
D.V.Nageswara Rao, P.Sunitha / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.500-508

500 | P a g e

An Area Efficient High Speed Fault Detection Scheme For

Advanced Encryption Standard Using Composite Fields

 D.V.Nageswara Rao

#1
 P.Sunitha

*2

M.Tech,VLSI System Design, * Assoc. Professor,M.Tech,

Pragati Engineering College. Pragati Engineering College.

Abstract:
 In this paper, we present a lightweight

concurrent fault detection scheme for the AES.

The selection of appropriate fault detection

scheme for the AES makes it robust to internal

defects and fault attacks. In the proposed

approach, the composite field S-box and inverse

S-box are divided into blocks and the predicted

parities of these blocks are obtained. By using

exhaustive searches We obtained the optimum

solutions for the least overhead parity-based fault

detection structures. It suggests both the ASIC

and FPGA implementations of the fault detection

structures using the obtained optimum composite

fields, have better hardware and time

complexities compared to their counterparts.

Keywords: AES (Advanced Encryption

Standard), ASIC (application-specific integrated

circuit), FPGA (field-programmable gate-array).

I INTRODUCTION
In today‟s digital world, encryption is

emerging as a disintegrable part of all

communication networks and information processing

systems, for protecting both stored and in transit

data.

A. Drawbacks of Software

There are other important drawbacks in

software implementation of any encryption
algorithm, including lack of CPU instructions

operating on very large operands, word size

mismatch on different operating systems and less

parallelism in software. In addition, software

implementation does not fulfill the required speed for

time critical encryption applications. Thus, hardware

implementation of encryption algorithms is an

important alternative, since it provides ultimate

secrecy of the encryption key, faster speed and more

efficiency through higher levels of parallelism.

II. ENCRYPTION METHODS

 A. Key Based Approach

Different versions of AES algorithm exist

today (AES128, AES196, and AES256) depending

on the size of the encryption key. In this project, a

hardware model for implementing the AES128

algorithm was developed using the Verilog hardware

description language. A unique feature of the design

proposed in this project is that the round keys, which

are consumed during different iterations of
encryption, are generated in parallel with the

encryption process.

B. Language

 The hardware model was then completely

verified using a test bench, which took advantage of

the Verilog, is programming feature, by constructing

random test objects and providing them to the model.

Then, the verified model was synthesized using the

Synopsis Design-Compiler tool to get an estimate of

the number of gates, area and timing of the hardware

model. Finally, the performances of software and
hardware implementations were compared.

C. Finite Fields

 In this section, the preliminaries on finite

fields (also known as Galois fields) used in the

subsequent sections are presented. The detailed

description of these fields can be found in a number

of publications, see for example [8] and [9].

According to Lin and Costello in [19], the definition

of a finite field is as follows. Let F be a set of

elements on which two binary operations of addition
and multiplication, shown by “ + ” and “ · ”,

respectively, are defined. Then, the set F and these

operations construct a finite field if the following

conditions are satisfied:

1. The set F be commutative under addition. The

identity element in addition is zero.

2. The non-zero elements of set F be commutative

under multiplication. The identity element in

multiplication is one.

3. Multiplication be distributive over addition, i.e.,

for a, b and c in set F we have a · (b + c) = a · b +
a · c.

4. The number of elements in the field be finite. In

the AES, the irreducible polynomial of P(x) = x^8

+ x^4 + x^3 + x + 1 is used to construct GF(2^8).

Each element in GF(2^8) is represented by a

polynomial of degree 7, having 8 coefficients in

GF(2). Furthermore, all the field operations are

carried out using the above mentioned irreducible

polynomial.

D. Cryptosystems and Public key cryptography

Cryptography is the process of encrypting the
plain text into an incomprehensible cipher text by the

D.V.Nageswara Rao, P.Sunitha / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.500-508

501 | P a g e

process of Encryption and the conversion back to

plain text by process of Decryption.

Most encryption algorithms are based on 2 general

principles,

1. Substitution, in which each element in plain text

is mapped to some other element to form the

cipher text
2. Transposition, in which elements in plaintext are

rearranged to form cipher text.

