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Abstract— 

This paper details the design of a new  

high-speed pipelined  application-specific  

instruction  set  processor  (ASIP) for elliptic 

curve cryptography (ECC) technology. Different 

levels of pipelining were applied to the data  path 

to explore the resulting performances and find 

an  optimal pipeline depth. Three complex 

instructions were used to reduce the latency by 

reducing the overall number of instructions, and 

a new combined algorithm was developed to 

perform point doubling and point addition using 

the application specific instructions In the present 

work, by using pipeline techniques are optimized 

the point multiplication speed by implementing on 

modern Xilinx Virtex-4  and the same to be 

compare with the   Xilinx Virtex-E.  

Key Terms—Complex instruction set, efficient 

hardware implementation, elliptic  curve  

cryptography  (ECC), pipelining. 

I.  INTRODUCTION 
FIRST introduced in the 1980s, elliptic curve 

cryptography (ECC) has become popular due to its 

superior strength- per-bit compared to existing public 

key algorithms. This superiority translates to 

equivalent security levels with smaller keys, 

bandwidth savings, and faster implementations, 

making ECC very appealing. The IEEE proposed 

standard P1363-2000 recognizes ECC-based key 

agreement and digital signature algorithms and a list 

of secure curves is given by the U.S. Government 

National Institute of Standards and Technology 

(NIST). 

       Intuitively, there are numerous advantages of 

using field- programmable gate-array (FPGA) 

technology to  implement in hardware the 

computationally intensive operations needed for 

ECC. Indeed these advantages are comprehensively 

studied and listed by Wollinger, et al. In particular, 

performance, cost efficiency, and the ability to easily 

update the cryptographic algorithm in fielded devices 

are very attractive for hardware implementations for 

ECC. 

    Numerous ECC hardware  accelerators and  

cryptographic processors have been presented in the 

literature. More recently, these have included a 

number of FPGA architectures, which present 

acceleration techniques to improve the performance of 

the ECC operations.  

     

    The optimization goal is usually to reduce the 

latency of a point multiplication in terms of the  

 

 

number of required cycles. In particular, the works 

which have duplicate arithmetic blocks to exploit the 

parallelism in the underlying operations. Yet for most 

of these implementations, efforts are concentrated on 

algorithm optimization or improved arithmetic 

architectures and rarely on a processor architecture 

particularly suited for ECC point multiplication. 

Some of the design techniques used in modern high 

performance processors were incorporated into the 

design of an application-specific instruction set 

processor (ASIP) for ECC. Pipelining was applied to 

the design, giving improved clock frequencies. Data 

forwarding and instruction reordering were 

incorporated to exploit the inherent parallelism of the 

Lopez and Dahab point multiplication algorithm, 

reducing pipeline stalls. 

      In this paper, thorough treatment is given to 

the design of an ASIP for ECC, yielding a new 

combined algorithm to perform point doubling and 

point addition based on the instruction set 

developed, further reducing the required number of 

instructions per iteration. The same data path is used, 

but the performance is explored for different levels 

of pipelining, and a superior choice of pipeline 

depth is found. The resulting processor has high 

clock frequencies and low latency, and it has only a 

single instance of each of the arithmetic units. An 

FPGA implementation over GF 2
163

is presented, 

which is by far the fastest implementation reported in 

the literature to date. 

      In Section II, a background is given in terms of 

elliptic curve operations, Galois fields arithmetic and 

the state-of-the-art hardware implementations. 

Section III develops the ASIP architecture, 

beginning with the application-specific instructions 

and a new combined algorithm to perform point 

doubling and point addition (crux ECC operations) 

based on the new algorithms. In Section IV, the 

FPGA implementation of the processor is described, 

and the performance is analyzed and compared to 

the state-of-the-art in Section V. This paper is 

concluded in Section VI. 

