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ABSTRACT

In this paper, the Spinors of the physical 3-D
Euclidean spaces of Geometric Algebras over a finite
dimensional vector space are defined. Action of Spinors
on Euclidean spaces is discussed. The technique for the
calculation of ephemeris using Spinors is illustrated. In
this process sequences of Spinors in their half angle form
as well as their matrix form are used and compared. It is
shown that when large number of rotations is involved,
Spinor matrix methods are advantageous over the
Spinor half angle method.

Keywords - Ephemeris, Euclidean space, Euler angles,
Rotations, Spinors.

I. INTRODUCTION

Hestenes [1] defined Spinors as a product of two
vectors of i-plane and also proved that they can be treated
as rotation operators on i-plane. Spinors are also defined as
elements of a minimal left ideal [2], [3]. Rotation operators
play a key role in the determination of orbits of celestial
bodies such as Satellites and Spacecrafts. Geometric
Algebra develops a unique and coordinate free method in
this regard. There are various techniques using Quaternions,
Matrices and Euler angles. Geometric Algebra unifies all
these systems into a unique system called Spinors.
Geometric Algebra not only integrates the above mentioned
systems but also establishes the relation among these
systems and thus providing a clear passage to move from
one system to the other.
In this paper we study different parameterizations used for
representing Spinors and rotations. We apply the Euler
angle parameterization of Spinors to solve the problem of
finding the orbital ephemeris of celestial bodies [4].

1. GEOMETRIC ALGEBRA
Let E bean n - dimensional vector space over R,
the field of real numbers and g be a symmetric, positive

definite, bilinear form g:ExE— R denoted by
g(X,y)=X.y VX,y € E There exists a unique Clifford
Algebra (C(E), p) which is a universal algebra in which E
is embedded. Clifford algebra is also called Geometric
Algebra as all elements and operation used in it can be
interpreted geometrically. We shall identify E with o(E) .
We choose and fix an  orthonormal  basis
Bn ={e1,e2,....,en} for E .

Let N = {1,2,...., n}, n=dimEand SN

Let i,i,,...., i, be the elements of S in the ascending
order. We define
€5 =€ € .uuu. e, ande, =1, .
We shall identify e, withe; .
Note that if o is a permutation of {1, 2, ....., m}, then
- - - - m - - -
8 Bi € =(-1)7ej € ..o &
m stands for order of permutation.
2 -
||ei|| =1, ..andee, =—ee, ifi#]
C(E)= @ Ay where A ={ Zases}
s
[sl=k

dim A =nCy and dimC(E)=2".
The operation ‘Geometric Product’ of vectors denoted by
ab , is defined as
db=4a.b+a/b
ba=b .a+bAd=a.b - aAb ... Q)
Here ab =<<’?15>0 is the scalar part and a/\b = <§6>2 is
the bivector part. Elements of Geometric Algebra are called

multivectors as they are in the form A = (A), +(A); + ...

+(A), . A multivector is said to be even (odd) if
(A), =0 whenever I' isodd (even) [5].

(A), € Ay, denotes the k - vector part of the multivector
A

There exists a unique linear map T:C(E) - C(E) that

takes Ato Al satisfying
(i) € =€, € ..o e then

(i) (AB)T = BTAT
“+° is called the reversion operator.

2.1 Euclidean nature of Geometric Algebra
2.1.1  Definition  Norm of a multivector  To every

multivector, A€ C(E) the magnitude or modulus of A is

1
defined as |A|= <ATA>OE. With this definition of norm,
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C(E) becomes a Euclidean algebra. The inverse of a non-

zero element of A of C(E), is also a multivector, defined

by A™ = A—TZ :
A

2.1.2 Definition k—spaci

determines a kK — space.

Every k- vector A,

2.2 Euclidean space Ej
Denote the Clifford Algebra constructed over a three

dimensional vector space E with Cg(E).

For a trivector A,, designate a unit trivector ‘i’ proportional

to A;. Thatis A, =|Aji.

‘i’ represents the direction of the space represented by A, .
The set of all vectors X which satisfy the equation
XAi=0 , is called the Euclidean 3- dimensional vector
space corresponding to ‘i’ and is denoted by ‘Es’. Ej is
also be called an i—space, the trivector | is called the

pseudoscalar of the space as every other pseudoscalar is a
scalar multiple of it.