3.

E. Number of keys used
If both the sender and the receiver use a

same key then such a system is referred to as

Symmetric, single-key, secret-key or conventional

encryption. If the sender and receiver use different

keys, then such a system is called Asymmetric, Two-

key, or public-key encryption.Processing of Plain

text: A Block cipher processes the input one block at

a time, producing an output block for each input
block. A Stream cipher processes the input elements

continuously producing output elements on the fly.

Most of the cryptographic algorithms are either

symmetric or asymmetric key algorithms.

1. Secret Key Cryptography

This type of cryptosystem uses the same

key for both encryption and decryption. Some of the

advantages of such a system are

- Very fast relative to public key

cryptography
- Considered secure, as long as the key is

strong

Symmetric key cryptosystems have some

disadvantages too. Exchange and administration of

the key becomes complicated. Non-repudiation is not

possible. Some of the examples of Symmetric key

cryptosystems include DES, 3-DES, RC4, RC5 etc.

2. Public Key Cryptography

This type of cryptosystems uses different

keys for encryption and decryption. Each user has a

public key, which is known to all others, and a
private key, which remains a secret. The private key

and public key are mathematically linked.

Encryption is performed with the public key and the

decryption is performed with the private key. Public

key cryptosystems are considered to be very secure

and supports Non-repudiation. No exchange of keys

is required thus reducing key administration to a

minimum. But it is much slower than Symmetric key

algorithms and the cipher text tend to be much larger

than plaintext. Some of the examples of public key

cryptosystems include Diffie-Hellman, RSA and
Elliptic Curve Cryptography.

III. AES ROUNDS AND

TRANSFORMATIONS
Here we briefly explain the four

transformations of each round of the encryption.

Each transformation in every round of

encryption/decryption acts on its 128-bit input which

is considered as a four by four matrix, called state,

whose entries are eight bits. The transformations in

each round of encryption except for the last round

are as follows:

i. SubBytes: The first transformation in each round is

the bytes substitution,called SubBytes, which is
implemented by 16 S-boxes. These S-boxes are

nonlinear transformations which substitute the 128-

bit input state with a 128-bit output state. In the S-

box, each byte of the state (Ii in Figure 2.1) is substi-

10 tuted by a new byte (Bi in Figure 2.1). S-box will

be explained in detail in the next section.

ii.ShiftRows: ShiftRows is the second

transformation in which the four bytes of the rows of

the input state are cyclically shifted to the left and the

first row is left unchanged as shown in the leftmost

part of Figure 2.1. The number of left shifts for each

row is equal to the number of that row. Let us denote
rows as rowi where, i, 0 ≤ i ≤ 3, is the row number.

Then, for row0 no shift, for row1 one shift, for row2

two shifts and for row3 three shifts are required.

iii. MixColumns: The third transformation is

Mixcolumns in which each entry in the output state

is constructed by the multiplication of a column in

the input state with a fixed polynomial over GF(2^8).

The output state is obtained by multiplying the

columns of the input state modulo x^4 + 1 with the

fixed polynomial of a(x) =

(03)x^3+(01)x^2+(01)x+(02), where the coefficients
are inhexadecimal form. The matrix representation of

Mixcolumns is shown in Figure 2.1. As seen in this

figure, the output state is constructed by multiplying

the entries of the input state by a fixed matrix whose

entries are in the hexadecimal form.

iv.AddRoundKey: The final transformation is

AddRoundKey which XORs the input state with the

key of that round, i.e., ki, 0 ≤ i ≤ 10. The AES key

expansion unit in Figure 2.1 takes the 128-bit

original key, k0, as input and produces a linear array

of expanded keys, k1 to k10. Each key is added to
the input by 128 two-input XOR gates. Among the

four transformations in the encryption and decryption

of AES, only S-box for encryption and inverse S-box

for decryption are nonlinear and complex operations.

