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Abstract 
Atmospheric signal processing is of 

interest to many scientists, where there is scope 

for the development of new and efficient tools for 

cleaning the spectrum, detection, and estimation 

of parameters like zonal (U), meridional (V ), wind 

speed (W), etc. This paper deals with a signal 

processing technique for the cleansing of 

spectrum, based on the complex wavelets with 

custom thresholding, by analyzing the 

Mesosphere–Stratosphere–Troposphere radar 

data that are backscattered from the atmosphere 

at high altitudes and severe weather conditions 

with low signal-to-noise ratio. The proposed 

algorithm is self-consistent in detecting wind 

speeds up to a height of 18 km, in contrast to the 

existing method which estimates the Doppler 

manually and fails at higher altitudes. The results 

have been validated using the Global Positioning 

System sonde data. 
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I. INTRODUCTION 
RADAR can be employed, in addition to the 

detection and characterization of hard targets, to 
probe the soft or distributed targets such as the 

Earth‟s atmosphere. Atmospheric radars, of interest 

to the current study, are known as clear air radars, 

and they operate typically in very high frequency 

(30–300 MHz) and ultrahigh-frequency (300 MHz–3 

GHz) bands. The turbulent fluctuations in the 

refractive index of the atmosphere serve as a target 

for these radars. The present algorithm used in 

atmospheric signal processing called “classical” 

processing can accurately estimate the Doppler 

frequencies of the backscattered signals up to a 
certain height. However, the technique fails at higher 

altitudes and even at lower altitudes when the data 

are corrupted with noise due to interference, clutter, 

etc. Bispectral-based estimation algorithm has been 

tried to eliminate noise [1]. However, this algorithm 

has the drawback of high computational cost. 

Multitaper spectral estimation algorithm has been 

applied for radar data [2]. This method has the 

advantage of reduced variance at the expense of 

broadened spectral peak. The fast Fourier transform 

(FFT) technique for power spectral estimation and 

“adaptive estimates technique” for estimating the 
moments of radar data has been proposed in [3]. This 

method considers a certain number of prominent  

 
 

 

peaks of the same range gate and tries to extract the 

best peak, which satisfies the criteria chosen for the 

adaptive method of estimation. The method, 

however, has failed to give consistent results. Hence, 

there is a need for development of better algorithms 

for efficient cleaning of spectrum. 

 
The National Atmospheric Research 

Laboratory, Andhra Pradesh, India, has developed a 

package for processing the atmospheric data. They 

refer to it as the atmospheric data processor [4]. In 
this paper, it is named as existing algorithm (EALG). 

The flowchart of this algorithm is given in Fig. 1. 

Coherent integration of the raw data (I and Q) 

collected by radar is performed. It improves the 

process gain by a factor of number of inter-pulse 

period. The presence of a quadrature component of 

the signal improves the signal-to-noise ratio (SNR). 

The normalization process will reduce the chance of 

data overflow due to any other succeeding operation. 

The data are windowed to reduce the leakage and 

picket fence effects. The spectrum of the signal is 
computed using FFT. The incoherent integration 

improves the detectability of the Doppler spectrum. 
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The radar echoes may be corrupted by ground clutter, 

system bias, interference, etc. 

 
The data is to be cleaned from these 

problems before going for analysis. After performing 

power spectrum cleaning, one has to manually select 

a proper window size depending upon the wind shear 

[6], etc., from which the Doppler profile is estimated 
by using a maximum peak detection method [3]. The 

EXISTING METHOD is able to detect the Doppler 

clearly up to 11 km as the noise level is very low. 

Above 11 km, noise is dominating, and, hence, the 

accuracy of the Doppler estimated using the 

EXISTING METHOD is doubtful as is discussed in 

the subsequent sections. To overcome the effect of 

noise at high altitudes, a wavelet-based denoising 

algorithm is applied to the radar data before 

computing its spectrum [5]. This paper gives better 

results compared to [4], but this method fails to 

extract the exact frequency components after 
denoising at higher altitudes. To overcome this effect 

we proposed a new method, where spectrum is 

estimated prior to denoising and then denoised using 

Complex Wavelet Transform (CWT) with the help of 

Custom thresholding method. 