Factorize  i=040,03 where o4,0, and o3 are
orthonormal vectors. They represent a coordinate frame in
the i—space. X =X0,+X,0,+ X0, is a
parametric equation of the i—space. X;, X, and Xjare

called the rectangular components of vector X with
respect to the basis {01,02,0'3}. i —space of vectors is
a 3 — dimensional vector space with the above basis.

2.2.1 Definition Dual of vector i1 = 01l = 003;

I, =0j=0;0,; Iy =0j=00,
ijip=-i3 =- iyip, lpig=-iq =- izip  and
i3ig=-ip= - iqis

The set of bivectors in C3(E) (also denoted by C3(i) )is a
3-dimensional vector space with basis {i,,i,,i5}. Every

bivector B isa dual of a vector b thatis B=b i=i b.

2.3 Spinors of Euclidean space C3(i)

2.3.1 Definition Spinor The Geometric product of two
vectors in the i - space is called a Spinor and is denoted by

‘R’. Thus
R=X y=X . y+XAyV X, §y €E .
R’ is a multivector, has a scalar part ‘Ot = X .

abivector part ‘B iy +y iy +d3i3=%X A ¥ .

2.3.2 Definition
i-space 'S, is defined as

Spinor i-space The Spinor

{ S3= R/R=XYy, X yEi-space}

S can also be denoted by C3(E) or C3f). ‘R’isa
multivector, has a scalar part ‘O’ and a bivector part

“Big+yiyp+ 8 i3’ Spinors do not satisfy commutative
property with respect to the operation ‘Geometric product’
in view of the above definition (2.2.1).

I1l. ACTION OF SPINORS ON EUCLIDEAN
SPACE - ROTATIONS

Spinors of Euclidean space also can be treated as
rotation operators on i-space of vectors. Rotation
operators can be constructed by considering the group
action of Spinors by conjugation (Hestenes 1986).
Consider a Spinor R= v i, where {0 and vV are unit
vectors of E. Define a rotation operator ® on E as

Unlike rotations in two dimensions, rotations in three
dimensions are more complex as (i) the operation to be
considered is the group action by conjugation, giving
similarity transformations and (ii) the axis about which the
rotation takes place is also to be specified. The resulting
vector changes as the axis of rotation changes. This can be
shown in the following examples.

Rotation of the vector X about the axis o, the axis
perpendicular to the plane ©,0;is represented by the
bivector i, = oji = 0,0;.

Let Xe€ i—space of

X = (Xlo'1 +X,0, + X30'3) .

vectors and

. T_. . -
Iy X |y = 030,X0,03 = 0'302()(161 X0, X363)O'20'3 =X0,— (X202 + X30'3)

Rotation of the vector X about the axis o,, the axis
perpendicular to the plane o©,0;is represented by the
bivector i, =0o,i=0,0;.
izTX I, =0,0,0X0,0, = 0—103()(101 +X0,+ X303)6301 =X%0,~ (Xpl + X30'3)

3.1 Composition of Rotations
Two  rotations RX= R'XR, and

RQ)? =RIXR, can be combined to give a new rotation

R X=R,R X= RIR'XRR, = RIXR,

Note that the order of rotations (R“Z(R“J is opposite to that

of the corresponding Spinor RR, .
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3.2 Proposition Product of two rotations is also a

rotation.
Proof: As Geometric product of Spinors is a binary

operation, R, is also a Spinor.

RIR, =R/R/RR, =1as R'R =1=R]R,
Hence R, isalso a unitary Spinor and it can be proved that

determinant of (K3 is one (Hestenes 1986). As a

consequence of this Q{3 is a rotation.

Product of two rotations in three dimensional spaces is not
commutative in general.

The rotations determined by Q{JRZ and RZRJ are

considered as two different rotations as their sequential
order is not the same.

3.2.1 Spinors of the i-space in half angle form

As a unit vector is treated as a representation of the
direction of a vector, a unit bivector can be treated as a
representation of an angle, which is a relation between two
directions.