II.  BACKGROUND 
A. ECC 

 ECC is performed over one of two 

underlying Galois fields: prime order   fields or 

characteristic two fields. Both fields are considered 

to provide the same level of security, but arithmetic 

in  GF(2
m
) will be the focus of this paper because it 

can be implemented in hardware more efficiently 

using modulo-2 arithmetic. An elliptic curve over 
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the field is the set of solutions to the equation 

 

y2+xy =   x3+ax2+b                     (1) 

 

where   a,b €   GF(2
m
),b≠0                

 

Hence, when  =   we have the point-

doubling operation (DBL), and when    ≠    we 

have the point-adding operation (ADD). These 

operations in turn constitute the crux of any ECC-

based algorithm, known as point multiplication or 

scalar multiplication. Due to the computational 

expense of inversion compared to multiplication, 

several projective coordinate methods have been 

proposed, which use fractional field arithmetic to 

defer the in- version operation until the end of the 

point multiplication; In this paper, the high-

performance, generic projective-coordinate algorithm 

proposed by Lopez and Dahab  is used, which is an 

efficient implementation of Montgomery’s method for 

computing kP. No precomputations or special 

field/curve properties are required. 

  In this, procedures to perform DBL and ADD are 

derived from efficient formulas which use only the 

coordinate of the points. In the projective coordinate 

version of the formulas, the x-coordinate of   is 

represented by Xi/Zi, for i € {1,2,3}; 

The corresponding DBL and ADD computations are 

shown respectively, and are used in the projective 

coordinate point multiplication algorithm shown in 

Algorithm 1 

 

 
 

B.  Arithmetic Over GF(2
163

) for ECC 

         Addition and subtraction in the Galois 

field GF(2
m
) are equivalent, performed by modulo-2 

addition, i.e., a bit-XOR operation. As a result, 

arithmetic in the field is implemented more 

efficiently because it is carry free. 

Inversion is the most computationally expensive 

operation in the field, based either on the extended 

Euclidean algorithm (EEA) or Fermat’s little 

theorem. Many efficient EEA-based inversion and 

division architectures exist in the literature, but they 

are usually expensive in terms of area. In- version using 

Fermat’s little theorem, as in the Itoh–Tsujii algorithm, 

consists of multiplication and squaring only, so can 

often be implemented without additional hardware 

resource.  It has been shown that similar performance 

to an EEA-based inverter can be achieved using the 

Itoh–Tsujii algortihm if the multiplier latency is 

sufficiently low and repeated squaring can be 

performed efficiently. Hence, multiplication is 

considered to be the most resource-sensitive operation 

in the field.  

 

Algorithm 1: Lopez-Dahab Point Multiplication 

 
Multipliers   are   usually implemented   using 

one of three approaches:  bit-serial, bit-parallel, or 

digit-serial.  Bit-serial multi- pliers   are small, but 

they require m steps to perform a multiplication. Bit-

parallel multipliers are large but perform a 

multiplication in a single step. Digit-serial 

multipliers  are most commonly used in cryptographic 

hard- ware, as performance can be traded against 

area. Recently, in a drive for increased speed, some 

methods have been proposed, and implementations 

presented , for ECC hardware based on bit-parallel 

multipliers. 

Squaring is a special case of multiplication, and it 

is only a little more complex than reduction modulo 

the irreducible polynomial. Refer to finite field 

multiplier for efficient architectures to perform 

polynomial basis squaring, which only require 

combinational logic. 

 

C.  Previous Work 

Several recent FPGA-based hardware 

implementations of ECC have achieved high-

performance throughput. Various acceleration 

techniques have been used, usually based on 

parallelism or pre computation. 

   The work introduced by Orlando and Paar[2]  is 

based on the Montgomery method for computing kp 

developed by Lopez and Dahab  and operates over a 

single field. A point multiplication over GF(2
167

) is 

performed in 210 micro seconds, using a Galois field 

multiplier with an eleven-cycle latency. This provides 

an excellent benchmark for all high-performance 

architectures. 
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Acceleration techniques based on precomputation can 

be particularly effective for a class of curves known 

as anomalous binary curves (ABCs) or Koblitz 

curves. The implementation from Lutz and Hasan  

implements some of these techniques achieving a 

point-multiplication time of 75  µs over, using a 

Galois field multiplier with a four-cycle latency. 

How- ever, efforts here will be concentrated on high-

performance architectures for generic curves, where 

such acceleration techniques cannot be used. An 

important result of , relevant regardless of the point-

multiplication algorithm used, is that efficiently 

performing repeated squaring operations greatly 

reduces the cost of multiplicative inversion, which is 

required at the end of the point multiplication. 

