
Avinash

 Shukla, Anil Kishore Saxena / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.555-560

555 | P a g e

‘Review of Radix Sort & Proposed Modified Radix Sort for

Heterogeneous Data Set in Distributed Computing Environment’

Avinash

 Shukla, Anil Kishore Saxena

ABSTRACT
We have proposed a Modified Pure Radix

Sort for Large Heterogeneous Data Set. In this

research paper we discuss the problems of radix

sort, brief study of previous works of radix sort &

present new modified pure radix sort algorithm

for large heterogeneous data set. We try to

optimize all related problems of radix sort

through this algorithm. This algorithm works on

the Technology of Distributed Computing which is

implemented on the principal of divide & conquer

method.

1. INTRODUCTION
Sorting is a computational building block of

fundamental importance and is the most widely

studied algorithmic problem. The importance of

sorting has lead to the design of efficient sorting
algorithms for a variety of architectures. Many

applications rely on the availability of efficient

sorting routines as a basis for their own efficiency,

while some algorithms can be conveniently phrased

in terms of sorting. Database systems make extensive

use of sorting operations. The construction of spatial

data structures that are essential in computer graphics

and geographic information systems is fundamentally

a sorting process. Efficient sort routines are also a

useful building block in implementing algorithms

like sparse matrix multiplication and parallel
programming patterns like Map Reduce. It is

therefore important to provide efficient sorting

routines on practically any programming platform,

and with the evolution of new computer architectures

there is a need to explore efficient sorting techniques

on them. Acceleration of existing techniques as well

as developing new sorting approaches is crucial for

many real-time graphics scenarios, database systems,

and numerical simulations. While optimal sorting

models for serial execution on a single processor

exists; efficient parallel sorting remains a challenge.
Radix sort is classified by Knuth as "sorting by

distribution". It is the most efficient sorting method

for alphanumeric keys on modern computers

provided that the keys are not too long. Floating

number sorting is also possible, with same

modifications. Radix sort is stable, very fast and is an

excellent algorithm on computers having large

memory. The idea of radix soft is similar to the idea

of hashing algorithms. The final position of the

record is computed for each key. If there is already a

record(s) with this key, it is placed after them

(overflow area). The key is not compared with other

keys at all. The approach is generally known as

"bucket sorting", "radix sorting," or "digital sorting,"

because it is based on the digits on the keys.

There are two approaches of radix sorting.

1.1 MSD (most-significant-digit) Radix Sort

Examine the digits in the keys in a left-to-right order,

working with the most significant digits first, MSD

radix sorts partition the file according to the leading

digits of the keys, and then recursively apply the

same method to the sub files

1.2 LSD (least-significant-digit) Radix Sort

The second class of radix-sorting methods

examine the digits in the keys in a right-to-left order,

working with the least significant digits first. Radix

sort is work on the radix of elements then the

Number of passes depends on the maximum length of

elements following are observed.

 For the data set with uniform length, Radix

Sort work highly efficiently.

 For data set with unequal length elements,
number of passes increases because

depending on the maximum length of

elements in list, thus increasing Space &

Time Complexity.

 In the case of string, strings are sorted but it

is corrupted data.

2. REVIEW OF LITERATURE
Nilsson

 [2] Re-evaluated the method for
managing buckets held at leaves & shows better

choice of data structures further improves the

efficiency, at a small additional cost in memory. For

sets of around 30,000,000 strings, the improved burst

sort is nearly twice as fast as the previous best sorting

algorithm. Jon l. Bentley
 [3] suggested a detailed

implementation combining the most effective

improvements to Quick sort, along with a discussion

of how to implement it in assembly language. It is

wide applicability as an internal sorting method

which requires minimal memory.
Arne Anderson

 [4]

had presented and evaluated several optimized and
implemented techniques for string sorting. Forward

radix sort has a good worst-case behavior.

Experimental results indicate that radix sorting is

considerably faster (often more than twice as fast)

than comparison-based sorting. It is possible to

implement a radix sort with good worst-case running

time without sacrificing average-case performance.