Hence for X,y & Cali), let X,y be their directions which
are elements of the i-space .
From the definition of a Spinor of the i - space , the Spinor

R=% §=K% . §+XA Y.

= COS(l/ 2)|A| + Asin(l/ 2)|A| is the half angle form of the

Spinor R.

S = C+(E) if dim E =3.'S" can be related to complex
numbers for dim E =2 and it can be related to Quaternion
Algebra for dimE =3.

R =cos(l/2) A+ Asin(L/2JA| can also be written as

e(1/2)A .

Here A=x Ay, the bivector representing the plane of

rotation and |A| gives the magnitude of the angle through

which the rotation takes place.

3.2.2  Matrix form of a Spinor

There are different matrices to represent rotations. Instead,
the use of Spinors to represent a rotation gives the matrix
elements directly by the formula

ce=0j . (Roy).

There are also other forms such as Exponential form,
Quaternion form etc. The advantages in using Spinor
Algebra as a substitute for all the above algebras

(i) The coordinate free nature of Spinors.

(i) The existence of Spinors in every dimension facilitating
to perform rotations in higher dimensional spaces.

(iii) Representation of rotations using Spinors enables us to
find the magnitude of the angle of rotation as well as the
orientation of the rotation which is not the case with the
matrix representation.

€jk =0

(iv) Spinors can be converted into other forms easily as and
when required.

3.3 Representing a rotation using Euler angles

Rotations are orthogonal transformations. They transform
one coordinate frame XYZ into another coordinate frame
Xyz preserving the angle between them. Euler stated that

every rotation can be expressed as a product of two or three
rotations about fixed axes of a standard basis in such a way
that no two successive rotations have the same axis of
rotation. This theorem is known as ‘Euler’s theorem’. Thus
every Spinor can be divided further into a product of two or
three Spinors that represent rotations about base vectors.
Euler angles are widely used to represent rotations.

To represent the rotation using Euler angles, we select an
axis for the first rotation among the three axes in the
sequence. Then according to the rule that no two successive
rotations have the same axis of rotation, we will have two
axes to choose for the second rotation , and for the third,
again two options are there to choose a different one from
the previous. Thus we get totally 3 x 2 x 2 = 12 sets of
Euler angles. Hence, one can represent the same rotation
using different sets of Euler angles. If the axes chosen for
the first rotation is same as that of third, such a sequence is
called a Symmetric set or a Classical set of Euler angles.

3.4 Finding the Matrix form of the Euler angle sequence
of Spinors

We consider the 3-2-1 symmetric sequence of rotations; the
Spinor that represents the required rotation is given as a
sequence of three rotations about the base wvectors

{01,02,0'3} is defined by
R = R¢Q9RV/ ’
WhereR,, = el/2iow _cos¥ 4 0105 sin|
2 2
i 0 .0
Qp = elli2io _ cos + 0301 in=

Ry = elli2)iod cosg + azogsing

The new set of axes after rotation are given by
e, =Ro, =R'oR

7 N
= R¢Q9 Rl//o-k Rl//QH R¢

This can be converted into the matrix form by calculating
the elements of the matrix [e,] given as

€jk =0 -8k =Rok
e =Roy = R;QQ;RJ/QRW%%
= Rq: Q (R;GlR\.;)Qe Ry
= qu Qo (01(cOSY + o107 5iNy))Qy Ro
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Tt ; f 1
= R¢Q9 ((51COS\|I+0'25|nW)QeR¢ = R¢ (Q963Q9)R¢
= Ry [(Qy 01Q0) cOsw + (Q 52Qp) sinyIR = Ry[o3(cos 0+ 030, sin O)]R,
= RJ, [c1(c0osb + o307 sinB) cosy + o5 SiNy]R,, = R(; (03080 +07SINO)R,,

f H H i T
= R¢ ((51 cosOcosy -G3sinBcosy + o5, sin W)Rd) = (R¢G3R¢) cosO + (R¢01R¢)sine

= (Ryo1Ry) cOSOCOSY - (Ry03R,)SINBCOSY + (RyooRy)siNy = 03(C0S §+ 5203 5iN ¢) cos 0+ 5 in 6