            An ECC processor capable of operating over 

multiple Galois fields was presented by Gura, et al. , 

which performs a point multiplication over 

GF(2
163

)in 143 µs, using a Galois field multiplier 

with a three-cycle latency. Gura, et al. stated two 

important conclusions: the efficient implementation 

of inversion has a significant impact on overall 

performance and, as the latency of multiplication is 

improved, system tasks such as reading and writing 

have a significant impact on performance. The work 

introduced by Jarvinen, et al. uses two bit-parallel 

multipliers to perform multiplications concurrently. 

The multipliers have several registers in the critical 

path in order to operate at high clock frequencies, 

but the operations are not pipelined, resulting in long 

latencies (between 8 and 20 cycles). Hence, while this 

implementation offers high performance, it is not the 

fastest reported in the literature but it is one of the 

largest. Rodriguez, et al. introduced an FPGA 

implementation that performs DBL and ADD in 

parallel, containing multiple in- stances of circuits to 

perform the arithmetic functions. It would appear that 

the inversion required for coordinate conversion at 

the end of the point multiplication is not performed, 

and that the quoted point multiplication time does 

not include the co- ordinate conversion, but the 

stated point multiplication time is one of the fastest in 

the literature. However, the complex structure of the 

multiplier has a long critical path, and as a result the 

overall performance is let down by quite a low clock 

frequency (46.5 MHz). 

       More recently, Cheung, et al.  presented a 

hardware design that uses a normal basis 

representation. The customizable hardware offers a 

trade between cost and performance by  varying 

the level of parallelism through the number of 

multipliers and level of pipelining. To the authors’ 

knowledge, this is the fastest implementation in the 

literature performing a point multiplication in 

approximately 55 µs, although once again the low 

clock frequency (43 MHz) limits the potential 

performance. 

III.  PIPELINED ASIP FOR ECC 
A.Application-Specific Instruction Set and 

Algorithms 

Complex instruction set computers (CISCs) 

reduce the number of instructions, and consequently 

the overall latency, by performing multiple tasks in a 

single instruction. It was shown that complex 

instructions could be used to reduce latency in the 

design of an ASIP for ECC. Three new instructions 

were introduced, which will now be described and 

their use justified. 

    Considering the projective-coordinate 

formula for point addition, an obvious instruction to 

combine operations is a multiply and accumulate 

instruction (MULAD), which will save two 

instruction executions. Also, rewriting the projective-

coordinate formula for point doubling , we have 

                      

 
so a multiply- and- square  operation   (MULSQ)   

would be beneficial, saving three instruction 

executions. 

These two extra instructions reduce the number of 

instructions executions required to perform the point-

adding and point- doubling algorithms from 14 to 

9—a 35.7% reduction. 

     The Itoh–Tsujii inversion algorithm is based on 

Fermat’s little theorem and is used to  compute the 

inversion  at the end of the point multiplication. The 

algorithm uses addition chains to reduce the 

required number of multiplications, but it contains 

exponentiations that must be performed through 

repeated squaring operations—as many as 64 repeated 

squaring operations for the field GF(2
163

). It was 

shown, that relatively low latencies can be achieved 

using this algorithm if repeated squaring can be 

performed efficiently. Hence, a third application-

specific instruction will  be  used  to  perform 

repeated squaring (RESQR) in order to accelerate the 

Itoh–Tsujii inversion algorithm. 

    Using these instructions, a combined algorithm to 

perform point doubling and point addition can be 

developed, which has only nine arithmetic 

instructions, shown in Algorithm 2. 

B.  Pipelined Data Path 

A data path capable of performing the new 

application specific instructions is required. 

Any of the approaches to implementing 

multiplication mentioned in the background section 

could be used, but because this work develops high-

throughput hardware a bit-parallel multiplier is used. 

The data path must be constructed such that the result 

of a multiplication can be squared or added to the 

previous result. Furthermore, feedback is required so 

that the result can be repeatedly squared. This 

functionality is implemented using the SQR/ADD 

block, described in Section III-D. 