Furthermore, not only is the S-box one of the four

round transformations, but it is also used in the key

expander unit which generates the keys used in the

AES rounds. Therefore, the implementations of these

two transformations affects the implementation of the

whole AES tremendously. Later in this chapter, the

im-11 plementation variations of the S-box and
inverse S-box including the composite field

implementations are explained in detail.

IV. SECURITY OF AES
Three possible approaches to attacking the AES

algorithm are as follows:

 Brute Force: This involves trying out all the

possible private keys.

D.V.Nageswara Rao, P.Sunitha / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.500-508

502 | P a g e

 Mathematical attacks: There are several

approaches, all equivalent in effect to factoring

the product of 2 primes.

 Timing attacks: These depend on the running

time of the decryption algorithm.

Choosing large p and q values can prevent

such attacks. Security of RSA thus lies in choosing
the value n, which makes such attacks extremely

difficult.

V. PROPOSED SYSTEM
In our proposed approach we introduce fault

detection not only in S-box and Inverse S-box and

also in all other five levels in order to find the most

optimum solutions and we also analyzed all required

parameters to proved that the proposed system is not
only effective in fault detection and also give proper

efficiency in speed, power and area through

hardware implementation.

 AES

Version

Key

Length

(Nk

words)

Block

Size

(Nb

words)

Number of

Rounds

(Nr rounds)

AES128 4 4 10

AES192 6 4 12

AES256 8 4 14

Table 1 – AES Variations

The basic processing unit for the AES

algorithm is a byte. As a result, the plaintext, cipher

text and the cipher key are arranged and processed as

arrays of bytes:

Block length = 128 bits, 0 <= n < 16

Key length = 128 bits, 0 <= n < 16

Key length = 192 bits, 0 <= n < 24

Key length = 256 bits, 0 <= n < 24

All byte values in the AES algorithm are
presented as the concatenation of their individual bit

values between braces in the order {b7, b6, b5, b4,

b3, b2, b1, b0}. These bytes are interpreted as finite

field elements using a polynomial representation:

i

i

i xbxbxbxbxbxbxbxbxb 



7

0

012

3

3

4

4

5

5

6

6

7

7

All the AES algorithm operations are

performed on a two dimensional 4x4 array of bytes

which is called the State, and any individual byte

within the State is referred to as sr,c, where letter „r‟

represent the row and letter „c‟ denotes the column.

At the beginning of the encryption process, the State

is populated with the plaintext. Then the cipher
performs a set of substitutions and permutations on

the State. After the cipher operations are conducted

on the State, the final value of the state is copied to

the cipher text output as is shown.

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

Input Bytes State Array Output Bytes

Figure 1 – State Population and Results
At the beginning of the cipher, the input

array is copied into the State according the following

scheme:

s[r,c] = in [r + 4c] for 40  r and 40  c ,

and at the end of the cipher the State is copied into

the output array as shown below:

out[r+4c] = s[r,c] for 40  r and 40  c

VI. CIPHER TRANSFORMATIONS
The AES cipher either operates on

individual bytes of the State or an entire row/column.

At the start of the cipher, the input is copied into the

State as described in Section 2.2. Then, an initial

Round Key addition is performed on the State.
Round keys are derived from the cipher key using

the Key Expansion routine. The key expansion

routine generates a series of round keys for each

round of transformations that are performed on the

State.

The transformations performed on the state

are similar among all AES versions but the number

of transformation rounds depends on the cipher key

length.

A. Subbytes () Transformation

The SubBytes is a byte substitution
operation performed on individual bytes of the State,

as shown in Figure 3, using a substitution table

called S-box.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

State Array

s’
0,0 s’

0,1 s’
0,2 s’

0,3

s’
1,0 s’

1,1 s’
1,2 s’

1,3

s’
2,0 s’

2,1 s’
2,2 s’

2,3

s’
3,0 s’

3,1 s’
3,2 s’

3,3

State Array

s1,1
s
’
1,1

S-box

Figure 2 – SubBytes Transformation

The invertible S-box table is constructed by
performing the following transformation on each

byte of the State. [1]

D.V.Nageswara Rao, P.Sunitha / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.500-508

503 | P a g e

- Take the multiplicative inverse in the finite

field GF(28) of the byte.

