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Abstract: 
 In this paper, we present a lightweight 

concurrent fault detection scheme for the AES. 

The selection of appropriate fault detection 

scheme for the AES makes it robust to internal 

defects and fault attacks. In the proposed 

approach, the composite field S-box and inverse 

S-box are divided into blocks and the predicted 

parities of these blocks are obtained. By using 

exhaustive searches We obtained the optimum 

solutions for the least overhead parity-based fault 

detection structures. It suggests both the ASIC 

and FPGA implementations of the fault detection 

structures using the obtained optimum composite 

fields, have better hardware and time 

complexities compared to their counterparts. 

 

Keywords: AES (Advanced Encryption 

Standard), ASIC (application-specific integrated 

circuit), FPGA (field-programmable gate-array). 

 

I INTRODUCTION 
In today‟s digital world, encryption is 

emerging as a disintegrable part of all 

communication networks and information processing 

systems, for protecting both stored and in transit 

data.  

  

A. Drawbacks of Software 

There are other important drawbacks in 

software implementation of any encryption 
algorithm, including lack of CPU instructions 

operating on very large operands, word size 

mismatch on different operating systems and less 

parallelism in software.  In addition, software 

implementation does not fulfill the required speed for 

time critical encryption applications.  Thus, hardware 

implementation of encryption algorithms is an 

important alternative, since it provides ultimate 

secrecy of the encryption key, faster speed and more 

efficiency through higher levels of parallelism.  

 

II. ENCRYPTION METHODS 

 A. Key Based Approach                                           

Different versions of AES algorithm exist 

today (AES128, AES196, and AES256) depending 

on the size of the encryption key.  In this project, a 

hardware model for implementing the AES128 

algorithm was developed using the Verilog hardware  

 

description language.  A unique feature of the design 

proposed in this project is that the round keys, which 

are consumed during different iterations of 
encryption, are generated in parallel with the 

encryption process. 

  

B. Language                                                    

 The hardware model was then completely 

verified using a test bench, which took advantage of 

the Verilog, is programming feature, by constructing 

random test objects and providing them to the model.  

Then, the verified model was synthesized using the 

Synopsis Design-Compiler tool to get an estimate of 

the number of gates, area and timing of the hardware 

model. Finally, the performances of software and 
hardware implementations were compared. 

 

C. Finite Fields 

 In this section, the preliminaries on finite 

fields (also known as Galois fields) used in the 

subsequent sections are presented. The detailed 

description of these fields can be found in a number 

of publications, see for example [8] and [9]. 

According to Lin and Costello in [19], the definition 

of a finite field is as follows. Let F be a set of 

elements on which two binary operations of addition 
and multiplication, shown by “ + ” and “ · ”, 

respectively, are defined. Then, the set F and these 

operations construct a finite field if the following 

conditions are satisfied: 

1. The set F be commutative under addition. The 

identity     element in addition is zero. 

2. The non-zero elements of set F be commutative 

under multiplication. The identity element in 

multiplication is one. 

3. Multiplication be distributive over addition, i.e., 

for a, b and c in set F we have a · (b + c) = a · b + 
a · c. 

4. The number of elements in the field be finite. In 

the AES, the irreducible polynomial of P(x) = x^8 

+ x^4 + x^3 + x + 1 is used to construct GF(2^8). 

Each element in GF(2^8) is represented by a 

polynomial of degree 7, having 8 coefficients in 

GF(2). Furthermore, all the field operations are 

carried out using the above mentioned irreducible 

polynomial. 

D. Cryptosystems and Public key cryptography 

Cryptography is the process of encrypting the 
plain text into an incomprehensible cipher text by the 
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process of Encryption and the conversion back to 

plain text by process of Decryption. 

Most encryption algorithms are based on 2 general 

principles, 

1. Substitution, in which each element in plain text 

is mapped to some other element to form the 

cipher text 
2. Transposition, in which elements in plaintext are 

rearranged to form cipher text. 