= 53 COS ¢ COS O - 5, Sin ¢pcos O+ o7 SiN O
= 57 C0S 008 \y - 63(C0S ¢ + 55073 SN ¢) SiN B.COS W + 65 (COS ¢ + 5,073 SN h) sin : .
1 Y- 03(00s 9+ 5035in 9) V+05(C0s 9+ 05 sin g)siny = 518N 0 - 5, 5in $€Os O + 53OS hcOs O

=01 00S0C0S Y- G305 SINBCOS Y + G5 Sin HSin oSy + 59 COS §Sin v + 63 Sin HSin v
The matrix obtained is as follows
C0s 0¢0s - C0s Bsin v sind
Sin ¢sin 6cos y +cos siny  €os cosy -singsinBsiny  -singcosO
SinSiny -cos ¢sin 6cos v Sin ¢.cos y + €S ¢sin Bsiny  cos ¢ cos 6

= 61(C0s 6.C0S W) + G (SIN ¢ SN BCOS y + C0S SN ) + G3(Sin §Sin y - €os hsin Hos )

oot ot
& =Rop = Ry Qo Ry, 02R, QoRy
This sequence is used in aerospace applications and to find

T il il
= Rq) Qo (RWGZ R\./)QeRq) orbital ephemeris.
= Ry Q[0 (cOSy + 535, Siny)IQgRy v EULER ANGLES AND EQUIVALENT
ROTATIONS
_pint ! : The set of Euler angles that represent a particular
=Ry Qp (o2 cosy - o1 Sin \V)QeRq) rotation are not unique. Representing the same rotation by
- L two different Euler angle sequences gives Equivalent
= Ry (Qgo2Qg) cosy - (Qgo1Qg) siny)Ry, rotations. In this paper we use sequences of Spinors in their

matrix form and also in their half angle form in place of
rotation sequences to obtain the relationship between the

= R+(cs Cosy - ©7(cosO + G307 SiN0)SiNy)R
LA - bR i two sets of angles (i) orbital ephemeris set (L, o and

= R+ (55 COSY - 57 COSBSINY +535iNBsiny)R o) and (ii) orbital parameters (€2, ¢ and v) set. Thus
o 0 established the equivalence between Spinor methods and

i t . t ) - Quaternion methods.
= (Ryo2Ry) cosy - (Ryo1Ry) cosOsiny + (R, o3Ry) sinOsiny

= 6,(C0S ¢ + 5953 SiN §) COS ¥ - 57 €S OSIN ¥ + 53(COS ¢ + 553 Sin ) Sin OSIN Y Orbit trajectory
= G COS ¢ C0S Wy + 63 SiN ¢ C0S y - 57 C0S OSIN y + 53 C0S §Sin BNy - 5 Sin ¢sin Osin y
= 51 (-00s 5N ) + 55(C0S 008 y - SiN Ysin Bsin ) + 53(Sin ¢ C0S y + oS ¢Sin BSIn y)

R
e3 = Roz = Ry Qo R, 03R, Qp Ry,

ot
= R¢ Qo (R\VGSR\V)QGR(])

= Rq:Q(; (c3)QeRy .

Ascending node
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Figure 1: ephemeris sequence
L = Earth-Latitude of orbiting body
o= A+4
a = Ephemeris path direction angle
A = Earth-Longitude of orbiting body

A, =Greenwich with respect to X axis

Q) = Angle to the orbit ascending node, also called ‘Right
Ascension of the ascending node’. It is the angle subtended
at the center of the Earth from the Vernal Equinox (positive
X axis) to the ascending node ‘N’.

1 = The angle of inclination. It is the angle between orbital
plane and equatorial plane.

v = The argument of the latitude to orbiting body
The position vector of the object is given by the vector

OR. ‘P’ is the point on the surface of the Earth in the
radial direction of the object. The reference frame XYZ is
the Equatorial frame of reference that is the plane that
contains the Earth’s equator. X, Y axes are contained in the
equatorial plane of the Earth. The Z axis is normal to this
XY plane such that XYZ frame forms a right handed frame
of reference. ‘NOR’ is the orbital plane. The trajectory of
the object is as indicated in the figure 1. ON is the line
segment in which the orbit trajectory and the reference
frame intersect each other.