- Apply the following transformation to the

byte:

iiiiiii cbbbbbb   8mod)7(8mod)6(8mod)5(8mod)4(

'

 The bi is the ith bit of the byte and ci is the ith

bit of a constant byte with the value of {63}. The

combination of the two transformations can be

expressed in matrix form as shown below:





































































































































0

1

1

0

0

0

1

1

11111000

01111100

00111110

00011111

10001111

11000111

11100011

11110001

7

6

5

4

3

2

1

0

'

7

'

6

'

5

'

4

'

3

'

2

'

1

'

0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Table-2 SubBytes Transformation

The S-box table shown in Table 2 is

constructed by performing the two transformations

described earlier for all possible values of a byte,

ranging from {00} to {ff}. For example the

substitution value for {53} would be determined by

the intersection of the row with index „5‟ and the

column with index „3‟.

B. Shiftrows () Transformation

The ShiftRows transformation cyclically

shifts the last three rows of the state by different

offsets. The first row is left unchanged in this

transformation. Each byte of the second row is

shifted one position to the left. The third and fourth

rows are shifted left by two and three positions,

respectively. The ShiftRows transformation is

illustrated in Figure 3.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

State Array

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

State Array

ShiftRows

Figure 3 – ShiftRows Transformation

C Mixcolumns () Transformation

This transformation operates on the

columns of the State, treating each columns as a four

term polynomial the finite field GF(28). Each

columns is multiplied modulo x4+1 with a fixed four-

term polynomial a(x) = {03}x3 + {01}x2 + {01}x +

{02} over the GF(28). The MixColumns

transformation can be expressed as a matrix

multiplication as shown below:





























































c

c

c

c

c

c

c

c

s

s

s

s

s

s

s

s

,0

,0

,0

,0

'

,3

'

,2

'

,1

'

,0

02010103

03020101

01030201

01010302

The MixColumns transformation replaces

the four bytes of the processed column with the

following values:

ccccc sssss ,3,2,1,0

'

,0)}03({)}02({ 

ccccc sssss ,3,2,1,0

'

,1)}03({)}02({ 

)}03({)}02({ ,3,2,1,0

'

,0 ccccc sssss 

)}02({)}03({ ,3,2,1,0

'

,1 ccccc sssss 

For the AES algorithm the irreducible

polynomial is:

m(x) = x8 + x 4 + x3 + x +1.[1]

The MixColumns transformation is

illustrated in Figure 4. This transformation together

with ShiftRows, provide substantial diffusion in the

cipher meaning that the result of the cipher depends

on the cipher inputs in a very complex way. In other

words, in a cipher with a good diffusion, a single bit
change in the plaintext will completely change the

cipher text in an unpredictable manner.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

State Array

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

State Array

MixColumns

S0,1

S1,1

S2,1

S3,1

S
’
0,1

S
’
1,1

S
’
2,1

S
’
3,1

Figure 4 – MixColumns Transformation

D. Addroundkey () Transformation:

During the AddRoundKey transformation,

the round key values are added to the State by means

of a simple Exclusive Or (XOR) operation. Each

round key consists of Nb words that are generated

from the KeyExpansion routine. The round key

D.V.Nageswara Rao, P.Sunitha / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.500-508

504 | P a g e

values are added to the columns of the state in the

following way:

     cNbroundcccccccc wssssssss  *,3,2,1,0

'

,3

'

,2

'

,1

'

,0 ,,,,,,

 for
bNc 0

In the equation above, the round value is

between rNround 0 . When round=0, the

cipher key itself is used as the round key and it

corresponds to the initial AddRoundKey

transformation displayed in the pseudo code in

Figure 2.

