
Annamaneni Samatha, Nimmala Jeevan Reddy, P.Pradeep Kumar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1050-1055

1050 | P a g e

Data Storage Collateral In Cloud Computing

Annamaneni Samatha*,Nimmala Jeevan Reddy**,P.Pradeep Kumar***
*(Student,Department of Computer Science, JNTU University, Hyderabad-85)

** (Student,Department of Computer Science JNTU University, Hyderabad-85)

***(Head of Department ,Department of Computer Science JNTU University, Hyderabad-85)

ABSTRACT
Cloud Computing has been predicted as

the next-generation architecture of IT Enterprise.

In additional to traditional solutions, where the IT

services are under proper physical, logical and

personnel controls, Cloud Computing moves the

application software and databases to the large

data centers, where the management of data has

many security challenges To Overcome this, in

this paper we focused on data security in cloud

computing, which has always been an important

aspect of quality of service. To ensure the

correctness of users' data in the cloud, we propose

an effective and flexible distributed scheme with

two salient features, opposing to its predecessors.

By utilizing the homomorphic token with

distributed verification of erasure-coded data, our

scheme achieves the integration of storage

correctness insurance and data error localization,

i.e., the identification of misbehaving g server(s).

Unlike most prior works, the new scheme further

supports secure and efficient dynamic operations

on data base, including data update, delete and

insert. Extensive security and performance

analysis shows that the proposed scheme is highly

efficient and resilient against Byzantine failure,

malicious data modification attack, and even it

avoids server colluding attacks.

Keywords - Cloud Computing, Security,

Distributed scheme, homomorphic token,

distributed verification.

I. INTRODUCTION
Several trends are opening up the era of

Cloud Computing, which is an Internet-based

development and use of computer technology. The

ever cheaper and more powerful processors, together

with the software as a service (SaaS) computing

archi-tecture, are transforming data centers into pools

of computing service on a huge scale. The increasing

network bandwidth and reliable yet flexible network

connections make it even possi ble that users can now

subscribe high quality services from data and

software that reside solely on remote data centers.

Moving data into the cloud offers great convenience

to users since they don't have to care about the

complexities of direct hardware management. The

pioneer of Cloud Com-puting vendors, Amazon

Simple Storage Service (S3) and Amazon Elastic

Compute Cloud (EC2) [1] are both well known

examples. While these internet-based online services

do provide huge amounts of storage space and

customizable computing resources, this computing

platform shift, however, is eliminating the

responsibility of local machines for data maintenance

at the same time. As a result, users are at the mercy

of their cloud service providers for the availability

and integrity of their data. Recent downtime of

Amazon's S3 is such an example [2].

From the perspective of data security, which

has always been an important aspect of quality of

service, Cloud Com-puting inevitably poses new

challenging security threats for number of reasons.

Firstly, traditional cryptographic primitives for the

purpose of data security protection can not be directly

adopted due to the users' loss control of data under

Cloud Computing. Therefore, verification of correct

data storage in the cloud must be conducted without

explicit knowledge of the whole data. Considering

various kinds of data for each user stored in the cloud

and the demand of long term continuous assurance of

their data safety, the problem of verifying correctness

of data storage in the cloud becomes even more

challenging. Secondly, Cloud Computing is not just a

third party data warehouse. The data stored in the

cloud may be frequently updated by the users,

including insertion, deletion, modification,

appending, reordering, etc. To ens ure storage

correctness under dynamic data update is hence of

paramount importance. However, this dynamic

feature also makes traditional integrity insurance

techniques futile and entails new solutions. Last but

not the least, the deployment of Cloud Computing is

powered by data centers running in a simultaneous,

cooperated and distributed manner. Individual user's

data is redundantly stored in multiple physical loca-

tions to further reduce the data integrity threats.

Therefore, distributed protocols for storage

correctness assurance will be of most importance in

achieving a robust and secure cloud data storage

system in the real world. However, such important

area remains to be fully explored in the literature.

