not contain derived data.
Transactions between applications should be

referred to as interfaces. You can only have an

external output or external inquiry of data external

to your application. If you get data from another

application and add it to a file in your application,

this is a combination get and add (external inquiry

and external input).

2.4 Internal Logic Files :

Internal Logical Files (ILF) - a user

identifiable group of logically related data that
resides entirely within the application boundary and

is maintained through External Inputs. An internal

logical file has the inherent meaning it is internally

maintained, it has some logical structure and it is

stored in a file. Even though it is not a rule, an ILF

should have at least one external output and/or

external inquiry. That is, at least one external output

and/or external inquiry should include the ILF as an

FTR. Simply put, information is stored in an ILF, so

it can be used later. The EO or EQ could be from

another application. It is worth noting that it is

possible that a specific ILF is not referenced by EO

or EQ, but it is used by an EI (other than the EI that

maintains it). Again, even though it is not a rule, an
ILF should have at least one external input.

2.5 External Interface Files

External Interface Files (EIF) - a user

identifiable group of logically related data that is

used for reference purposes only. The data resides

entirely outside the application boundary and is

maintained by other applications external inputs.

The external interface file is an internal logical file

for another application. An application may count a

file as either an EIF or ILF not both. An external

interface file has the inherent meaning it is
externally maintained (probably by some other

application), an interface has to be developed to get

the data and it is stored in a file. Each EIF included

in a function point count must have at least one

external output or external interface file against it.

At least one transaction, external input, external

output or external inquiry should include the EIF as

a FTR. Every application, which references the EIF,

needs to include it in their FP Count. Some

organizations have a pull theory and others have a

push theory of data. The pull theory is an external
application “reaching into” other applications and

retrieving data. Those organizations which have

push theory require applications to create interfaces

(EO or EQ) which other applications read.

These 5 function types are then ranked

according to their complexity: Low, Average or

High, using a set of prescriptive standards.

Organizations that use FP methods develop criteria

for determining whether a particular entry is Low,

Average or High. Nonetheless, the determination of

complexity is somewhat subjective. After

classifying each of the five function types, the UFP
is computed using predefined weights for each

function type.

III. COMPUTE UNADJUSTEDFUNCTION

POINT(UFP)
The Unadjusted Function Points [5] for

each function depends on the function type

complexity of the function determined in the

previous section. The Unadjusted function points [6]

to be assigned are given in the table below:

Table-1 showing values for each parameter in

UFP

Complexity Function Type

 ILF EIF EI EO EQ

Simple 7 5 3 4 3

Average 10 7 4 5 4

Complex 15 10 6 7 6

C.V.S.R.SYAVASYA / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1732-1735

1734 | P a g e

The total UFP is determined by summation of all

parameters and finally the result is carried to

compute FP.

IV. VALUE ADJUSTMENT FACOR
The value adjustment factor (VAF) [6] is

based on 14 general system characteristics (GSC’s)

[7] [8] that rate the general functionality of the

application being counted. Each characteristic has

associated descriptions to determine the degrees of

influence. The degrees of influence range on a scale

of zero to five, from no influence to strong

influence. Each characteristic is assigned the rating

based upon detail descriptions provided by the

IFPUG [9] 4.1 Manual. They ratings are:

0 Not present or no influence

1 Incidental influence
2 Moderate influences

3 Average influences

4 Significant influences

5 Strong influences throughout

The degrees of influence rating of each

General System Characteristics are added to give

Total Degree of Influence (TDI). Therefore VAF

[10] is computed as,

VAF = (TDI * 0.01) + 0.65

The value of TDI ranges from a minimum of 0 to a

maximum of 70. As a result the value of VAF can

range from 0.65 to 1.35, where the mid-point is 1.

V. Computing the Function Point Count:
For the development project, the function point

count is computed as,

FPC = UFP * VAF

The above is the formula used to compute the

Function point count.

VI. RESULTS AND DISCUSSION

PROJECT-1:

In this project taken as example, we take values of

Estimated Count for each parameter (EI, EO, EQ,

ILF, and EIF) and multiply those values to the

weight of function type according to table-1.

Table-2 showing the results of parameters in

Function point analysis of to calculate UFP

 In the above table, it is observed that, for

Estimated count 12 taken for EI is calculated based
on Average Function type for EI which is given as 4

according to table-1. Hence the FP-Count for EI is

48. In case of EO, for Estimated count 7 taken for

EO is calculated based on Average Function type

for EO which is given as 5 according to table-1.