The implementations are competitive with the best

previously published string sorting programs.
Naila

Avinash

 Shukla, Anil Kishore Saxena / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.555-560

556 | P a g e

Rahman
 [5] Discuss the problem of large applications

data set which were too massive to fit completely

inside the computer’s internal memory. The resulted

input/output communication between fast internal

memory and slower external memory was a major

performance bottleneck. [5]
 Also discussed the

distribution and merging techniques for using the
disks independently. These are useful techniques for

batched EM problems involving matrices (such as

matrix multiplication and transposition), geometric

data (such as finding intersections and constructing

convex hulls), and graphs (such as list ranking,

connected components, topological sorting, and

shortest paths) were proposed. In the online domain,

canonical EM applications include dictionary lookup

and range searching. They also re-examined some of

the EM problems in slightly different settings, such

as when the data items are moving, or when the data

items are variable-length (e.g., text strings), or when
the allocated amount of internal memory can change

dynamically. Rajeev Raman
 [6] illustrated the

importance of reducing misses in the standard

implementation of least-significant bit first in (LSB)

radix sort, these techniques simultaneously reduce

cache and TLB misses for LSB radix sort, all the

techniques proposed yield algorithms whose

implementations of LSB Radix sort & comparison-

based sorting algorithms. Danial
[7] explained the

Communication and Cache Conscious Radix sort

Algorithm (C3-Radix sort). C3-Radix sort uses the
distributed shared memory parallel programming

Models. Exploiting the memory hierarchy locality

and reduce the amount of communication for

distributed Memory computers. C3-Radix sort

implements & analyses on the SGI Origin 2000

NUMA Multiprocessor & provides results for up to

16 processors and 64M 32bit keys. The results show

that for small data sets compared to the number of

processors, the MPI implementation is the faster

while for large data sets, the shared memory

implementation is faster. Shin-Jae Lee
 [8] solved the

load imbalance problem present in parallel radix sort.
Redistributing the keys in each round of radix, each

processor has exactly the same number of keys,

thereby reducing the overall sorting time. Load

balanced radix sort is currently the fastest internal

sorting method for distributed-memory based

multiprocessors. However, as the computation time is

balanced, the communication time becomes the

bottleneck of the overall sorting performance. The

proposed algorithm preprocesses the key by

redistribution to eliminate the communication time.

Once the keys are localized to each processor, the
sorting is confined within processor, eliminating the

need for global redistribution of keys & enables well

balanced communication and computation across

processors. Experimental results with various key

distributions indicate significant improvements over

balanced radix sort. Jimenez- Gonzalez
 [9]

 introduced

a new algorithm called Sequential Counting Split

Radix sort (SCS-Radix sort). The three important

features of the SCS-Radix are the dynamic detection

of data skew, the exploitation of the memory

hierarchy and the execution time stability when

sorting data sets with different characteristics. They

claim the algorithm to be 1:2 to 45 times faster

compare to Radix sort or quick sort. Navarro &

Josep
 [10]

 focused on the improvement of data

locality. CC-Radix improved the data locality by

dynamically partitioning the data set into subsets that

fit in cache level L2. Once in that cache level, each

subset is sorted with Radix sort. The proposed

algorithm is about 2 and1:4 times faster than Quick

sort and Explicit Block Transfer Radix sort. Ranjan

Sinha
 [11] suggested that the Algorithms for sorting

large data sets can be made more efficient with

careful use of memory hierarchies and reduction in

the number of costly memory accesses. Burst sort

dynamically builds a small tree that is used to rapidly
allocate each string to a bucket. Sinha & Zobel

introduced new variants of algorithm: SR-burst sort,

DR-burst sort, and DRL-burst sort. These algorithms

a-priori construct a tree from random samples.

Experimental results with sets of over 30 million

strings show that the new variants reduce, by up to

37percent cache misses than the original burst sort,

and simultaneously reducing instruction counts by up

to 24 percent. Jian- Jun Han
[12] proposed two

contention-aware scheduling algorithms viz. OIHSA

(Optimal Insertion Hybrid Scheduling Algorithm)
and BBSA (Bandwidth Based Scheduling

Algorithm). Both the algorithms start from the

inherent characteristic of the edge scheduling

problem, and select route paths with relatively low

network workload to transfer communication data by

modified routing algorithm. OISHA optimizes the

start time of communication data transferred on links.