In this paper, we propose an effective and

flexible distribut ed scheme with explicit dynamic

data support to ensure the correctness of users' data in

the cloud. We rely on erasure-correcting code in the

file distribution preparation to prov ide redundancies

and guarantee the data dependability. This con-

struction drastically reduces the communication and

storage overhead as compared to the traditional

Annamaneni Samatha, Nimmala Jeevan Reddy, P.Pradeep Kumar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1050-1055

1051 | P a g e

replication-based file distribution techniques. By

utilizing the homomorphic token with distributed

verification of erasure-coded data, our sc heme

achieves the storage correctness insurance as well as

data error localization: whenever data corruption has

been detected during the storage correctness

verification, our scheme can almost guarantee the

simultaneous localization of data errors, i.e., the

identification of the misbehaving server(s)

Our work is among the first few ones in this field to

consider distributed data storage in Cloud

Computing. Our contribution can be summarized as

the following three aspect.

1) Compared to many of its predecessors, which only

provide binary results about the storage state across

the distributed servers, the challenge-response

protocol in our work further provides the localization

of data error.

2) Unlike most prior works for ensuring remote data

integrity, the new scheme supports secure and

efficient dynamic opera-tions on data blocks,

including: update, delete and append.

3) Extensive security and performance analysis

shows that the proposed scheme is highly efficient

and resilient agains t Byzantine failure, malicious

data modification attack, and even server colluding

attacks.

The rest of the paper is organized as follows.

Section II introduces the system model, adversary

model, our design goal and notations. Then we

provide the detailed description of our scheme in

Section III and IV. Section V gives the security

analysis and performance evaluations, followed by

Section VI which overviews the related work.

Finally, Section VII gives the concluding remark of

the whole paper.

II. PROBLEM STATEMENT
A. System Model

A representative network architecture for

cloud data storage is illustrated in Figure 1. Three

different network entities can be identified as

follows:

• User: users, who have data to be stored in the

cloud and rely on the cloud for data computation,

consist of both individual consumers and

organizations.

• Cloud Service Provider (CSP): a CSP, who has

signif-icant resources and expertise in building

and managing distributed cloud storage servers,

owns and operates live Cloud Computing

systems.

• Third Party Auditor (TPA): an optional TPA,

who has expertise and capabilities that users may

not have, is trusted to assess and expose risk of

cloud storage services on behalf of the users

upon request.

In cloud data storage, a user stores his data

through a CSP into a set of cloud servers, which are

running in a simulta-neous, cooperated and

distributed manner. Data redundancy can be

employed with technique of erasure-correcting code

to further tolerate faults or server crash as user's data

grows in size and importance. Thereafter, for

application purposes, the user interacts with the cloud

servers via CSP to access or retrieve his data. In some

cases, the user may need to perform block level

operations on his data. The most general forms of

these operations we are considering are block update,

delete, insert and append. As users no longer possess

their data locally, it is of critical importance to assure

users that their data are being correctly stored and

maintained. That is, users should be equipped with

security means so that they can make continuous

correctness assurance of their stored data even

without the existence of local copies. In case that

users do not necessarily have the time, feasibility or

resources to monitor their data, they can delegate the

tasks to an optional trusted TPA of their respective

choices.

B. Adversary Model

Security threats faced by cloud data storage

can come from two different sources. On the one

hand, a CSP can be self-interested, untrusted and

possibly malicious. Not only does it desire to move

data that has not been or is rarely accessed to a lower

tier of storage than agreed for monetary reasons, but

it may also attempt to hide a data loss incident due to

management errors, Byzantine failures and so on. On

the other hand, there may also exist an economically-

motivated adversary, who has the capability to

compromise a number of cloud data storage servers

in different time intervals and subsequently is able to

modify or delete users' data while remaining

undetected by CSPs for a certain period. Specifically,

we consider two types of adversary with differ ent

levels of capability in this paper:

Weak Adversary: The adversary is interested

in corrupting the user's data files stored on individual

servers. Once a server is comprised, an adversary can

pollute the original data files b y modifying or

introducing its own fraudulent data to prevent the

original data from being retrieved by the user.

Strong Adversary: This is the worst case scenario, in

which we assume that the adversary can compromise

all the storage servers so that he can intentionally

modify the data files as long as they are internally

Annamaneni Samatha, Nimmala Jeevan Reddy, P.Pradeep Kumar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1050-1055

1052 | P a g e

consistent. In fact, this is equivalent to the case where

all servers are colluding together to hide a data loss

or corruption incident.