3.  

E. Number of keys used 
If both the sender and the receiver use a 

same key then such a system is referred to as 

Symmetric, single-key, secret-key or conventional 

encryption. If the sender and receiver use different 

keys, then such a system is called Asymmetric, Two-

key, or public-key encryption.Processing of Plain 

text: A Block cipher processes the input one block at 

a time, producing an output block for each input 
block. A Stream cipher processes the input elements 

continuously producing output elements on the fly. 

Most of the cryptographic algorithms are either 

symmetric or asymmetric key algorithms. 

 

1. Secret Key Cryptography 

This type of cryptosystem uses the same 

key for both encryption and decryption. Some of the 

advantages of such a system are 

- Very fast relative to public key 

cryptography 
- Considered secure, as long as the key is 

strong  

Symmetric key cryptosystems have some 

disadvantages too. Exchange and administration of 

the key becomes complicated. Non-repudiation is not 

possible. Some of the examples of Symmetric key 

cryptosystems include DES, 3-DES, RC4, RC5 etc. 

 

2. Public Key Cryptography 

This type of cryptosystems uses different 

keys for encryption and decryption. Each user has a 

public key, which is known to all others, and a 
private key, which remains a secret. The private key 

and public key are mathematically linked. 

Encryption is performed with the public key and the 

decryption is performed with the private key. Public 

key cryptosystems are considered to be very secure 

and supports Non-repudiation. No exchange of keys 

is required thus reducing key administration to a 

minimum. But it is much slower than Symmetric key 

algorithms and the cipher text tend to be much larger 

than plaintext. Some of the examples of public key 

cryptosystems include Diffie-Hellman, RSA and 
Elliptic Curve Cryptography. 

 

III. AES ROUNDS AND 

TRANSFORMATIONS 
Here we briefly explain the four 

transformations of each round of the encryption. 

Each transformation in every round of 

encryption/decryption acts on its 128-bit input which 

is considered as a four by four matrix, called state, 

whose entries are eight bits. The transformations in 

each round of encryption except for the last round 

are as follows: 

i. SubBytes: The first transformation in each round is 

the bytes substitution,called SubBytes, which is 
implemented by 16 S-boxes. These S-boxes are 

nonlinear transformations which substitute the 128-

bit input state with a 128-bit output state. In the S-

box, each byte of the state (Ii in Figure 2.1) is substi-

10 tuted by a new byte (Bi in Figure 2.1). S-box will 

be explained in detail in the next section. 

ii.ShiftRows: ShiftRows is the second 

transformation in which the four bytes of the rows of 

the input state are cyclically shifted to the left and the 

first row is left unchanged as shown in the leftmost 

part of Figure 2.1. The number of left shifts for each 

row is equal to the number of that row. Let us denote 
rows as rowi where, i, 0 ≤ i ≤ 3, is the row number. 

Then, for row0 no shift, for row1 one shift, for row2 

two shifts and for row3 three shifts are required. 

iii. MixColumns: The third transformation is 

Mixcolumns in which each entry in the output state 

is constructed by the multiplication of a column in 

the input state with a fixed polynomial over GF(2^8). 

The output state is obtained by multiplying the 

columns of the input state modulo x^4 + 1 with the 

fixed polynomial of a(x) = 

(03)x^3+(01)x^2+(01)x+(02), where the coefficients 
are inhexadecimal form. The matrix representation of 

Mixcolumns is shown in Figure 2.1. As seen in this 

figure, the output state is constructed by multiplying 

the entries of the input state by a fixed matrix whose 

entries are in the hexadecimal form. 

iv.AddRoundKey: The final transformation is 

AddRoundKey which XORs the input state with the 

key of that round, i.e., ki, 0 ≤ i ≤ 10. The AES key 

expansion unit in Figure 2.1 takes the 128-bit 

original key, k0, as input and produces a linear array 

of expanded keys, k1 to k10. Each key is added to 
the input by 128 two-input XOR gates. Among the 

four transformations in the encryption and decryption 

of AES, only S-box for encryption and inverse S-box 

for decryption are nonlinear and complex operations. 

