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ABSTRACT 
A similitude has been obtained for a 

planar wedge with attached bow shock at high 

incidence in supersonic flow. A strip theory in 

which flow at a span wise location is two 

dimensional developed by Ghosh is been used. 

This combines with the similitude to lead to a 

piston theory which gives closed form of solutions 

for unsteady derivatives in pitch. Substantially the 

same results as the theory of Liu and Hui are 

obtained with remarkable computational ease. 
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1. INTRODUCTION 
Sychev’s [1] high incidence hypersonic 

similitude is applicable to a wing provided it has an 

extremely small span in addition to small thickness. 

The unsteady infinite span case has been analysed, 

but mostly for small flow deflections. The piston 

theory of Lighthill [2] neglects the effects of 

secondary wave reflection. Appleton [3] and 

McInthosh [4] have included these effects. Hui’s [5] 

theory is valid for wedges of arbitrary thickness 

oscillating with small amplitude provided the bow 

shock remains attached. Erricsson’s [6] theory covers 

viscous and elastic effects for airfoils with large flow 

deflection. Orlik-Ruckemann [7] has included 

viscous effect and Mandl[8] has addressed small 

surface curvature effect for oscillating thin wedges. 

Ghosh’s [9] similitude and piston theory for the 

infinite span case with large flow deflection  is valid 

for airfoils with planar surfaces. In the present work 

the Ghosh similitude has been extended for 

supersonic flows past a planar wedge. 

 

2.STEADY WEDGE 

 
Fig. 1 shows the wedge at time t. 

 

Fig. 1 shows that upper half of a steady wedge with 

attached bow shock in rectilinear flight from right to 

left in stationary air, at time t.  Dimensional analysis 

indicates that the flow is conical in nature, i.e., at a 

given instant 0




r
 where r is the distance along a 

ray from the apex. Hence the bow shock must 

coincide with array.  The space-fixed co-ordinate 

system (x, y) is so chosen that the x-axis coincides 

with the bow shock at time t=0. Conicality of the 

flow implies that the instantaneous streamlines have 

the same slope where they intersect a ray from the 

apex. Since the shock sets the fluid particles in 

motion normal to itself, the instantaneous streamlines 

intersect the shock at right angles. The dashed lines 

in fig. 1 are probable streamline shapes.  We 

tentatively assume that the streamlines are straight 

shown by firm lines in Fig.1, if this leads to 0




r
 

then it is a solution.  Consider the plane flow on 

stream surface x=0.  At time t the shock location on 

x=0 is  

sintUys                                                 (1)                                                                                                                                              

And the body location can be shown to be  

wwb tUOBY  cos/sin .                   (2)                                                                                  

 Since the flow in plane x=0 is independent of the 

flow in a neighboring parallel plane, it can be taken 

as a piston driven fluid motion where the piston 

Mach number wwp MM    cos(/sin ) and 

the shock Mach number sin MM s .  Since 

pM is independent of t, pressure remains constant 

in this 1D space.  

 Therefore, 0/  yp .  Since the streamlines are 

straight there is no centrifugal force; thus

0/  xp .  Hence, 0/  rp .  Thus the wedge 

flow is exactly equivalent to 1D piston motion 

normal to the shock.  It can be shown that the relation 

between PS MM & yields the well known oblique 

shock relation giving the shock relation giving the 

shock angle in terms of w . 

2.1 QUASI-WEDGE OR OSCILLATING 

WEDGE: 
  Fig. 1 shows the probable shape of the bow 

shock in dotted when the wedge is either oscillating 
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or replaced by a quasi-wedge.  The slope of the 

curved shock with x-axis remains small, say of order

 .  Let the Mach number behind the shock, in body-

fixed coordinate, be 2M . The characteristics make an 

angle )/1(sin 2

1

WM   
 with the x-axis.  It 

can be shown that this angle remains small for fairly 

large values of W   even for moderate Mach 

numbers.  For example for ,15,2  WM   we 

have .13    

Again for M  = 3,  20W  we get .5.12    

we stipulate (see Fig.1) that ,3.0      and then 

 & are of same order. Since the gradient is 

normal to the characteristics we have,  

 ).(0
yx 







                                                    (3)                                                                                                              

Also the net perturbation introduced by the shock and 

Mach waves will chiefly be in the y-direction.  Thus  

 u=0( ).v                                                              (4)                                                            

Where, u and v are velocity components in x & y 

directions. Equations. (3) & (4) suggest 

transformations  

 .,&. 111 xxuu   
                                    (5)                                                                                                        

 we apply these transformations to the equation of 

continuity to get .
)()(

1

1
2

x

u

y

v

t 











 



 

Similarly, applying these transformations to the rest 

of the equations of motion and boundary conditions 

and neglecting terms of 0( )2 , we get equivalence 

with a 1D piston motion in y-direction and unified 

supersonic/hypersonic similitude.   