C. Design Goals

To ensure the security and dependability for

cloud data storage under the aforementioned

adversary model, we aim to design efficient

mechanisms for dynamic data verification and

operation and achieve the following goals: (1)

Storage correctness: to ensure users that their data are

indeed stored appropriately and kept intact all the

time in the cloud. (2) Fast localization of data error:

to effectively locate the mal-functioning server when

data corruption has been detected. (3) Dynamic data

support: to maintain the same level of storage

correctness assurance even if users modify, delete or

append their data files in the cloud. (4)

Dependability: to enhance d ata availability against

Byzantine failures, malicious data modifi-cation and

server colluding attacks, i.e. minimizing the effect

brought by data errors or server failures. (5)

Lightweight: to enable users to perform storage

correctness checks with minimum overhead.

D. Notation and Preliminaries

• F – the data file to be stored. We assume that F can be

 denoted as a matrix of m equal-sized data vectors, each

 consisting of l blocks. Data blocks are all well represented

 as elements in Galois Field GF (2
p
) for p = 8 or 16.

• A – The dispersal matrix used for Reed-

Solomon coding.

• G – The encoded file matrix, which

includes a set of

 n = m + k vectors, each consisting of l blocks.

• fkey (·) – pseudorandom function (PRF), which is defined

 as f : {0, 1}∗ × key → GF (2
p
).

• φkey (·) – pseudorandom permutation (PRP), which is

defined as φ : {0, 1}
log

2
(l)

 × key → {0, 1}
log

2
(l)

.

• ver – a version number bound with the index for

individ-ual blocks, which records the times the block

has been

modified. Initially we assume ver is 0 for all data

blocks.

• s
ver

ij – the seed for PRF, which depends on the

file name, block index i, the server position j as well

as the optional block version number ver.

III. ENSURING CLOUD DATA

STORAGE
In cloud data storage system, users store their

data in the cloud and no longer possess the data

locally. Thus, the correctness and availability of the

data files being stored o n the distributed cloud

servers must be guaranteed. One of the key issues is

to effectively detect any unauthorized data modifi ca-

tion and corruption, possibly due to server

compromise and/or random Byzantine failures.

Besides, in the distributed case when such

inconsistencies are successfully detected, to fin d

which server the data error lies in is also of great

significan ce, since it can be the first step to fast

recover the storage errors.

Subsequently, it is also shown how to derive a

challenge-response protocol for verifying the storage

correctness as well as identifying misbehaving

servers. Finally, the procedure for file retrieval and

error recovery based on erasure-correcti ng code is

outlined.

A. File Distribution Preparation

It is well known that erasure-correcting code may be

used to tolerate multiple failures in distributed

storage systems.

Algorithm 1 Token Pre-computation

1: procedure

2: Choose parameters l, n and function f, φ;

3: Choose the number t of tokens;

4: Choose the number r of indices per

verification;

5: Generate master key Kprp and challenge kchal;

6: for vector G
(j)

 , j ← 1, n do

7: for round i← 1, t do

8: Derive α = f
k
ch

al

(i) and k
(i)

 from K P

RP

.

 i prp

 (j) r q (j)

9: Compute vi =
P

q=1 αi ∗ G

 (i)

(q)]

[φ

kprp

10: end for

11: end for
12: Store all the vis locally.

13: end procedure

In cloud data storage, we rely on this

technique to disperse the data file F redundantly

across a set of n = m + k distributed servers. A (m +

k, k) Reed-Solomon erasure-correcting code is used

to create k redundancy parity vectors from m data

vectors in such a way that the original m data vectors

can be reconstructed from any m out of the m + k

data and parity vectors. By placing each of the m + k

vectors on a different server, the original data file can

survive the failure of any k of the m + k servers

without any data loss, with a space overhead of k/m.

For support of efficient sequential I/O to the original

file, our file layout is systematic, i.e., the unmodified

m data file vectors together with k parity vectors is

distributed across m + k different servers.

B. Challenge Token Precomputation

In order to achieve assurance of data storage

correctness and data error localization

simultaneously, our scheme entirely relies on the pre-

computed verification tokens. The main ide a is as

follows: before file distribution the user pre-compute

s a certain number of short verification tokens on

individual ve ctor G
(j)

 (j ∈ {1, . . . , n}), each token

covering a random subset of data blocks. Later, when

Annamaneni Samatha, Nimmala Jeevan Reddy, P.Pradeep Kumar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1050-1055

1053 | P a g e

the user wants to make sure the storage correctness

for the data in the cloud, he challenges the cloud

servers with a set of randomly generated block

indices. Upon receiving challenge, each cloud server

computes a short ―signature‖ over the specified

blocks and returns the m to the user. The values of

these signatures should match the corresponding

tokens pre-computed by the user. Meanwhile, as all

servers operate over the same subset of the indices,

the requested response values for integrity check

must also be a valid codeword determined by secret

matrix P.