Furthermore, not only is the S-box one of the four 

round transformations, but it is also used in the key 

expander unit which generates the keys used in the 

AES rounds. Therefore, the implementations of these 

two transformations affects the implementation of the 

whole AES tremendously. Later in this chapter, the 

im-11 plementation variations of the S-box and 
inverse S-box including the composite field 

implementations are explained in detail. 

 

IV.  SECURITY OF AES 
Three possible approaches to attacking the AES 

algorithm are as follows: 

 Brute Force: This involves trying out all the 

possible private keys. 
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 Mathematical attacks: There are several 

approaches, all equivalent in effect to factoring 

the product of 2 primes. 

 Timing attacks: These depend on the running 

time of the decryption algorithm. 

Choosing large p and q values can prevent 

such attacks.  Security of RSA thus lies in choosing 
the value n, which makes such attacks extremely 

difficult. 

 

V. PROPOSED SYSTEM 
In our proposed approach we introduce fault 

detection not only in S-box and Inverse S-box and 

also in all other five levels in order to find the most 

optimum solutions and we also analyzed all required 

parameters to proved that the proposed system is not 
only effective in fault detection and also give proper 

efficiency in speed, power and area through 

hardware implementation. 

 AES 

Version 

Key 

Length 

(Nk 

words) 

Block 

Size 

(Nb 

words) 

Number of 

Rounds 

(Nr rounds) 

AES128 4 4 10 

AES192 6 4 12 

AES256 8 4 14 

 

Table 1 – AES Variations 

The basic processing unit for the AES 

algorithm is a byte.  As a result, the plaintext, cipher 

text and the cipher key are arranged and processed as 

arrays of bytes: 

Block length = 128 bits, 0 <= n < 16 

Key length = 128 bits, 0 <= n < 16 

Key length = 192 bits, 0 <= n < 24 

Key length = 256 bits, 0 <= n < 24 

All byte values in the AES algorithm are 
presented as the concatenation of their individual bit 

values between braces in the order {b7, b6, b5, b4, 

b3, b2, b1, b0}.  These bytes are interpreted as finite 

field elements using a polynomial representation: 

i

i

i xbxbxbxbxbxbxbxbxb 



7

0

012

3

3

4

4

5

5

6

6

7

7

 

All the AES algorithm operations are 

performed on a two dimensional 4x4 array of bytes 

which is called the State, and any individual byte 

within the State is referred to as sr,c, where letter „r‟ 

represent the row and letter „c‟ denotes the column.  

At the beginning of the encryption process, the State 

is populated with the plaintext. Then the cipher 
performs a set of substitutions and permutations on 

the State.  After the cipher operations are conducted 

on the State, the final value of the state is copied to 

the cipher text output as is shown. 

in0 in4 in8 in12 

in1 in5 in9 in13 

in2 in6 in10 in14 

in3 in7 in11 in15 

 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

 

out0 out4 out8 out12 

out1 out5 out9 out13 

out2 out6 out10 out14 

out3 out7 out11 out15 

 

Input Bytes State Array Output Bytes

Figure 1 – State Population and Results 
At the beginning of the cipher, the input 

array is copied into the State according the following 

scheme: 

s[r,c] = in [r + 4c] for 40  r   and 40  c , 

and at the end of the cipher the State is copied into 

the output array as shown below: 

out[r+4c] = s[r,c] for 40  r   and 40  c  

 

VI. CIPHER TRANSFORMATIONS 
The AES cipher either operates on 

individual bytes of the State or an entire row/column. 

At the start of the cipher, the input is copied into the 

State as described in Section 2.2.  Then, an initial 

Round Key addition is performed on the State. 
Round keys are derived from the cipher key using 

the Key Expansion routine.  The key expansion 

routine generates a series of round keys for each 

round of transformations that are performed on the 

State.  