The AddRoundKey transformation is illustrated in

Figure 5.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

State Array

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

State Array

S3,1

S1,1

S2,1

S3,1

S
’
0,1

S
’
1,1

S
’
2,1

S
’
3,1

Wl+c

l = round * Nb

Round Keys


AddRoundKey

Figure 5 – AddRoundKey Transformation

VII. FAULT DETECTION IN AES

For fault detection of the encryption or

decryption in AES one may use redundant units [12],

[8]. In [6] algorithm-level, round-level and

operation-level concurrent error detection for the
AES are used. In the algorithm-level, comparing the

plain text with the output of a decryption after an

encryption is proposed. The round-level error

detection uses similar ideas in the rounds, where, the

output of a round in encryption is applied to a round

in decryption and is compared with the input. The

operation-level (or transformation-level) error

detection uses the inversion of a transformation in

each round and compares the output with the input.

Figure 2.5a shows the operation-level concurrent

error detection for S-box and inverse S-box

presented in [12]. In this figure, the 8-bit input I of
the S-box (8-bit input B of the inverse S-box) is

compared with the output of two consecutive

transformations, S-box and inverse S-box (inverse S-

box and S-box) using an 8-bit comparator to generate

the error indication flag.

Fault coverage of the proposed parity code:

In this section we describe the results of

extensive simulation experiments which were carried

out to evaluate the fault coverage of the proposed
parity EDC scheme for the Encryption module. We

start with single bit faults injected into the data block

at the beginning of the rounds; i.e., faults are not

injected between the round transformations. Six

types of tests have been performed with data block

and key of 128 bits.

1. 5000 data blocks were selected randomly and a

single bit error was injected into every position of
the data block at each of the 10 rounds. The total

number of tests of this type has been 5000 x 10 x

128 = 6.4 x 106. All these tests used the same

secret key. Our parity bits scheme detected all the

faults.

2. 5000 secret keys were randomly selected and used

with the same 128-bit data block. The same single

bit errors as in (1) were injected for a total of 6.4

x 106 tests. Here too, all the faults were detected

by our parity scheme.

3. 100 random secret keys and 1000 random data

block were selected and every data block was
encrypted with each secret key. 1280 single bit

errors were injected into every encryption for a

total of 1.28 x 108 tests. All the faults were

detected.

In the above three types of tests the parity

check was performed at the end of the tenth round. In

the next type of tests the parity check was instead

done at the end of the round.

4. 5 x 105 random data blocks were selected and a

single bit error was injected in each position of

the data block. A single round was then
performed yielding 100% fault coverage. The

total number of tests of this type was 5 x 105 x

128 = 6.4 x 107.

The last two types of tests considered a

single simplified round consisting only of SubBytes

and MixColumns since these transformations affect

the error propagation in the most complex way. The

parity check was performed at the end of the

(simplified) round. The observed fault coverage has

again been 100%.

5. 256 32-bit data words of the type (xOOO)8w ere

considered and a single bit error was injected into
the first byte (the one that is varying) .The total

number of tests of this type was 256 x 8 = 2048.

All the faults were detected.

6. 1000 128-bit random data blocks were selected

and a single bit error was injected in each position

of the data block. The number of tests of this type

was 1000 x 128 = 1.28 x 104. Again, all the

injected faults were detected.

These six types of tests strongly suggest that

the parity-based EDC achieves a 100% fault

coverage for single bit faults. In fact, it can be proven
that: The proposed parity-based EDC with a single

checkpoint scheduled at the end of the last round is

capable of detecting every single bit fault injected

into the data block in the Encryption module, at the

beginning of the rounds or between two round

transformations. The proof had to be omitted for the

sake of brevity. In this proof, however, we only

D.V.Nageswara Rao, P.Sunitha / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.500-508

505 | P a g e

considered single faults injected at the beginning of

an encryption round, at the inputs of one of the four

round transformations.

WORKING OF PROJECT
 A. Design Hierarchy

The proposed AES128 hardware model is a

3-level hierarchical design as shown in Figure 6.

The root module in the hierarchy is the

AES128_cipher_top. This module implements the

AES128 pseudo code displayed in Figure 2. It has

two 128-bit inputs for receiving the cipher key and

the plaintext. There is also a single bit input signal,

„Ld‟, which is used to indicate the availability of a

new set of plaintext or cipher key on the input ports.