Algorithm 2 Correctness Verification and Error

Localization

1) procedure CHALLENGE(i)

2) Recompute αi = fkchal (i) and kprp
(i)

 from KP

RP ;

3) Send {αi, kprp
(i)

} to all the cloud servers;

4) Receive from servers:

{R
(j)

Pr

α
q
 ∗ G

(j)
 (q)]|1 ≤ j ≤ n}

i q=1 i [φk(i)=

prp
5: for (j ← m + 1, n) do

6: R
(j)

 ← R
(j)

 −
Pr

q=1 fkj (sIq ,j)·α
q

i , Iq = φk(i) (q) prp

7: end for
8: if ((Ri

(1)
 , . . . , Ri

(m)
) · P==(Ri

(m+1)
, . . . , Ri

(n)
))

then

9: Accept and ready for the next challenge.

10: else
11: for (j ← 1, n) do

12: if (Ri
(j)

 ! =vi
(j)

) then

13: return server j is misbehaving.

14: end if

15: end for

16: end if

17: end procedure

D. File Retrieval and Error Recovery

Since our layout of file matrix is systematic,

the user can reconstruct the original file by

downloading the data vector s assurance is a

probabilistic one. However, by choosing system

param-eters (e.g., r, l, t) appropriately and conducting

enough times of verification, we can guarantee the

successful file retriev al with high probability. On the

other hand, whenever the data corruption is detected,

the comparison of pre-computed tokens and received

response values can guarantee the identificati on of

misbehaving server(s), again with high probability,

which will be discussed shortly. Therefore, the user

can always ask servers to send back blocks of the r

rows specified in the challenge and regenerate the

correct blocks by erasure correction, shown in

Algorithm 3, as long as there are at most k

misbehaving servers are identified. The newly

recovered blocks can then be redistributed to the

misbehaving servers to maintain the correctness of

storage.

IV. PROVIDING DYNAMIC DATA

OPERATION SUPPORT
So far, we assumed that F represents static

or archived data. This model may fit some

application scenarios, such as libraries and scientific

datasets. However, in cloud data storage, there are

many potential scenarios where data stored in the

cloud is dynamic, like electronic documents, photos,

or log files etc. Therefore, it is crucial to consider the

dynamic case, where a user may wish to perform

various block-level

Algorithm 3 Error Recovery

1: procedure

% Assume the block corruptions have been

detected among

% the specified r rows;

% Assume s ≤ k servers have been identified

misbehaving

2: Download r rows of blocks from servers;

3: Treat s servers as erasures and recover the

blocks.

4: Resend the recovered blocks to corresponding

servers.

5: end procedure

operations of update, delete and append to

modify the data fil e while maintaining the storage

correctness assurance.

In this section, we will show how our scheme can

explicitly and efficiently handle dynamic data

operations for cloud data storage.

A. Update Operation

In cloud data storage, sometimes the user

may need to modify some data block(s) stored in the

cloud, from its current value fij to a new one, fij + fij .

We refer this operation as data update. Due to the

linear property of Reed-Solomon code, a user can

perform the update operation and generate the

updated parity blocks by using fij only, without

involving any other unchanged blocks.

B. Delete Operation

Sometimes, after being stored in the cloud, certain

data

Annamaneni Samatha, Nimmala Jeevan Reddy, P.Pradeep Kumar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1050-1055

1054 | P a g e

blocks may need to be deleted. The delete operation

we are considering is a general one, in which user

replaces the data block with zero or some special

reserved data symbol. From this point of view, the

delete operation is actually a special case of the data

update operation, where the original data blocks can

be replaced with zeros or some predetermined

special blocks. Therefore, we can rely on the update

procedure to support delete operation, i.e., by setting

fij in F to be − fij . Also, all the affected tokens have

to be modified and the updated parity information

has to be blinded using the same method specified in

update operation.

C. Append Operation

In some cases, the user may want to

increase the size of his stored data by adding blocks

at the end of the data file, which we refer as data

append. We anticipate that the most frequent append

operation in cloud data storage is bulk append, in

which the user needs to upload a large number of

blocks (not a single block) at one time.