To maintain high-throughput performance, high 

clock frequencies are required and one 
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instruction/cycle or more is desirable. Therefore, the 

data path must be pipelined. The pipelined data path 

is shown in Fig. 1. The performance-critical 

component is the multiplier, so to achieve high clock 

frequencies, we must sub pipeline the 

multiplier.

 

 
 

Fig. 1.  Pipelined ASIP data path. 

 

C.  Subpipelined Bit-Parallel Multiplier 

    Some recent hardware implementations of 

elliptic-curve accelerators, in addition to some 

proposed architectures, have used bit-parallel 

multipliers. Numerous architectures for bit-parallel 

multiplication exist in the literature. However, very 

few actual implementations of bitParallel 

multiplication have been presented for the large 

fields used in public-key cryptography. Where they 

have been implemented, poor performance has often 

been reported either in terms of clock frequency or 

latency. This is not surprising given the deep sub 

micrometer fabrics used in modern FPGA devices. 

The major component of delay is due to routing, and 

the number of interconnections in a bit-parallel 

multiplier implemented for ECC will be in the region 

of many tens of thousands or more making routing 

very complex. Therefore, to improve routing 

complexity and to reduce the amount of logic in the 

critical path, a bit-parallel multiplier that is amenable 

to pipelining is desirable. 

The well-known Mastrovito multiplier is such 

an architecture; the reader is referred to the original 

work for full details. The multiplication 

C(x)=A(x)B(x) mod G(x) is expressed in matrix 

notation as 

 
 

The Z matrix is referred to as the 

product matrix and the functions f i,j  are linear 

functions of the components of A(x) .The  columns of 

represent the consecutive states of the Galois type 

LFSR with the initial state given by the multiplicand 

A(x), i.e., the j
th

 column is given by x
j
 A(x) mod G(x). 

Therefore, the product matrix can be realized by 

cascading instances of the logic to perform a left shift 

modulo G(x). The circuit to perform this modulo shift 

is referred to as an alpha cell. The same notation will 

be used here. 

    The product matrix can be divided into a number 

of smaller submatrices that  calculate  the  partial  

products,  which  give the final product when 

summed together.  

 

 
 

Fig. 2.  Pipeline stage of subpipelined bit-parallel 

multiplier. 

 
 

More formally, the product matrix can be divided 

into D submatrices, which will contain at most  =[m-

1/D] columns,i.e,  

   Hence, the multiplier can be easily pipelined into 

D stages, each computing the sum of at most d+1  

terms, which are the outputs of  alpha cells and the 

input from the previous multiplication pipeline 

stage. As a result the logic in the critical path is 

reduced and the routing is simplified. Note that the 

number of logic gates in the critical path of each 

stage will be similar to that of a digit serial multiplier 

with equivalent  , but the routing is simpler as no 

feedback is required. The resulting architecture 
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of the i th pipeline stage 0≤i≤D-1, is shown in Fig. 2; 

   When the alpha input is A(x)  and the sum input is 

A(x)b0, when i = D-1 the sum output is the 

multiplication result and the alpha output is 

unconnected. 

 

D.  SQR/ADD Block 

The extra functionality required for the new 

instructions MULAD, MULSQ, and RESQ is 

provided by the SQR/ADD block, which is 

appended to the multiplier output as shown in Fig. 

1. A block diagram showing the functionality of the 

SQR/ADD block is shown in Fig. 3; note that the 

flip-flops shown in Fig. 3 are the pipeline flip-

flops placed after the SQR/ADD block in the data 

path diagram shown in Fig. 1. 

     Selection 0 on the MUX shown in Fig.3 sets the 

data path to perform standard multiplication over 

GF(2
m
). Selection 1 sets the data path to perform 

MULSQ. Selection 2 sets the data path to perform 

MULAD. Selection 3 sets the data path to perform 

RESQ; note that RESQ can be performed after any 

other operation, e.g., MULAD-RESQ is a valid 

instruction sequence. 

 
 

                         Fig.3.  SQR/ADD block. 

 

 E. Data Forwarding 

The optimal depth of a pipeline is a trade 

between clock frequency and instruction throughput. 