Hence the FP-Count for EO is 35. In the same way

the remaining FP-Count values are calculated and

finally the total Unadjusted Function Point (UFP) is

obtained as 194.

To calculate TDI, the 14 General

characteristics are values according to their degree
of influence from 0 to 5. For 0 there is no influence,

1= Incidental, 2 = Moderate, 3 = Average, 4 =

Significant, 5= Essential

 The General Characteristics for 0-10 are

assigned as 0 and from 11 to 14 are assigned as 4.

Finally, The Total Degree of Influence (TDI) is

resulted as 16.

Therefore,

 V.A.F = (T.D.I * 0.01) + 0.65

 = (16 *0.01) +0.65

 = 0.81

 Value adjustment factor which is
calculated in the above is obtained as 0.81 is one of

the parameter obtained to obtain the function point

count [7]. The result obtained by value adjustment

factor is multiplied by the unadjusted function point

to result in function point count (FPC) which is

shown as follows:

Finally, FPC = UFP * VAF

 = 194*0.81

 = 157

 The Function Point Count [12] is

obtained as 157 is the final result of this project
which evolved after detailed calculation of the

obtained necessary parameter values.

VII. CONCLUSION
The main objective of taking up this project

is to explore the new results in the field of Size

Estimation as software size is one of the important

software attribute. The fast growth of software

development is allowing maintenance of large

EI 12*(Average=4) 48

EO 7*(Average=5) 35

EQ 10*(Average=4) 40

ILF 5*(Average=10) 50

EIF 3*(Average=7) 21

TOTAL UFP= 194

C.V.S.R.SYAVASYA / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1732-1735

1735 | P a g e

repositories of project related information which

stores information about software size. Value

adjustment factor here in this case plays a major role

in evolving the final output after computing

randomly assigned values to find out total degree of

influence. This final output tends to be a part of the

basic formulae for computing the function point
count. Function points can be used to size software

project [7] applications accurately, as sizing is an

important factor in determining productivity.

Since function point has a unique and

consistent method, different people measuring them

will give almost the same result with very little

margin of error. A non-technical person can easily

understand function points, which helps in

communicating the same to the end-user effectively

and easily. This work can be extended further by

taking up different rating projects to general

characteristics according to its system influence and
by applying new functionalities of estimation count

under unadjusted function points, which tends to

innovating new results of function point analysis

into action.

REFERENCES
1. Software Requirements and Estimation by

Estimation by Swapna Kishore and Rajesh

Naik published in 2001 by Tata McGRAW
HILL Company Limited.

2. “Function Points: A Study of Their

Measurement Processes and Scale

Transformations”, J. System Software,

1994; 25:171-184

3. http://www.ifpug.org/?page_id=10

4. http://www.compaid.com/caiinternet/ezine/

garmus-functionpointintro.pdf

5. Abran, A., and Robillard, P. N.,

Identification of the structural weakness of

function point metrics, in 3rdAnnual
Oregon Workshop on Software Metrics,

March 18, 1991.

6. Albrecht, A. J., and Gaffney, J. E.,

Software Function, Source Lines of Code,

and Development Effort Prediction: A

Software Science Validation, IEEE Trans.

Software Eng. SE-9, 639-648 (1983).

7. Behrens, C. A., Measuring the Productivity

of Computer Systems Development

Activities with Function Points, IEEE

Trans. Software Eng., SE-9, 648-652

(1989).
8. IFPUG, http://www.ifpug.org/

9. Dunn, R. H., Software Quality-Concepts

and Plans, Prentice-Hall, Englewood Cliffs,

New Jersey, 1990.

10. Eijogu, L. O., Beyond Structured

Programming: An Introduction to the

Principles of Applied Software Metrics, J.

Struct. Progr. 11 (1990).

11. Eijogu, L. O., Software Engineering with

Formal Metrics, QED Information

Sicences, Wellesley, Massachusetts, 1991.

12. Low, G. C., and Ross, J. D., Function

Points in the Estimation and Evaluation of

the Software Process, IEEE Trans.

Software Eng. 16, 64-71 (1990).

http://www.ifpug.org/?page_id=10
http://www.compaid.com/caiinternet/ezine/garmus-functionpointintro.pdf
http://www.compaid.com/caiinternet/ezine/garmus-functionpointintro.pdf
http://www.ifpug.org/