D. Insert Operation

An insert operation to the data file refers to

an append operation at the desired index position

while maintaining the same data block structure for

the whole data file, i.e., inser ting a block F [j]

corresponds to shifting all blocks starting with index

j + 1 by one slot. An insert operation may affect

many rows in the logical data file matrix F, and a

substantial number of computations are required to

renumber all the subsequent blocks as well as re-

compute the challenge-response tokens. Therefore,

an efficient insert operation is difficult to supp ort

and thus we leave it for our future work.

V. SECURITY ANALYSIS AND

PERFORMANCE EVALUATION
In this section, we analyze our proposed

scheme in terms of security and efficiency. Our

security analysis focuses on the adversary model

defined in Section II. We also evaluate the efficiency

of our scheme via implementation of both file

distribution preparation and verification token

precomputation.

A. Security Strength Against Weak Adversary

Detection Probability against data

modification: In our in each correctness verification

for the calculation of requested token. We will show

that this ―sampling‖ strategy on selecte d rows

instead of all can greatly reduce scheme, servers are

required to operate on specified rows the

computational overhead on the server, while

maintaining the detection of the data corruption with

high probability.

B. Security Strength Against Strong Adversary

In this section, we analyze the security

strength of our schemes against server colluding

attack and explain why blind-ing the parity blocks

can help improve the security strength of our

proposed scheme.

Recall that in the file distribution

preparation, the redun-dancy parity vectors are

calculated via multiplying the file matrix F by P,

where P is the secret parity generation matrix we

later rely on for storage correctness assurance. If we

disperse all the generated vectors directly after token

precomputation, i.e., without blinding, malicious

servers that collaborate can reconstruct the secret P

matrix easily: they can pick blocks from the same

rows among the data and parity vectors to establish a

set of m · k linear equations and solve for the m · k

entries of the parit generation matrix P. Once they

have the knowledge of P, those malicious servers

can consequently modify any part of the data blocks

and calculate the corresponding parity blocks, and

vice versa, making their codeword relationship

always consistent. Therefore, our stor-age

correctness challenge scheme would be

undermined—even if those modified blocks are

covered by the specified rows, the storage

correctness check equation would always hold.

C. Performance Evaluation

1)File Distribution Preparation: We implemented

the gen-eration of parity vectors for our scheme

under field GF (2
8
). Our experiment is conducted

using C on a system with an Intel Core 2 processor

running at 1.86 GHz, 2048 MB of RAM, and a 7200

RPM Western Digital 250 GB Serial ATA drive

with an 8 MB buffer. We consider two sets of

different parameters for the (m + k, m) Reed-

Solomon encoding. Table I shows the average

encoding cost over 10 trials for an 8 GB file.

2) Challenge Token Pre-computation: Although in

our scheme the number of verification token t is a

fixed priori determined before file distribution, we

can overcome this issue by choosing sufficient large

t in practice.

VI. RELATED WORK
Juels et al. [3] described a formal ―proof of

retrievability ‖ (POR) model for ensuring the remote

data integrity. Their scheme combines spot-cheking

and error-correcting code to ensure both possession

and retrievability of files on archiv e service systems.

Shacham et al. [4] built on this model and

constructed a random linear function based

homomorphic authenticator which enables unlimited

number of queries and requires less communication

overhead. Bowers et al. [5] pro-posed an improved

framework for POR protocols that general-izes both

Juels and Shacham's work. Later in their subsequent

work, Bowers et al. [10] extended POR model to

distributed systems. However, all these schemes are

focusing on static data. The effectiveness of their

schemes rests primarily on the preprocessing steps

Annamaneni Samatha, Nimmala Jeevan Reddy, P.Pradeep Kumar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1050-1055

1055 | P a g e

that the user conducts before outsourcing the data file

F . Any change to the contents of F, even few bits,

must propagate through the error-correcting code,

thus introducing significant computation and

communicatio n complexity.