BBSA exploits bandwidth of network links

optimally. Moreover, the proposed algorithms adapt

not only to homogeneous systems but also

heterogeneous systems. Sinha, R. and Zobel
 [13 & 14]

examined that the Burst sort is a cache-oriented
sorting technique using dynamic tree to efficiently

divide large sets of string keys into related subsets

small enough to sort in cache. In original burst sort,

string keys sharing a common prefix were managed

via a bucket of pointers represented as a list or array.

C-burst sort copies the unexamined tail of each key to

the bucket and discards the original key to improve

data locality. Results indicate that C-burst sort is

typically twice as fast as original burst sort and four

to five times faster than multi-key quick sort. CP-

burst sort uses more memory, but provides stable
sorting. Nadathur Satish

[15] proposed the high-

performance parallel radix sort and merge sort

routines for many-core GPUs, taking advantage of

the full programmability offered by CUDA. Radix

sort is the fastest GPU sort and merge sort is the

fastest comparison-based sort reported in the

literature. For optimal performance, the algorithm

Avinash

 Shukla, Anil Kishore Saxena / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.555-560

557 | P a g e

exploited the substantial fine-grained parallelism and

decomposes the computation into independent tasks.

Exploiting the high-speed on chip shared memory

provided by NVIDIA’s GPU architecture and

efficient data-parallel primitives, particularly parallel

scan, the algorithms targeted the GPUs. N.

Ramprasad and Pallav Kumar Baruah
[16]

suggested an optimization for the parallel radix sort

algorithm, reducing the time complexity of the

algorithm and ensuring balanced load on all

processor. [16] Implemented it on the “Cell

processor”, the first implementation of the Cell

Broadband Engine Architecture (CBEA). It is a

heterogeneous multi-core processor system.

102400000 elements were sorted in 0.49 seconds at a

rate of 207 Million/sec. Shibdas Bandyopadhyay

and Sartaj Sahni
[17]

 developed a new radix sort

algorithm, GRS, for GPUs that reads and writes

records from/to global memory only once. The
existing SDK radix sort algorithm does this twice.

Experiments indicate that GRS is 21% faster than

SDK sort while sorting 100M numbers and is faster

by between 34% and 55% when sorting 40M records

with 1 to 9 32-bit fields. Daniel Jiménez-González,

Juan J. Navarro, Josep-L. Larrba-Pey
[18]

proposed Parallel in-memory 64-bit sorting, an

important problem in Database Management Systems

and other applications such as Internet Search

Engines and Data Mining Tools. [9]
 The algorithm is

termed Parallel Counting Split Radix sort (PCS-
Radix sort). The parallel stages of the algorithm

increases the data locality, balance the load between

processors caused by data skew and reduces

significantly the amount of data communicated. The

local stages of PCS-Radix sort are performed only on

the bits of the key that have not been sorted during

the parallel stages of the algorithm. PCS-Radix sort

adapts to any parallel computer by changing three

simple algorithmic parameters. [9]
 Implemented the

algorithm on a Cray T3E-900 and the results shows

that it is more than 2 times faster than the previous

fastest 64-bit parallel sorting algorithm. PCS-Radix

sort achieves a speed up of more than 23 in 32

processors in relation to the fastest sequential

algorithm at our hands. Daniel Cederman and

Philippas Tsigas
[19] showed at GPU-Quick sort, an

efficient Quick sort algorithm suitable for the highly

parallel multi-core graphics processors. Quick sort

had previously been considered an inefficient sorting

solution for graphics processors, but GPU-Quick sort

often performs better than the fastest known sorting
implementations for graphics processors, such as

radix and bitonic sort. Quick sort can thus be seen as

a viable alternative for sorting large quantities of data

on graphics processors.

1. COMPARISON OF VARIOUS SORTING

ALGORITHMS [1]

 The following table compares the sorting algorithms

according to the complexity, method used by them

like exchange, insertion, selection, merge and

also discuss their advantages and disadvantages. n

represents the number of element to be sorted.