The transformations performed on the state 

are similar among all AES versions but the number 

of transformation rounds depends on the cipher key 

length.   

A. Subbytes ( ) Transformation 

The SubBytes is a byte substitution 
operation performed on individual bytes of the State, 

as shown in Figure 3, using a substitution table 

called S-box. 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

 

State Array

s’
0,0 s’

0,1 s’
0,2 s’

0,3 

s’
1,0 s’

1,1 s’
1,2 s’

1,3 

s’
2,0 s’

2,1 s’
2,2 s’

2,3 

s’
3,0 s’

3,1 s’
3,2 s’

3,3 

 

State Array

s1,1
s
’
1,1

S-box

 

Figure 2 – SubBytes Transformation 

The invertible S-box table is constructed by 
performing the following transformation on each 

byte of the State. [1] 
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- Take the multiplicative inverse in the finite 

field GF(28) of the byte.  

- Apply the following transformation to the 

byte: 

iiiiiii cbbbbbb   8mod)7(8mod)6(8mod)5(8mod)4(

'

 The bi is the ith bit of the byte and ci is the ith 

bit of a constant byte with the value of {63}.  The 

combination of the two transformations can be 

expressed in matrix form as shown below: 





































































































































0

1

1

0

0

0

1

1

11111000

01111100

00111110

00011111

10001111

11000111

11100011

11110001

7

6

5

4

3

2

1

0

'

7

'

6

'

5

'

4

'

3

'

2

'

1

'

0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

 

Table-2 SubBytes Transformation  

The S-box table shown in Table 2 is 

constructed by performing the two transformations 

described earlier for all possible values of a byte, 

ranging from {00} to {ff}.  For example the 

substitution value for {53} would be determined by 

the intersection of the row with index „5‟ and the 

column with index „3‟. 
 

B. Shiftrows ( ) Transformation 

The ShiftRows transformation cyclically 

shifts the last three rows of the state by different 

offsets.  The first row is left unchanged in this 

transformation. Each byte of the second row is 

shifted one position to the left.  The third and fourth 

rows are shifted left by two and three positions, 

respectively. The ShiftRows transformation is 

illustrated in Figure 3. 

 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

 

State Array

s0,0 s0,1 s0,2 s0,3 

s1,1 s1,2 s1,3 s1,0 

s2,2 s2,3 s2,0 s2,1 

s3,3 s3,0 s3,1 s3,2 

 

State Array

ShiftRows

 

Figure 3 – ShiftRows Transformation 

 

C  Mixcolumns ( ) Transformation 

This transformation operates on the 

columns of the State, treating each columns as a four 

term polynomial the finite field GF(28).  Each 

columns is multiplied modulo x4+1 with a fixed four-

term polynomial a(x) = {03}x3 + {01}x2 + {01}x + 

{02} over the GF(28).  The MixColumns 

transformation can be expressed as a matrix 

multiplication as shown below: 

 





























































c

c

c

c

c

c

c

c

s

s

s

s

s

s

s

s

,0

,0

,0

,0

'

,3

'

,2

'

,1

'

,0

02010103

03020101

01030201

01010302

 

The MixColumns transformation replaces 

the four bytes of the processed column with the 

following values: 

ccccc sssss ,3,2,1,0

'

,0 )}03({)}02({   

ccccc sssss ,3,2,1,0

'

,1 )}03({)}02({   

)}03({)}02({ ,3,2,1,0

'

,0 ccccc sssss   

)}02({)}03({ ,3,2,1,0

'

,1 ccccc sssss   

For the AES algorithm the irreducible 

polynomial is: 

m(x) = x8 + x 4 + x3 + x +1.[1] 

The MixColumns transformation is 

illustrated in Figure 4.  This transformation together 

with ShiftRows, provide substantial diffusion in the 

cipher meaning that the result of the cipher depends 

on the cipher inputs in a very complex way.  In other 

words, in a cipher with a good diffusion, a single bit 
change in the plaintext will completely change the 

cipher text in an unpredictable manner.  