The completion of the encryption process is
indicated by asserting the „done‟ single bit output.

AES128_Cipher_Top

AES128_Key_Expand

AES128_Rcon
clk

rst

plaintext

done

128 b

128 b

128 b

ciphertext

cipherkey

ld

Figure 6 – Design Hierarchy

A unique feature of the proposed design is

that the AES128_Key_Expand module is pipelined

with the AES128_cipher_top module. While the

AES128_cipher_top module is performing an
iteration of the encryption transformations on the

State using the previously generated round keys, the

AES128_Key_Expand produces the next round‟s set

of keys to be used by the root module in the next

encryption iteration.

B. AES128 Encryption Process

The AES128_cipher_top module state

diagram is shown in Figure 7. There are ten rounds

of transformations represented by r1 to r10 states.

The four cipher transformations introduced in section
2.3 are applied to each state. The r0 state

corresponds to the initial AddRoundKey

transformation in Figure 2.

After leaving the Reset state, the

AES128_Cipher_Top module waits for assertion of

the „Ld‟ signal, which indicates that a valid set of

plaintext and cipher key is available on the input

ports. After reaching the r0 state, there is a transition

on every clock cycle for the next ten cycles, as ten

rounds of encryption is applied to the State.

After going through ten rounds of

transformations, the „done‟ signal is asserted to
indicate the completion of cipher and availability of

the ciphertext on the corresponding output port.

r0

r8

Wait for

Ld

r10 r6

r5

r7

Reset

r4

r3r1

r2

r9

!rst

 !Ld rst

 Ld

States Outputs

--------------- --------------

R0 … R9 done=0

 ciphertext= z

R10 done=1

 ciphertext= <valid>

↑clk

↑clk ↑clk

↑clk

↑clk

↑clk

↑clk

↑clk↑clk

↑clk

↑clk

Figure 7 – AES128_Cipher_Top Module State

Diagram

C. AES128 Round Key Generation

The round keys used by the

AES128_Cipher_Top module are generated based on

the state diagram shown in Figure 8. The

AES128_Key_Expand and the AES128_RCon

modules are responsible for generating the round

keys. These two modules operate based on the state

diagram shown in Figure 10, which is slightly
different than the one used for the encryption

process.

r0

r8

r10 r6

r5

r7

Reset

r4

r3r1

r2

r9

rst

!rst

Ld

 !Ld

↑clk ↑clk

↑clk

↑clk

↑clk

↑clk

↑clk↑clk

↑clk

↑clk

States Outputs ·

--------------- ---------------------------------

R0 … R10 w0 = roundkey(Round*i)

 w1 = roundkey(Round*i+1)

 w2 = roundkey(Round*i+2)

 w3 = roundkey(Round*i+3)

Figure 8 – AES128_Key_Expand Module State

Diagram

In the state diagram shown above, the „Ld‟

signal is checked in the „r0‟ state and if asserted,

then the cipher key is provided to the

AES128_Cipher_Top module to be used for the

initial AddRoundKey transformation.

D.V.Nageswara Rao, P.Sunitha / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.500-508

506 | P a g e

The AES128_Key_Expand module

generates four 32-bit keys for each round of the

encryption process, by using the cipher key. Figure

9 shows the block diagram of the

AES128_Key_Expand module. The cipher key is

passed to this module through a 128-bit input port,

and the round keys are generated on the four output
ports.

AES128_Key_Expand

clk

rst

128 b

cipherkey

ld

32 b w3

32 b w2

32 b w1

32 b w0

Figure 9 – AES128_Key_Expand Module

 There is a 32-bit round constant value,

which is used by the key expansion algorithm to

generate the round keys. This value varies for each

encryption round and for Nr=1 to Nr=10 is given by

[{02}i-1,{00},{00},{00}]. The AES128_RCcon

module is used to generate this value as shown in

Figure 10. The AES128_RCon module also operates

based on the state diagram shown in Figure 10.