TABLE 1.1: COMPARISON OF COMPARISON BASED SORT

Name

Average Case

Time

Complexity

Worst

Case

Time

complexity

Method

Advantage/Disadvantage

Bubble

Sort

O(n2)

O(n2)

Exchange

1. Straightforward, simple and Stable.

2. Slow & difficult on large data set.

Insertion

Sort

O(n2)

O(n2)

Insertion

1. Efficient for small list and Save memory

2. Slow for large data set.

Selection

Sort

O(n2)

O(n2)

Selection

1. Improvement over Bubble sort

2. Unstable & very slow for large Data set.

Heap Sort

O(n log n)

O(n log n)

Selection

1. More efficient version of Selection sort. It does

not require recursion & extra buffer.

2. Slower than Quick and Merge Sorts.

Merge

Sort

O(n log n)

O(n log n)

Merge

1. A fast recursive sorting suitable for very large

data set.

2. It requires large memory space.

In place-

merge Sort

O(n log n) O(n log n) Merge 1.Very low memory required

2. Unstable & slow.

http://dl.acm.org/author_page.cfm?id=81100608146&coll=DL&dl=ACM&trk=0&cfid=81383426&cftoken=86729729
http://dl.acm.org/author_page.cfm?id=81100113650&coll=DL&dl=ACM&trk=0&cfid=81383426&cftoken=86729729
http://dl.acm.org/author_page.cfm?id=81332511005&coll=DL&dl=ACM&trk=0&cfid=81383426&cftoken=86729729

Avinash

 Shukla, Anil Kishore Saxena / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.555-560

558 | P a g e

Shell Sort O(n log n) O(nlog2n) Insertion 1. Efficient for large data set, relatively small

memory required.

2. It is not stable & has more constants.

Quick Sort O(n log n) O(n2)

Partition 1. Fastest, efficient & required less memory space.

2. Partition can lead to unbalanced.

3.1 COMPARISON OF NON COMPARISON

BASED SORTING ALGORITHMS
[1]

The following table describes sorting algorithm

which are non Comparison sort. Complexities below

are in terms of n, the number of item to be

sorted, and k the size of each key and s is the chunk

size use by implementation. Assume that the key size

is large enough, that all entries have unique key

values.

3.1 TABLE 1.2: COMPARISON OF NON - COMPARISON SORT [1]

Name

Average

Case

Worst

Case

n<<2K

Advantage/disadvantage

Bucket Sort

O(n.k)

O(n2.k)

No

1. Stable & fast.
2. Used in special cases when the key can be used to

 Calculate the address of Buckets.

Counting

Sort

O(n+2k)

O(n+2k)

Yes

1. Stable, used for repeated Value & often used as a

 subroutine in radix sort.

2. Valid for integer only.

Radix Sort

O(n.ks)

O(n.ks)

No

1. Stable, straight forward

2. Applicable to data set with multiple fields.

MSD Radix

Sort

O(n.ks)

O(n.ks)

No

1. Highly efficient for sorting large data sets.

2. Bad worst-case performance due to data fragmentation.

LSD Radix

Sort

O(n.ks)

O(n.ks.2s)

No 3. Stable & fast sorting method.

2. PROPOSED MODIFIED RADIX SORT
It is observed that no single method is

optimal to all available data sets with varying

complexity of size, number of fields, length etc. Thus

attempt is made to select a set of data set & optimize

the implementation by modifying the basic algorithm.

Above these problems of Sorting algorithm are

optimized by proposed algorithm. The algorithm is

dependent on the distributed Computing

Environment. Its implementation is proposed on

many core machines. Given heterogeneous list is

divided into two main process one is numeric and

other is string. These two process work

simultaneously. Suppose p1, p2 are the two main
process. Each process has a unique processor.

Process p1 is further distributed in different sub list

according to equal length of elements in a list. These

lists are sorted simultaneously on the logic of even &

odd logic. Passes are transferred alternatively on the

digits. After sorting these lists combined all this &

again sort this main list. In the case of p2, make a

pattern. Using the unique pattern, get the selected

strings. Among these strings, same string provides

same numeric values. Now proposed algorithm

applies on these numeric values for sorting the given

strings.