 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

 

State Array

s0,0 s0,1 s0,2 s0,3 

s1,1 s1,2 s1,3 s1,0 

s2,2 s2,3 s2,0 s2,1 

s3,3 s3,0 s3,1 s3,2 

 
State Array

MixColumns

S0,1

S1,1

S2,1

S3,1

S
’
0,1

S
’
1,1

S
’
2,1

S
’
3,1

 

Figure 4 – MixColumns Transformation 

 

D. Addroundkey ( ) Transformation: 

During the AddRoundKey transformation, 

the round key values are added to the State by means 

of a simple Exclusive Or (XOR) operation.  Each 

round key consists of Nb words that are generated 

from the KeyExpansion routine.  The round key 
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values are added to the columns of the state in the 

following way: 

     cNbroundcccccccc wssssssss  *,3,2,1,0

'

,3

'

,2

'

,1

'

,0 ,,,,,,

  for 
bNc 0   

In the equation above, the round value is 

between rNround 0 .  When round=0, the 

cipher key itself is used as the round key and it 

corresponds to the initial AddRoundKey 

transformation displayed in the pseudo code in 

Figure 2. 

The AddRoundKey transformation is illustrated in 

Figure 5. 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

 
State Array

s0,0 s0,1 s0,2 s0,3 

s1,1 s1,2 s1,3 s1,0 

s2,2 s2,3 s2,0 s2,1 

s3,3 s3,0 s3,1 s3,2 

 
State Array

S3,1

S1,1

S2,1

S3,1

S
’
0,1

S
’
1,1

S
’
2,1

S
’
3,1

    

 

Wl+c

l = round * Nb

Round Keys


AddRoundKey

 

Figure 5 – AddRoundKey Transformation 

 

VII. FAULT DETECTION IN AES 

For fault detection of the encryption or 

decryption in AES one may use redundant units [12], 

[8]. In [6] algorithm-level, round-level and 

operation-level concurrent error detection for the 
AES are used. In the algorithm-level, comparing the 

plain text with the output of a decryption after an 

encryption is proposed. The round-level error 

detection uses similar ideas in the rounds, where, the 

output of a round in encryption is applied to a round 

in decryption and is compared with the input. The 

operation-level (or transformation-level) error 

detection uses the inversion of a transformation in 

each round and compares the output with the input. 

Figure 2.5a shows the operation-level concurrent 

error detection for S-box and inverse S-box 

presented in [12]. In this figure, the 8-bit input I of 
the S-box (8-bit input B of the inverse S-box) is 

compared with the output of two consecutive 

transformations, S-box and inverse S-box (inverse S-

box and S-box) using an 8-bit comparator to generate 

the error indication flag. 

 

Fault coverage of the proposed parity code: 

 

In this section we describe the results of 

extensive simulation experiments which were carried 

out to evaluate the fault coverage of the proposed 
parity EDC scheme for the Encryption module. We 

start with single bit faults injected into the data block 

at the beginning of the rounds; i.e., faults are not 

injected between the round transformations. Six 

types of tests have been performed with data block 

and key of 128 bits. 

1. 5000 data blocks were selected randomly and a 

single bit error was injected into every position of 
the  data block at each of the 10 rounds. The total 

number of tests of this type has been 5000 x 10 x 

128 = 6.4 x 106. All these tests used the same 

secret key. Our parity bits scheme detected all the 

faults. 

2. 5000 secret keys were randomly selected and used 

with the same 128-bit data block. The same single 

bit errors as in (1) were injected for a total of 6.4 

x 106 tests. Here too, all the faults were detected 

by our parity scheme. 