Ideally, one instruction per cycle (or more) will be 

performed, while sufficient pipelining to achieve the 

desired clock frequency is implemented. However, 

as the depth of the pipeline is increased, data 

dependencies can lead to pipeline stalls and even 

pipeline flushes, resulting in less than the ideal one 

instruction/cycle being performed. 

       Data forwarding is a common technique in 

processor design, used to avoid pipeline stalls that 

occur due to data dependencies. Typically, data is 

forwarded to either input of the arithmetic logic unit 

(ALU) from all subsequent pipeline stages. The 

scheme used here differs slightly because such 

generality is not necessary: the order of the 

instructions and the instances when forwarding is 

required are known and do not change. Therefore, the 

control signals may be explicitly defined for each 

instruction, and, as can be seen in Fig. 3, the data 

path can be simplified because data forwarding to 

both ALU inputs from all sub- sequent stages is not 

required. 

IV. FPGA IMPLEMENTATION 
       The processor was implemented over the 

smallest field recommended by NIST [8] GF(2163) 

using the irreducible polynomial given, 

G(x)=x163+x7+x6+x3+1.Two FPGA devices were 

used for implementation: the older Virtex-E de- vice 

(XCV2600E-FG1156-8),for fair comparison with the 

other architectures presented in the literature, and the 

more modern Virtex-4 (XC4VLX200-FF1513-11) to 

demonstrate the performance  of  the  proposed  ASIP  

with  modern  technology.  Each component was 

implemented and optimized individually, particularly 

the multiplier, to examine the optimal pipeline depth 

before the  complete  processor  was  implemented.  

Aggressive optimization for speed was performed, 

including timing-driven packing and  placement. No 

detailed  floor  planning  was  performed, only a few 

simple constraints were applied. 

 

A.  Register File 

Xilinx FPGA devices support three main 

types of storage element: flip-flops, block RAM and 

distributed RAM. Block RAM is the dedicated 

memory resource of FPGA devices, which has 

different sizes and locations depending on the device 

being used. 

                                            TABLE I 

DECOMPOSITION  OF POINT              

MULTIPLICATION TIME IN CYCLES 

 
 

     Distributed RAM uses the basic logic elements of 

the FPGA device, lookup tables (LUTs), to form 

RAMs of the desired size, function and location, 

making it far more flexible. On Virtex-E devices, 

Block RAMs are 4096 bits each, which increase to 

18 k bits if the Virtex-4 is used. So the use of block 

RAM to store relatively small amounts of data is 

inefficient. The processor presented in this paper 

requires only 13 storage locations including all 

temporary storage, so distributed RAM was used. 

On Xilinx FPGA devices, 16-bits of storage can 

be gained from a single LUT. However, as reading 

from two ports and writing to a third port is 

required independently and concurrently, a single 

dual-port distributed RAM is not sufficient. 

Therefore, the register file utilized in this design is 

formed by cross-connecting two dual-port 

distributed RAMs. This approach is still far more 

efficient than using block RAMs or flip-flops. 

 

B.  Subpipelined Multiplier 

   The multiplier dominates the processor, 

both in terms of area (accounting for over 95% of 

the total) and clock frequency, as the critical path of 
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the other components is considerably shorter than 

that of the multiplier. The area of a bit parallel 

multiplier is O(m
2
) and the critical path is O(log(m)).  

However, when implemented on FPGA, these 

measures have less significance. To implement a bit-

parallel multiplier without a pipelining scheme will 

lead to low clock frequencies, due to the amount of 

logic in the critical path and the complex routing. 

 

The Mastrovito multiplier architecture was 

chosen not only because it was suitable for 

pipelining, but also because its regularity simplifies 

placement and, consequently, routing. Given the 

deep sub micrometer fabrics used by FPGAs, the 

routing is the largest component of delay, and, as 

shown in Section III-C, the Mastrovito multiplier can 

be divided into very regular blocks to improve 

routing. When pipelined, the implemented 

architecture has a critical path similar to a digit-serial 

multiplier, but the routing is simplified because no 

feedback is required. 

The multiplier was implemented with several 

different depths of pipeline; the results are shown in 

Table II. When timing- driven FPGA placement is 

performed, the placer may be forced to heavily 

replicate certain areas of the circuit to meet timing 

goals, particularly if certain nets have high fan-outs. 