4.1 Matrix method:

4.1.1 Orbit ephemeris sequence

A tabulation of data of the Earth longitude and Latitude of
a body, as a function of time is called the orbit ephemeris of
the body.

In this sequence the body frame (xyz) of the object will be
related to an inertial frame of reference (XYZ) through the

orbital Ephemeris (L, o= A+4,, «). This requires
the 3-2-1 symmetric sequence of rotations; the Spinor that

represents the required rotation is given as a sequence of
three rotations about the base vectors is defined by

R’ = q{aQ—Lq{o = R;QQ; R;Gk RO'Q—LRa !

(w/2)i 050 c

(¢}
Where Rs =6 =COSE+0102 sin; .

- e(1/2) i 02(-L)

- ) o L
=C0S—— +0201SIN—— =C0S— -0201SIN—
2 391 2 2 391 2

(w/2)i oy o
=e

o
=C0S—+ G909 SIN—
a 5 203 5

The matrix is obtained is as follows

(cosLoom) (-cosLsinc) -sinL
= (—sinasin L cos o +cos asin 0) (cowoosmsin asin Lsinc) -sina.cos L
(sinasina+comsinLcos<r) sincccoso-cosasinLsing  cosocos L

In this application we relate the body frame (xyz) of a
spacecraft or a near earth orbiting satellite to an inertial

frame of reference (XYZ, NED frame of reference) through
the orbital parameters (€2, ¢ and v ). This can be done by
using 3-1-3 sequence of Euler angles.

Figure 2: Orbital sequence

4.1.2 Orbital parameter sequence

In this application, the aircraft’s body frame xyz is related
to the NED reference coordinate frame XYZ (refer fig 3)
defined as XY plane is the Tangent plane to the Earth
pointing towards North and East directions respectively. Z
axis points towards the centre of the Earth (NED frame of
reference). The positive X axis of the body frame is directed
along the longitudinal axis. The positive y axis is directed
along its right wing and the positive z axis is perpendicular
to the xy plane such that xyz forms a right handed system.
These two frames are related by the heading and attitude
sequence of rotations followed by a third and final rotation
about the newest x axis which is the position vector of the
spacecraft through an angle @ as depicted by the figure 2.

This requires the 3-1-3 symmetric sequence of rotations; the
Spinor that represents the required rotation is given as a
sequence of three rotations about the base vectors is defined

by
R =R,QR,=R Q R,GRQR, .

Rg, = e(1/ 2)i 6.0

Q . Q
Where = COSE + 010, SIn X

i 1 .1
Q =e(1/2) ot =cos§+52035|n§,

i o 1% .V
R =e¥? 1% —cos— + g,0,sin—

2 2
The matrix obtained is

c0sQcos v -sinveostsinQ  -sinveosicosQ-sinQcosv — sinvsint
cos Qsinv +€osveostSinQ oS veos1cos Q- sinQsiny
sintsinQ sintcos Q oSt

-cos vsint

As the orbital sequence and ephemeris sequence represent
the same body frame of reference, they can be equated to
get the relations between the orbital ephemeris in terms of
the orbital elements. Thus we obtain
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sinL = —sinvsin: = 00SpC0S€=C0SYCOSPCOST -SinyCosPsint=cosPcos(t+7y)....(1)
cosvsinz - sinpsin & = cos y cos Bsin T + siny cos B ¢os t = cos BSin(t + v)....(2)
tanag = —— = cosv tan:
Cost

_cosLsins _ (tanQ+tanvcosy) Sin pcos & = €0S ySin B cos T+ sin ysin Bsin t=sin fcos(t-7)...(3)

"~ cosLcoss  1-tanvcositanQ

tanc
singcosp =cosysinpsint- sinysinBcost=sinPsin(t-v)..(4)

4.2 Spinor half angle method

Equating the orbit sequence with Ephemeris sequence . .
Dividing (3) by (1) and (2) by (4) gives