AES128_RCon

clk

rst

ld

32 b rcon

Figure 10 – AES128_Rcon Module

D. S-box

The structure of the S-box is divided into 5

blocks and the parity of each block is predicted as a

function of inputs to that block. The formulations for

the predicted parities as functions of inputs are

obtained in this section. Since there exist three finite

field multipliers using GF(((2^2)^2)^2)2.

VIII. IMPLEMENTATION OF

ALGORITHM
A. Synthesis Methodology

The first step in the synthesis process is to

read all the components in the design hierarchy.

There are three components in the 3-level design

hierarchy that needs to be synthesized. Since the

RTL model utilizes a Verilog “Package”, then the

synthesis tool needs to enable the semantics of a

package. In addition, the synthesis tool needs to

know if there are multiple instances of calling an

automatic function in the design, to preserve separate

values for each instance.
After reading the design files, they are

“Analyzed” and “Elaborated” through which the

RTL code is converted into the Synopsys Design

Compiler(SDC) internal format. [6] The intermediate

results are stored in the defined “working library”.

After this step, a 40MHz clock signal is

applied to the clock port of the root module, and the

synthesis tool is programmed not to modify the clock

tree during the optimization phase. In addition, an

arbitrary input delay of 5ns with respect to the clock

port is applied to all input and output ports (except

the clock port itself) to set a safe margin by
considering any unintended source of delay such as

the delay associated with driving module/modules.

Then, the design is constrained with

hypothetical maximum area equal to zero to force the

tool to make the gate level netlist as compact as

possible.

In the next steps, the tool is programmed to

consider a unique design for each cell instance by

removing the multiply-instantiated hierarchy in the

current design. Then, the synthesis script removes

the boundaries from all the components in the design
hierarchy and removes all levels of hierarchy.

Finally, the tool compiles the design with high effort

and reports any warning related the mapping and

final optimization step. At the end, the tool

generates reports for the optimized gate level netlist

area, the worst combinational path timing, and any

violated design constraint.

B. Synthesis Timing Result:

The synthesis tool optimizes the

combinational paths in a design. In General, four

types of combinational paths can exist in any design:
[3]

1- Input port of the design under test to

input of one internal flip-flip

2- Output of an internal flip-flip to input

of another flip-flip

3- Output of an internal flip-flip to output

port of the design under test

4- A combinational path connecting the

input and output ports of the design

under test

The last DC command in the script
developed in previous section, instructs the tool to

report the path with the worst timing. In this case,

the path with the worst timing is a combinational

path of type two. The delay associated with this path

is the summation of delays of all combinational gates

in the path plus the Clock-To-Q delay of the

originating flip-flop, which was calculated as

D.V.Nageswara Rao, P.Sunitha / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.500-508

507 | P a g e

24.09ns. By considering the setup time of the

destination flip-flop in this path, which is 0.85ns, the

40MHz clock signal satisfies the worst

combinational path delay. The delays of

combinational gates, setup time of flip-flops and

Clock-To-Q values are derived from the LSI_10k

library file that was used for the mapping step during
synthesis. The synthesis timing report is shown

below:

C. Synthesis Area Result

The synthesis area report shows the total

number of cells and nets in the netlist. It also uses the

area parameter associated with each cell in the

LSI_10K library file, to calculate the total

combinational and sequential area of the netlist. The

total area of the gate level netlist is unknown since it

depends on total area of the inter connects, which

itself is a function of the wiring load model used in
physical design. The total cell area in the netlist is

reported as 22978 units, which is the sum of

combinational and sequential areas. The synthesis

area report is shown below

D. Synthesis Constraint Violators

To enforce the synthesis tool to create the

most compact netlist, the area of the gate level netlist

was constrained to zero during the synthesis process.