3. 100 random secret keys and 1000 random data 

block were selected and every data block was 
encrypted with each secret key. 1280 single bit 

errors were injected into every encryption for a 

total of 1.28 x 108 tests. All the faults were 

detected. 

In the above three types of tests the parity 

check was performed at the end of the tenth round. In 

the next type of tests the parity check was instead 

done at the end of the round.  

4. 5 x 105 random data blocks were selected and a 

single bit error was injected in each position of 

the data block. A single round was then 
performed yielding 100% fault  coverage. The 

total number of tests of this type was 5 x 105 x 

128 = 6.4 x 107. 

The last two types of tests considered a 

single simplified round consisting only of SubBytes 

and MixColumns since these transformations affect 

the error propagation in the most complex way. The 

parity check was performed at the end of the 

(simplified) round. The observed fault coverage has 

again been 100%. 

5. 256 32-bit data words of the type (xOOO)8w ere 

considered and a single bit error was injected into 
the first byte ( the one that is varying) .The total 

number of tests of this type was 256 x 8 = 2048. 

All the faults were detected. 

6. 1000 128-bit random data blocks were selected 

and a single bit error was injected in each position 

of the data block. The number of tests of this type 

was 1000 x 128 = 1.28 x 104. Again, all the 

injected faults were detected. 

These six types of tests strongly suggest that 

the parity-based EDC achieves a 100% fault 

coverage for single bit faults. In fact, it can be proven 
that: The proposed parity-based EDC with a single 

checkpoint scheduled at the end of the last round is 

capable of detecting every single bit fault injected 

into the data block in the Encryption module, at the 

beginning of the rounds or between two round 

transformations. The proof had to be omitted for the 

sake of brevity. In this proof, however, we only 
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considered single faults injected at the beginning of 

an encryption round, at the inputs of one of the four 

round transformations.  

 

 

WORKING OF PROJECT 
 A.  Design Hierarchy 

The proposed AES128 hardware model is a 

3-level hierarchical design as shown in Figure 6.  

The root module in the hierarchy is the 

AES128_cipher_top.  This module implements the 

AES128 pseudo code displayed in Figure 2.  It has 

two 128-bit inputs for receiving the cipher key and 

the plaintext.  There is also a single bit input signal, 

„Ld‟, which is used to indicate the availability of a 

new set of plaintext or cipher key on the input ports.  

The completion of the encryption process is 
indicated by asserting the „done‟ single bit output. 

 

AES128_Cipher_Top

AES128_Key_Expand

AES128_Rcon
clk

rst

plaintext

done

128 b

128 b

128 b

ciphertext

cipherkey

ld

 

Figure 6 – Design Hierarchy 

 

A unique feature of the proposed design is 

that the AES128_Key_Expand module is pipelined 

with the AES128_cipher_top module.  While the 

AES128_cipher_top module is performing an 
iteration of the encryption transformations on the 

State using the previously generated round keys, the 

AES128_Key_Expand produces the next round‟s set 

of keys to be used by the root module in the next 

encryption iteration. 

 

B. AES128 Encryption Process 

The AES128_cipher_top module state 

diagram is shown in Figure 7. There are ten rounds 

of transformations represented by r1 to r10 states.  

The four cipher transformations introduced in section 
2.3 are applied to each state.  The r0 state 

corresponds to the initial AddRoundKey 

transformation in Figure 2. 

After leaving the Reset state, the 

AES128_Cipher_Top module waits for assertion of 

the „Ld‟ signal, which indicates that a valid set of 

plaintext and cipher key is available on the input 

ports. After reaching the r0 state, there is a transition 

on every clock cycle for the next ten cycles, as ten 

rounds of encryption is applied to the State. 