RaQ—LRO' = Rsz RQ COS(T"Y)
) tanp = tan Bm
T+y
R _e(l/2)i0'30'_ o . O
- = = S OISR tanp _ cos(t-Y) 5)
1/2) i oy(-L) L L tan  cos(t+7)
Q. =e 27 =cos——og0y sin — )
2 o o 1 sin(t+y)
R _ a2 i owa :COSQJFGZ% sin g; tan sin(t-v)
2 2 \ ;
sin(t+y) sin(t+7y)
i o 14 .V = -tanptanp = Y =— ..(6
R =eW2iov _ cos™ + 0o sin —; ptanp sin(t-y) sin(y-1) ©

. Multiplyi i
o - 8(1/2) iof cosl+clcz o and ultiplying (5) and (6) gives
2 2 2 _cos(t-y)sin(t+y) _tan(t+7y) 7
sin(t-y)cos(t+y) tan(t-y)
dividing (6) by (5) gives

20 sin(t+vy)cos(t+7) 5 sin2(t+y)

i Q . Q
Ro = el/2ic _ cos—+o1075in—

RaQ LRs =RyQRo =

RoQ-L = RVQlRQRG-l =RyQROR 6 = RyQIRQ-6 = RyQiRy ) sin(t-y)cos(t-y) sin2(t-y)
= Ro QL =RyQiRy, 1-tan?
) but cos2f= 1t p
To avoid half angles 1+tan? B
a=2p,L=2¢,Q=20,1=2B,Q0 c=y=21,v=2y _Sin2(t-y)+sin2(t+y) _  tan2t

RoQ.L = RWQiRy = RypQ.26 = RayQosRox sin2(t-vy)-sin2(t+7v) tan 2y

Gives tan 2t =-cos 2B tan 2y
(cos p+ 0903 in p)(cos ¢ + 0307 Sin'¢) substituting 1 = 23,Q—o =y =2r,v =2y
= (005 y + 0709 5in 7)(00S b+ 5909 Sin B)(C0S T+ 0709 Sin T i
(€os y+ 5307 sin y)(cos f+ o903 5in B)(cos 7+ 0757 sin 1) i

= C0S PCOS € + 5107 SiN pSiN & + 5953 5iN pCOS & - 6301 SN £COS tany = cosetany

tanv =t -t _ tanQ-tanc
= cosy + o157 sin y)fcos cos 1+ o1 cospsin + 5903 sin pcost+ o301 sin psin 1] -costtany = tany =tan(2-¢) = 1+tanOtano
After simplification we get
cos:tanv +tanQ
= 005 7 C0S [ 005 T+ 6709 €057 008 Sin T+ a3 05 y5in B 0S T+ 6307 C0S yin sin T+ tano = 1-tanQcositany
G707 Sin'y €S 3 C0S T-5iny c0s fsin T+ 6103 siny sinf oos T+ 6903 sinysinpsint Similarly we get the other relations.
= aos ycos poos t-sinyaos Bsin T+ g cos y0os sin -+ siny cos peos <) 4.3 Singularities in Euler sequences
+5903cos ysinB cos t+ sinysinpsin )+ 530 (cos ysinsin<-  sinysinpeost) A singularity occurs in every sequence of Euler angles. For
example in the 3-1-3 sequence,
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e1p _singcosd sing

tan¢: =
€1 Cos¢gcosd cos¢

. Singularity occurs at

/2
b=7
But Euler angles work well for small angles or Infinitesimal
rotations. Hence in the problems like finding the orientation
of the spacecraft and tracking an aero plane employment of
Euler angles is advantageous.

V. DISCUSSIONS

Even though there are many representations for
rotations in 3-D namely Quaternions, Spinors, Euler axis-
angle and sequences of Euler angles, each one can be
transformed into the other. Each system has its own merits
or demerits over the other systems. Singularities occur for
every set of Euler angles but they work well in infinitesimal
rotations. Comparatively, the other methods of using
Quaternions and Euler axis and angle for representing
rotations provide a better procedure as they need four
parameters to be defined and they can be converted into any
other convenient form depending upon the information
available. In the case of Spinors, whose parametric form is

given ass=a+i[?, the number of parameters reduce

further as the parameter ¢ is not independent of ,5

VI. CONCLUSIONS

The technique of using Spinors can replace the
conventional methods and also provide a richer formalism.
If large number of rotations is involved Spinor matrix
methods are advantageous over the Spinor half angle
method.
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