 

III. Complex Wavelet Transform (CWT) 
Complex wavelet transforms (CWT) uses 

complex-valued filtering (analytic filter) that 
decomposes the real/complex signals into real and 

imaginary parts in transform domain. The real and 

imaginary coefficients are used to compute amplitude 

and phase information, just the type of information 

needed to accurately describe the energy localization 

of oscillating functions (wavelet basis). The Fourier 

transform is based on complex-valued oscillating 

sinusoids 

cos ( ) sin( )j te t j t      

The corresponding complex-valued scaling function 

and complex-valued wavelet is given as 

( ) ( ) j ( )c r it t t      

where  ( )r t  is real and even, 

           ( )ij t is imaginary and odd. 

Gabor introduced the Hilbert transform into signal 

theory in [9], by defining a complex extension of a 

real signal ( )f t  as:  

( ) ( ) ( )x t f t j g t   

where, ( )g t  is the Hilbert transform of ( )f t  and 

denoted as
1/2{ ( )} ( 1)H f t and j   .  

The signal ( )g t  is the 90
ο 

shifted version of 

( )f t  as shown in figure (3.1 a).The real part ( )f t  

and imaginary part ( )g t  of the analytic signal ( )x t  

are also termed as the „Hardy Space‟ projections of 

original real signal ( )f t  in Hilbert space. Signal 

( )g t  is orthogonal to ( )f t . In the time domain, 

( )g t  can be represented as [7]  

1 ( ) 1
( ) { ( )} ( )*

f t
g t H f t d f t

t t


  





  
  

If ( )F   is the Fourier transform of signal 

( )f t  and ( )G   is the Fourier transform of signal 

( )g t , then the Hilbert transform relation between 

( )f t  and ( )g t  in the frequency domain is given by  

( ) { { ( )}} sgn( ) ( )G F H f t j F   

 

where, sgn( )j   is a modified „signum‟ function.  

This analytic extension provides the 

estimate of instantaneous frequency and amplitude of 

the given signal ( )x t  as:  

Magnitude of 
2 2( ) ( ( ) ( )x t f t g t 

 

Angle of 
1( ) tan [ ( ) / ( )]x t g t f t                                     

The other unique benefit of this quadrature 

representation is the non-negative spectral 

representation in Fourier domain [7] and [8], which 

leads toward half the bandwidth utilization. The 

reduced bandwidth consumption is helpful to avoid 

aliasing of filter bands especially in multirate signal 

processing applications. The reduced aliasing of filter 

bands is the key for shift-invariant property of CWT. 

In one dimension, the so-called dual-tree complex 

wavelet transform provides a representation of a 

signal ( )x n in terms of complex wavelets, composed 

of real and imaginary parts which are in turn wavelets 
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themselves. Figure 3 shows the Analysis and 

Synthesis of Dual tree complex wavelet transform for 

three levels. 

 

III. CUSTOM THRESHOLDING 
To overcome the pulse broadening effect in 

improved thresholding function a new function called 

customized thresholding function is introduced. The 

Custom thresholding function is continuous around 

the threshold, and which can be adapted to the 

characteristics of the input signal. Based on extensive 

experiments, we could see that soft-thresholding 
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outperforms hard-thresholding in general. However, 

there were also cases where hard-thresholding 

yielded a much superior result, and in those cases the 

quality of the estimate could be improved by using a 

custom thresholding function which is similar to the 

hard-thresholding function but with a smooth 

transition around the threshold  . Based on these 

observations, we defined a new custom thresholding 

function as follows:  

 

 
2

1

0

3 4

c

x sgn( x )( ) if x

f ( x ) if x

x x
otherwise

  



 
  

   




  


 


        
               

where 0     and 0 1  . This idea 

is similar to that of the semisoft or firm shrinkage 

proposed by Gao and Bruce [10], and the non-

negative garrote thresholding function suggested by 

Gao [10], in the sense that they are continuous at   

and can adapted to the signal characteristics. In our 

definition of ( )cf x ,   s the cut-off value, below 

which the wavelet coefficients are set zero, and   is 

the parameter that decides the shape of the 

thresholding function ( )cf x . This function can be 

viewed as the linear combination of the hard-

thresholding function and the soft-thresholding 

function . ( ) (1 ). ( )h sf x f x    that is made 

continuous around the threshold . 