After going through ten rounds of 

transformations, the „done‟ signal is asserted to 
indicate the completion of cipher and availability of 

the ciphertext on the corresponding output port. 

r0

r8

Wait for 

Ld

r10 r6

r5

r7

Reset

r4

r3r1

r2

r9

!rst

   !Ld    rst

 Ld

States                   Outputs

---------------             --------------

R0 … R9                done=0

                                ciphertext= z

R10                        done=1

                                    ciphertext= <valid>

↑clk

↑clk ↑clk

↑clk

↑clk

↑clk

↑clk

↑clk↑clk

↑clk

↑clk

 

Figure 7 – AES128_Cipher_Top Module State 

Diagram 

 

C.  AES128 Round Key Generation 

The round keys used by the 

AES128_Cipher_Top module are generated based on 

the state diagram shown in Figure 8.  The 

AES128_Key_Expand and the AES128_RCon 

modules are responsible for generating the round 

keys.  These two modules operate based on the state 

diagram shown in Figure 10, which is slightly 
different than the one used for the encryption 

process. 

r0

r8

r10 r6

r5

r7

Reset

r4

r3r1

r2

r9

rst

!rst

Ld

   !Ld

↑clk ↑clk

↑clk

↑clk

↑clk

↑clk

↑clk↑clk

↑clk

↑clk

States                          Outputs        ·                       

---------------          ---------------------------------

R0 … R10          w0 =  roundkey(Round*i)

                               w1 =  roundkey(Round*i+1)

                               w2 =  roundkey(Round*i+2)

                               w3 =  roundkey(Round*i+3)

 

Figure 8 – AES128_Key_Expand Module State 

Diagram 

In the state diagram shown above, the „Ld‟ 

signal is checked in the „r0‟ state and if asserted, 

then the cipher key is provided to the 

AES128_Cipher_Top module to be used for the 

initial AddRoundKey transformation. 
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The AES128_Key_Expand module 

generates four 32-bit keys for each round of the 

encryption process, by using the cipher key.  Figure 

9 shows the block diagram of the 

AES128_Key_Expand module.  The cipher key is 

passed to this module through a 128-bit input port, 

and the round keys are generated on the four output 
ports. 

 

AES128_Key_Expand

clk

rst

128 b

cipherkey

ld

32 b w3

32 b w2

32 b w1

32 b w0

 

Figure 9 – AES128_Key_Expand Module 

 There is a 32-bit round constant value, 

which is used by the key expansion algorithm to 

generate the round keys.  This value varies for each 

encryption round and for Nr=1 to Nr=10 is given by 

[{02}i-1,{00},{00},{00}]. The AES128_RCcon 

module is used to generate this value as shown in 

Figure 10.  The AES128_RCon module also operates 

based on the state diagram shown in Figure 10.  

AES128_RCon

clk

rst

ld

32 b rcon

 
Figure 10 – AES128_Rcon Module 

 

D. S-box 

The structure of the S-box is divided into 5 

blocks  and the parity of each block is predicted as a 

function of inputs to that block. The formulations for 

the predicted parities as functions of inputs are 

obtained in this section. Since there exist three finite 

field multipliers using GF(((2^2)^2)^2)2. 

 

VIII. IMPLEMENTATION OF 

ALGORITHM 
A. Synthesis Methodology 

The first step in the synthesis process is to 

read all the components in the design hierarchy.  

There are three components in the 3-level design 

hierarchy that needs to be synthesized.  Since the 

RTL model utilizes a Verilog “Package”, then the 

synthesis tool needs to enable the semantics of a 

package.  In addition, the synthesis tool needs to 

know if there are multiple instances of calling an 

automatic function in the design, to preserve separate 

values for each instance.  
After reading the design files, they are 

“Analyzed” and “Elaborated” through which the 

RTL code is converted into the Synopsys Design 

Compiler(SDC) internal format. [6] The intermediate 

results are stored in the defined “working library”.   

After this step, a 40MHz clock signal is 

applied to the clock port of the root module, and the 

synthesis tool is programmed not to modify the clock 

tree during the optimization phase.  In addition, an 

arbitrary input delay of 5ns with respect to the clock 

port is applied to all input and output ports (except 

the clock port itself) to set a safe margin by 
considering any unintended source of delay such as 

the delay associated with driving module/modules. 