VII. CONCLUSION
In this paper, we investigated the problem of

data security in cloud data storage, which is

essentially a distribute storage system. To ensure the

correctness of users' data in cloud data storage, we

proposed an effective and flexible distribu ted

scheme with explicit dynamic data support, including

block update, delete, and append. We rely on erasure-

correcting code in the file distribution preparation to

provide redundancy parity vectors and guarantee the

data dependability. By utilizing the homomorphic

token with distributed verification of erasure - coded

data, our scheme achieves the integration of storage

cor-rectness insurance and data error localization,

i.e., whenever data corruption has been detected

during the storage correct-ness verification across the

distributed servers, we can alm ost guarantee the

simultaneous identification of the misbehavi ng

server(s). Through detailed security and performance

analysis, we show that our scheme is highly efficient

and resilient to Byzantine failure, malicious data

modification attack, and even server colluding

attacks.

ACKNOWLEDGEMENT
This work was supported in part by the US

National Science Foundation under grant CNS-

0831963, CNS-0626601, CNS-0716306, and CNS-

0831628.

REFERENCE
[1] Amazon.com, ―Amazon Web Services

(AWS),‖ Online at http ://aws. amazon.com,

2008.

[2] N. Gohring, ―Amazon's S3 down for several

hours,‖ Online at

http://www.pcworld.com/businesscenter/arti

cle/142549/amazons s3 down for several

hours.html, 2008.

A. Juels and J. Burton S. Kaliski, ―PORs: Proofs of

Retrie vability for Large Files,‖ Proc. of

CCS '07, pp. 584–597, 2007.

[4] H. Shacham and B. Waters, ―Compact

Proofs of Retrievabil ity,‖ Proc. of Asiacrypt

'08, Dec. 2008.

[5] K. D. Bowers, A. Juels, and A. Oprea,

―Proofs of Retrievab ility: Theory and

Implementation,‖ Cryptology ePrint

Archive, Report 20 08/175, 2008,

http://eprint.iacr.org/.

[6] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, L. Kissner, Z. Peterson, and D.

Song, ―Provable Data Possession at

Untrusted Stores, ‖ Proc. of CCS '07, pp.

598–609, 2007.

[7] G. Ateniese, R. D. Pietro, L. V. Mancini,

and G. Tsudik, ―S calable and Efficient

Provable Data Possession,‖ Proc. of

SecureComm '08, pp. 1– 10, 2008.

[8] T. S. J. Schwarz and E. L. Miller, ―Store,

Forget, and Chec k: Using Algebraic

Signatures to Check Remotely Administered

Storage,‖ Proc. of ICDCS '06, pp. 12–12,

2006.

[9] M. Lillibridge, S. Elnikety, A. Birrell, M.

Burrows, and M. Isard, ―A Cooperative

Internet Backup Scheme,‖ Proc. of the 2003

USENIX Annual Technical Conference

(General Track), pp. 29–41, 2003.

[10] K. D. Bowers, A. Juels, and A. Oprea,

―HAIL: A High-Avail ability and Integrity

Layer for Cloud Storage,‖ Cryptology ePrint

Arch ive, Report 2008/489, 2008,

http://eprint.iacr.org/.

[11] L. Carter and M. Wegman, ―Universal Hash

Functions,‖ Journal of Computer and

System Sciences, vol. 18, no. 2, pp. 143–154,

1979.

[12] J. Hendricks, G. Ganger, and M. Reiter,

―Verifying Dist ributed Erasure-coded

Data,‖ Proc. 26th ACM Symposium on

Principles of Distributed Computing, pp.

139–146, 2007.

[13] J. S. Plank and Y. Ding, ―Note: Correction

to the 1997 Tut orial on Reed-Solomon

Coding,‖ University of Tennessee, Tech.

Rep. CS-03-504, 2003.

[14] Q. Wang, K. Ren, W. Lou, and Y. Zhang,

―Dependable and Sec ure Sensor Data

Storage with Dynamic Integrity Assurance,‖

Proc. of IEEE INFOCOM, 2009.

[15] R. Curtmola, O. Khan, R. Burns, and G.

Ateniese, ―MR-PDP : Multiple-Replica

Provable Data Possession,‖ Proc. of ICDCS

'08, pp. 411–420, 2008.

[16] D. L. G. Filho and P. S. L. M. Barreto,

―Demonstrating Dat a Possession and

Uncheatable Data Transfer,‖ Cryptology

ePrint Archive , Report 2006/150, 2006,

http://eprint.iacr.org/.

[17] M. A. Shah, M. Baker, J. C. Mogul, and R.

Swaminathan, ―Au diting to Keep Online

Storage Services Honest,‖ Proc. 11th

USENIX Workshop on Hot Topics in

Operating Sy