Note that,  

0
lim ( ) ( )c sf x f x


  and 
1,

lim ( )hf x
 

                                  

This shows that the custom thresholding function can 

be adapted to both the soft- and hard-thresholding 

functions. 

IV. PROPOSED METHOD 

The algorithm for cleansing the spectrum using CWT 

with custom thresholding is as follows. 

1) Let f(n) be the noisy spectral data, for n =0, 

1,...,N-1. 
2) Generate noisy signal y(n) using 

( ) ( ) ( ) 1,2,....,x n f n z n n N     

3) Spectrum is calculated for the above signal y(n) 

as ( ) [ ]j j n

n

Y e y n e


  



  . 

4) Input x(n) to the two DWT trees with one tree 
uses the filters h0, h1 and the other tree with 

filters g0, g1. 

5) Apply custom thresholding to wavelet 

coefficients in the two trees. 

6) Compute IDWT using these thresholded wavelet 

coefficients. 

7) The coefficients from the two trees are then 

averaged to obtain the denoised original signal. 

8) Then variance is calculated using 
2

1 1

0 0

1
( ) ( )

N N

k k

Y k Y k
N

 

 

 
 

 
   

 

V. RESULTS 
In this section, we present the results for the 

cleansing of spectrum for complex test data based on 

the proposed Method. The data are generated by 

applying a Gaussian random input to a complex 

system. As the true spectrum is not available variance 
is taken as the performance measure, instead of 

Mean-square error. 

The variance is calculated as 
2

1 1

0 0

1
( ) ( )

N N

k k

Y k Y k
N

 

 

 
 

 
 

 
A complex signal is generated and Fourier 

transform is calculated for that signal. To test the 

performance of the algorithm in the presence of 

additive white Gaussian noise, a new signal y1(n) is 

generated as 

1( ) ( ) ( ) 0,1,2,...... 1;y n y n n for n N     

where ( )n is a complex Gaussian noise with zero 

mean and unit variance and α is the amplitude 

associated with ( )n . The number of samples in 

each realization is assumed to be 512, i.e., N = 512. 

The result based on the Monte Carlo simulation using 

proposed method is shown in fig.2. The same using 

existing method is shown in the fig.3. Table 1 gives 
the improved SNR and Variance of denoised signals 

by processing time domain data and frequency 

domain data using complex wavelets. From the table 

6.1 it is clear that the denoised data obtained by 

processing 
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Fig. 2 (a) original Spectrum (b) Noisy Spectrum (c) 

Denoised Spectrum (d) variance 
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Fig. 3 (a) original Signal (b) Noisy Signal (c) 

Denoised Signal   (d) variance 

frequency data using CWT has got better 
performance than processing the time-domain data. 

The same is represented graphically in figure 4. 

 

Table 1 Performance of Proposed Method With 

respect to input SNR. 

 

VI. CONCLUSION 
The wavelet transform allows processing of 

non-stationary signals such as MST radar signal. This 

is possible by using the multi resolution decomposing 

into sub signals. This assists greatly to remove the 

noise in the certain pass band of frequency. At first I 

have processed test signal (time and frequency 
domains) with -10 dB SNR using complex wavelet 

transform (CWT) by designing sub band filters using 

Hilbert transform maintaining perfect-reconstruction 

property, with the help of custom thresholding. The 

main idea in implementing this technique is to 

overcome the limitations like shift sensitivity, poor 

directionality, and absence of phase information 

which occurs in DWT. Using this technique we can 

extract the signal even-though input SNR is -15 dB. 

Now I processed same test signal and MST radar 

signal using complex wavelet transform with 

improved and custom thresholding techniques. 
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 Fig. 4 (a) Input SNR vs. Output SNR (b) Input SNR 

vs. Variance 

Among these two methods with different 

thresholding techniques, the processing of spectral 

data using complex wavelet transform with custom 

thresholding method is giving better results than 

processing the time domain signal. The proposed 
method may be used effectively in detection, image 

compression and image denoising and also it is 

giving better results at low signal-to-noise ratio cases 

(even at -15 dB) 
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