3. RESULTS AND DISCUSSIONS
Now proposed MRS algorithm runs on two

different machines & has observed the results. Off

course results have shown clear picture that MRS

Sort is best sort for heterogeneous data set on both

the machines always. After MRS Sort GPU Quick

Sort is the best option. Both Sorting techniques are

complete by themselves, but there are slight

differences between these two sorting methods given

below. This algorithm runs on two different

machines, the results are as follow in the form of
graph.

First this algorithm runs on Intel Pentium

P6200,Intel HD Graphics,2GB DDR3 RAM,500 GB

HDD Operating system :- Windows 7. The results

(Graph Representation) of this machine are as follow.

Avinash

 Shukla, Anil Kishore Saxena / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.555-560

559 | P a g e

Fig. 1 Comparisons Results of MRS Sort on machine

1
Here four groups are presents whose name like

Ram1, Ram2, Ram3, Ram4. Each group keeping

separate heterogeneous data set. Ram1 represent 1

millions of heterogeneous data set like Ram1 other

groups keeping 5 millions, 10 millions, 15 millions &

20 millions heterogeneous data set respectively. All

these groups are shown on X- axis on the graph & y-

axis shown on taking time (Nano Seconds) for each

group.

1. Second time this algorithm runs on Intel

Xeon Server Board, Intel HD Graphics, 5GB
DDR3 RAM, 500 GB HDD, Operating

system : - windows server 2008 R2. The

results (Graph Representation) of this

machine are as follow.

Fig. 2 Comparisons Results of MRS Sort on machine

2

Here four groups are presents whose name

like Ram1, Ram2, Ram3, Ram4. Each group keeping

separate heterogeneous data set. Ram1 represent 1

millions of heterogeneous data set like Ram1 other

groups keeping 5 millions, 10 millions, 15 millions &

20 millions heterogeneous data set respectively. All

these groups are shown on X- axis on the graph & y-

axis shown on taking time (Nano Seconds) for each

group. The results are clearly shown some condition

MRS Sort & GPU Quick Sort are same results &

some condition MRS Sort just up on GPU Quick Sort

algorithms.

4. CONCLUSION
Now, clearly seen that given algorithm can

do much better job over existing sorting algorithms.

Both time & space complexities are optimized with

this algorithm. The various algorithm prepared so far

for sorting of large heterogeneous data set are

discussed. It can be seen that none of the algorithm is

optimized universally for all types of data set. Thus

approach to develop optimized algorithm for

affliction data set are being discussed and proposed.

A new Algorithm proposed optimized the time &

space complexity for heterogeneous data set
comprising of both alphanumeric, string & available

in different format. The results had shown an

improvement of 10:20% in computational complexity

compound with MRS sort & GPU Quick sort.

RRFERENCES
1. PhD. Thesis by Aditya Dev Mishra under

the supervision of Dr. Deepak Garg CSED

CSE Department Thapar University Patiala-
147004 June 2009 on the Topic” Selection

of Best Sorting Algorithm for a particular

problem.

2. Nilsson, S. 1996,” Radix sorting &

searching”, Ph.D. thesis, Department of

Computer Science, Lund University, Lund,

Sweden.

3. Jon L. Bentley, Robert Sedgwick, “Fast

algorithms for sorting and searching

strings”, Proceedings of the eighth annual

ACM-SIAM symposium on discrete
algorithms, p.360-369, January 05-07, 1997,

New Orleans, Louisiana, United States.

4. Arne Anderson, Stefan Nilsson,

“Implementing radix sort”, Journal of

Experimental Algorithmic (JEA), 3, p.7-es,

1998.

5. Naila Rahman, Rajeev Raman, “Analyzing

cache effects in distribution sorting”, Journal

of Experimental Algorithmic (JEA), 5, p.14-

es, 2000.

6. Naila Rahman, Rajeev Raman, “Adapting
Radix Sort to the Memory Hierarchy”,

Journal of Experimental Algorithmic (JEA),

6, p.7-es, 2001.

7. Danial, Navarro, Guinovart & Larriba pay,”

Sorting on the SGI Origin 2000: Comparing

MPI & Shared memory Implementations”,

19th IEEE Conference of the Chilean

Computer Science Society (1999) current

version available on 6th August 2002.