 

2.2  PISTON THEORY: 
A thin strip of the wing, parallel to the 

centerline, can be considered independent of the z 

dimension when the velocity component along the z 

direction is small. This has been discussed by 

Ghosh’s [9]. The strip theory combined with Ghosh’s 

large incidence similitude leads to the “piston 

analogy” and pressure P on the surface can be 

directly related to equivalent piston mach no. Mp. In 

this case both Mp and flow deflections are permitted 

to be large. Hence light hill piston theory[2] or miles 

strong shock piston theory cannot be used but 

Ghosh’s piston theory will be applicable. 

2

1
22
)(1 PPP MBAMAM

P

P




                  

, Where P is free stream pressure                   (6) 

Since strips at different span wise location are 

assumed independent of each other, the strip can be 

considered as a flat plate at an angle   of attack.  The 

angle of incidence is same as that of wing.  Angle   

is the angle between the shock and the strip.  A piston 

theory which has been used in  equation (7) has been 

extended to supersonic flow.  The expression is given 

below. 

2
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22 ))
cos

()(
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()
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



                                                                             (7) 

Where p is free stream pressure,  




,)1/(4(,
4

)1( 2


 BA  is the specific 

heat ratio and pM the local piston Mach number 

normal to the wedge surface.   

 

2.3 Pitching moment derivatives 

Let the mean incidence be 0  for the wing 

oscillating in pitch with small frequency and 

amplitude about an axis X0. The piston velocity and 

hence pressure on the windward surface remains 

constant on a span wise strip of length 2L at x, the 

pressure on the lee surface is assumed zero. 

Therefore, the nose up moment is              

 

L

dxxxpm

0

)0..(

                                    (8) 

The Stiffness  and damping derivatives are 

respectively 

0,
0

22
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                                                                           (9) 

0,3
0

2

2

1

2

















q
m

q

m

CU

C
q


                                        

                                                                         (10)

 

Piston Mach number is given by  

 

𝑀𝑝 =
 𝑢∞𝑠𝑖𝑛𝛼  + 𝑥−𝑥° 𝑞 

𝑎∞
                                (11) 

Where  ,𝑎∞ are density and velocity of sound in 

the free stream. Combining (8) through (11), 

differentiation under the integral sign is performed. 

Definingx0 = hLcos2 ∝0,c= Lcos ∝0,




cos

sin
1


M

S ,the derivatives in pitch of a 

planar wedge become equal to 

−𝑪𝒎∝
=    

 𝜸+𝟏 

 𝑴∞𝒄𝒐𝒔𝜶°𝒄𝒐𝒔∅
 𝑭 𝑺𝟏   

𝟏

𝟐
−  𝒉𝒄𝒐𝒔𝟐𝜶°                                                       

                                                                        (12) 
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−𝑪𝒎𝒒
=  

 𝜸+𝟏 

𝑴∞
  

𝑭 𝑺𝟏 

𝒄𝒐𝒔∅𝒄𝒐𝒔𝟑𝜶°
   

𝟏

𝟑
− 𝒉𝒄𝒐𝒔𝟐𝜶° +

 𝒉𝟐𝒄𝒐𝒔𝟒𝜶°                                                    (13) 

Where 

𝐹 𝑆1 =  2𝑆1 +
 𝐵 + 2𝑆1

2

 𝐵 +  𝑆1
2  

 

2. RESULTS AND DISCUSSIONS 
In the present work an attempt is made to 

estimate the Stability Derivatives for planar wedges 

for a wide range of mach numbers and angle of attack 

for attached shock cases.(Fig 2 to Fig 5). Stiffness 

derivative in pitch calculated by present theory has 

been compared (Fig. 6) with Hui [5] and it shows a 

good agreement. The Damping derivatives in pitch is 

calculated and compared (Fig. 7 and Fig. 8,Fig. 9) 

with Hui and Lui [10] and Hui [5].The difference in 

the damping derivative is attributed to the present 

theory being a quasi-steady one where as Lui et al 

give an unsteady theory which predicts Cmq..  .The 

present theory is simpler than Lui and Hui [10] and 

brings out the explicit dependence of the derivatives 

on the similarity parameter S1. 
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Fig.2: Variation of stiffness derivative with pivot 

position 
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Fig3 : variation of stiffness derivative with  

pivot position 
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Fig 4: variation of damping derivative with  

pivot position 
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Fig5: Variation of damping derivative with   

 pivot position 
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Fig6:      variation of stiffness derivative with  

     pivot position 
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Fig. 7: variation of damping derivative with   

                 pivot position 
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Fig. 8 : variation of Damping derivative with    

pivot position 
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Fig. 9: variation of damping derivative with pivot     

Position 

 

3. CONCLUSION 
The present theory demonstrates its wide application 

range in angle of incidence and the Mach number. It 

is valid only when the shock wave is attached. The 

present theory is simple and yet gives good results 

with remarkable computational ease. Further 

extension of this theory can be done by taking into 

consideration the effect of viscosity and wave 

reflection.  
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