As a result, the only constraint violation, which is

expected, is related to the area as shown bellow

IX. RESULT AND DISCUSSION
i. Area Utilization Report

Figure 11. Simulated output.

ii. Performance Report

Figure 12.Fmax. Summary report of slow carner.

iii. Performance Report

Figure 13.Fmax. summary report of fast carner.

iv. Synthesis Report

Figure 14. RTL Schematic report

D.V.Nageswara Rao, P.Sunitha / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.500-508

508 | P a g e

v. Map Viewer

Fig 15. Technology map viewer

vi. Power Analyzes

Fig.16 Power dissipation report

CONCLUSION
In our project we perused the concept of

Cryptography including the various schemes of

system based on the kind of key and a few
algorithms such as RSA and AES. We studied in

detail the mathematical foundations for AES based

systems, basically the concepts of rings, fields,

groups, Galois finite fields and their properties. The

various algorithms for the computation of the scalar

product of a point were studied and their complexity

were analyzed.

 The advantage of this over the other Fault

detection systems are proved by parameters .The key

strength of this systems in comparison to other is

fault detection is impleted in all levels of algorithm
implementation and this will increase reliability.

REFERENCES
[1] M. Akkar and C. Giraud, “An

Implementation of DES and AES, Secure

against Some Attacks,” In Proc. of the

Workshop on Cryptographic Hardware and

Embedded Systems (CHES2001), Paris,

France, pp. 315-325, May 2001.
 [2] R. Anderson, E. Biham, and L. Knudsen,

“Serpent: A Proposal for the Advanced

Encryption Standard,” AES algorithm

submission, June 1998.

[3] G. Bertoni, L. Breveglieri, I. Koren, P.

Maistri, and V. Piuri, “Error Analysis and

Detection Procedures for a Hardware

Implementation of the Advanced

Encryption Standard,” IEEE Trans. on
Computers, vol. 52, no. 4, pp. 492-505,

April 2003.

[4] G. Bertoni, L. Breveglieri, I. Koren, and P.

Maistri, “An efficient hardwarebased fault

diagnosis scheme for AES: performances

and cost,” In Proc. of the IEEE International

Symposium on Defect and Fault Tolerance

in VLSI Systems (DFT2004), Cannes,

France, pp. 130-138, Oct. 2004.

[5] D. Boneh, R. A. DeMillo, and R. J. Lipton,

“On the Importance of Eliminating Errors in
Cryptographic Computations,” Journal of

Cryptology, vol. 14, no. 2, pp. 101-119,

2001.

[6] L. Breveglieri, I. Koren, and P. Maistri,

“Incorporating Error Detection and Online

Reconfiguration into a Regular Architecture

for the Advanced Encryption Standard,” In

Proc. of the IEEE International Symposium

on Defect and Fault Tolerance in VLSI

Systems (DFT2005), Monterey, CA, USA,

pp. 72-80, Oct. 2005.

[7] D. Canright, “A Very Compact Rijndael S-
box,” Naval Postgraduate School Technical

Report: NPS-MA-05-001, May 2005.

[8] G. C. Cardarilli, M. Ottavi, S. Pontarelli, M.

Re, and A. Salsano, “Fault localization,

error correction, and graceful degradation in

radix 2 signed digit-based adders,” IEEE

Trans. on Computers, vol. 55, no. 5, pp.

534-540, May 2006.

[9] G. C. Cardarilli, S. Pontarelli, M. Re, and A.

Salsano, “A self checking Reed Solomon

encoder: design and analysis,” In Proc. of
the IEEE International Symposium on

Defect and Fault Tolerance in VLSI

Systems (DFT2005), Monterey, CA, USA,

pp. 111-119, Oct. 2005.

[10] S. Fenn, M. Gossel, M. Benaissa, and D.

Taylor, “On-Line Error Detection for Bit-

Serial Multipliers in GF(2^m),” Journal of

Electronic Testing: Theory and

Applications, vol. 13, no. 1, August 1998.

[11] A. Hodjat and I. Verbauwhede, “Area-

Throughput Trade-Offs for Fully
Pipelined30 to 70 Gbits/s AES Processors,”

IEEE Trans. on Computers, vol. 55, no.

4,pp. 366-372, April 2006.

[12] T. Ichikawa et al, “Hardware Evaluation of

the AES Finalists,” In Proc. 3th AES

Candidate Conference, New York, April

2000.