Then, the design is constrained with 

hypothetical maximum area equal to zero to force the 

tool to make the gate level netlist as compact as 

possible.   

In the next steps, the tool is programmed to 

consider a unique design for each cell instance by 

removing the multiply-instantiated hierarchy in the 

current design.  Then, the synthesis script removes 

the boundaries from all the components in the design 
hierarchy and removes all levels of hierarchy. 

Finally, the tool compiles the design with high effort 

and reports any warning related the mapping and 

final optimization step.  At the end, the tool 

generates reports for the optimized gate level netlist 

area, the worst combinational path timing, and any 

violated design constraint. 

 

B. Synthesis Timing Result: 

The synthesis tool optimizes the 

combinational paths in a design.  In General, four 

types of combinational paths can exist in any design: 
[3] 

1- Input port of the design under test to 

input of one internal flip-flip 

2- Output of an internal flip-flip to input 

of another flip-flip 

3- Output of an internal flip-flip to output 

port of the design under test 

4- A combinational path connecting the 

input and output ports of the design 

under test 

The last DC command in the script 
developed in previous section, instructs the tool to 

report the path with the worst timing.  In this case, 

the path with the worst timing is a combinational 

path of type two.  The delay associated with this path 

is the summation of delays of all combinational gates 

in the path plus the Clock-To-Q delay of the 

originating flip-flop, which was calculated as 



D.V.Nageswara Rao, P.Sunitha / International Journal of Engineering Research and 

Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 5, September- October 2012, pp.500-508 

507 | P a g e  

24.09ns. By considering the setup time of the 

destination flip-flop in this path, which is 0.85ns, the 

40MHz clock signal satisfies the worst 

combinational path delay.  The delays of 

combinational gates, setup time of flip-flops and 

Clock-To-Q values are derived from the LSI_10k 

library file that was used for the mapping step during 
synthesis.  The synthesis timing report is shown 

below: 

 

C. Synthesis Area Result 

The synthesis area report shows the total 

number of cells and nets in the netlist. It also uses the 

area parameter associated with each cell in the 

LSI_10K library file, to calculate the total 

combinational and sequential area of the netlist.  The 

total area of the gate level netlist is unknown since it 

depends on total area of the inter connects, which 

itself is a function of the wiring load model used in 
physical design.  The total cell area in the netlist is 

reported as 22978 units, which is the sum of 

combinational and sequential areas. The synthesis 

area report is shown below 

 

D. Synthesis Constraint Violators  

To enforce the synthesis tool to create the 

most compact netlist, the area of the gate level netlist 

was constrained to zero during the synthesis process.  

As a result, the only constraint violation, which is 

expected, is related to the area as shown bellow  
 

IX. RESULT AND DISCUSSION 
i. Area Utilization Report 

 
Figure 11. Simulated output. 

 

ii.  Performance Report 

 
Figure 12.Fmax. Summary report of slow carner. 

iii. Performance Report 

 
Figure 13.Fmax. summary report of fast carner. 

 

iv. Synthesis Report 

 
Figure 14. RTL Schematic report 
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v. Map Viewer 

 
Fig 15. Technology map viewer 
 

vi. Power Analyzes 

 
Fig.16 Power dissipation report 

 

CONCLUSION 
In our project we perused the concept of 

Cryptography including the various schemes of 

system based on the kind of key and a few 
algorithms such as RSA and AES. We studied in 

detail the mathematical foundations for AES based 

systems, basically the concepts of rings, fields, 

groups, Galois finite fields and their properties. The 

various algorithms for the computation of the scalar 

product of a point were studied and their complexity 

were analyzed. 

 The advantage of this over the other Fault 

detection systems are proved by parameters .The key 

strength of this  systems in comparison to other is 

fault detection is impleted in all levels of algorithm 
implementation and this will increase reliability. 
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