8. Shin-Jae Lee, Minsoo Jeon, Dongseung Kim

& Andrew Sohn, “Partitioned Parallel sort 1”,

IDEAL Journal of Parallel & Distributed

Avinash

 Shukla, Anil Kishore Saxena / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.555-560

560 | P a g e

Computing (2002) jpdc.

9. Danial, Jimenez- Gonzalez, J. J. Navarro,

Josep [2002]”, the Effect of Local Sort on

Parallel Sorting Algorithms”, 10th IEEE

Euromicro Workshop on Parallel Distributed

& Network Based Processing (Euromicro-
PDP’ (02) 2002.

10. Daniel, Navarro & Josep, “CC- Radix: a

Cache Conscious Sorting Based on Radix

Sort”, 11th IEEE Conference on Parallel,

Distributed & Network-Based Processing

(Euro-PDP’03) 2003.

11. Ranjan Sinha, Justin Zobel,” Cache-

conscious sorting of large sets of strings

with Dynamic Tries”, Journal of

Experimental Algorithmic (JEA), 9, 2004.

12. Sinha, R. and Zobel, J. 2004. “Using random

sampling to build approximate tries for
efficient string sorting”, Springer- Verlag

International Workshop on Efficient and

Experimental Algorithms, vol. 3059. New

York. 529-544.

13. Sinha, R. 2006. “Using compact tries for

cache-efficient sorting of integers”.

Springer-Verlag International Workshop on

Efficient and Experimental Algorithms, C.

C. vol. 3059, New York. 513-528.

14. Jian- Jun Han & Duo- Qiang wang, “Edge

Scheduling Algorithm in parallel &
Distributed Systems”, IEEE Conference on

parallel Processing (ICPP’06) 2006.

15. Nadathur Satish “Designing Efficient

Sorting Algorithm for many-core GPUs”,

23rd IEEE International Parallel and

Distributed Processing Symposium, May

2009.

16. N. Ramprasad and Pallav Kumar

Baruah.2007.” Radix Sort on the Cell

Broadband Engine” ,In Int.l Conf. High

Perf. Comuting (HiPC) – Posters, 2007.

17. Shibdas Bandyopadhyay and Sartaj Sahni.
4-Feb 2011,” GPU Radix Sort For

Multifield Records”, IEEE Explore High

Performance Computing(Hipc),2010

International Confrence on19-22 Dec. 2010

,1-10, Dona Paula, 11824284,Dept. of CSE,

University of Florida,Gainesville, FL 32611.

18. Daniel Jiménez-González, Navarro, josep L.

Larrba – Pey. 2001.”Fast Parallel in-

memory 64-bit sorting” Proceeding ICS '01

Proceedings of the 15th international
conference on Supercomputing ACM New

York, NY, USA ©2001.

19. Daniel Cederman and Philippas

Tsigas.2008,”On sorting and load balancing

on GPUs”, Newsletter ACM SIGARCH

Computer Architecture News archive

Volume 36 Issue 5, December 2008 ACM

New York, NY, USA.

ABOUT THE AUTHORS

1
Avinash Shukla was born in Jabalpur

on 14th Oct.1979. He has done Msc.in

Information Technology from

MCNUJC Bhopal in 2007. He is

presently doing PhD. in Computer

Science & Engineering in from CMJ University,

Shilong (Meghalaya), India.

2
Dr A.K Saxena, ME, PhD (Engg.) from

ABV- IIITM. He is the Member Board of

Studies in Electronics & CSE, RGTU

(2005-2008).Electrical Engg., Jiwaji

University(1999-2001) and have the

Administrative experience as Nominee for

BE and MCA courses at various institutes, Assistant

coordinator(PET).He is the member of FIETE, MIE,

MISTE Societies and have the Industrial Experience

at SICO, Indian Railway Construction Co. Ltd. He

had presented 10 technical papers in various national
and international conferences. His research area

includes Multimedia Technology and Digital

Watermarking; Microprocessor based system

development and instrumentation.

http://dl.acm.org/author_page.cfm?id=81100608146&coll=DL&dl=ACM&trk=0&cfid=81383426&cftoken=86729729
http://www.acm.org/publications
http://dl.acm.org/citation.cfm?id=J89&picked=prox&cfid=80544675&cftoken=87968794
http://www.acm.org/publications