This can be seen in the implementation results of 

the multiplier, where the multiplier with three 

pipeline stages requires more resources than its four-

stage equivalent because heavy replication was 

performed to meet timing goals. In terms of area-time 

performance, it is clear that the four-stage multiplier 

offers superior performance, which is an important 

result when the overall performance of the processor 

is considered.  

 

C. SQR/ADD Block 

      By implementing the functionality as a single 

Boolean function, improved logic optimization can 

be achieved because the hierarchy will be flattened 

leading to resource sharing and improved logic 

minimization. 
 

D.  Control 

Typically, a general-purpose processor with a 

pipelined data path would use an instruction ROM for 

control. However, for applications such as this one 

where the mode of operation is fixed and the control 

is relatively simple, a state machine is far more 

efficient, particularly in terms of area, and thus is the 

choice for this design. 

A Moore state machine is most suitable for the 

proposed architecture, as any extra area required is 

negligible compared to the overall area of the 

processor, and the improved clock frequency 

compared to a Mealy state machine is desirable. The 

key is stored in a special-purpose register, 

independent of the data path, and loaded through a 

separate channel. Thus, the state machine has no 

dependency on the data path and the control signals 

can be registered to achieve the desired delay 

performance. The total resource usage for control is 

only 93 slices. However, if extra flexibility is 

required, an instruction ROM can be used with no 

performance penalty in terms of speed, though more 

area resources would be required. 

 

V.  PERFORMANCE ANALYSIS 
Let be the depth of the pipeline, then the 

number of cycles required to perform a point 

multiplication (excluding data I/O and coordinate 

conversion) is given by 

 

           Latency cycles        = 2L+3 

    

    The latency in cycles of the point 

multiplication is decomposed in Table I. To ascertain 

the optimal pipeline depth for the processor, the bit-

parallel multiplier was implemented with different 

pipeline depths. The results of these implementations 

(see Table II) and the corresponding number of 

cycles to perform a point multiplication (see Table 

I) can be used to estimate the point multiplication 

times for each pipeline depth, as the critical path of 

the processor is in the multiplier. 

Fig. 4 plots throughput (point multiplications per 

second) against area (FPGA slices) for each of the 

multiplier variations implemented. Note that the area 

figure shown is the area of the multiplier not that of 

the complete processor, but the multiplier accounts 

for over 95% of the total area. 

 



A.Durga Bhavani, P.Soundarya Mala / International Journal of Engineering Research 

and Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 5, September- October 2012, pp.412-419 

418 | P a g e  

 
 

It is clear that the relationship between 

pipeline depth and area throughput performance is 

approximately linear (as we would expect from the 

previous equation), but the seven-stage pipeline  

offers superior performance. Therefore, this was the 

architecture implemented on both the Virtex-E and 

Virtex-4 devices, the results of which are detailed in 

Table II and summarized in Table III for comparison 

with the state of the art.  It appears that none of the 

architectures in the comparison were floor planned, 

so for a fairer comparison the implementation of the 

proposed architecture was not floor planned either. It 

is important to note for FPGA implementations, 

being target specific, a detailed comparison of  

resource usage is not always straightforward, in 

particular when it is not clear whether the quoted 

figures are actual post place and route 

implementation results as in our case or merely 

synthesis estimates.  

                   

 

 

     The proposed architecture compares very 

favorably with the state of the art, being smaller and 

considerably faster than similar works. The 

implementation of the proposed architecture is 

several times faster than the first three, lower-resource 

table entries, which are based on digit-serial 

multiplication. It is interesting to note that the 

proposed architecture achieved a higher clock 

frequency than all three, demonstrating that the 

simplified routing resulting from the pipelined 

architecture does indeed improve the critical path. 

Comparing against alternative high-speed 

architectures, the implementation of the proposed 

architecture performs a point multiplication in only 

60.01% of the estimated performance time of the 

fastest alternative. The area resource of is not stated 

for the field, only the performance time, but the 

resource usage (slices) of the proposed architecture 

is significantly less than the other alternative high-

speed architectures. The improvements over the 

implementation from Jarvinen, et al. are due once 

more to the reduced area requirements but also due to 

the reduced latency resulting from pipelining and the  

 

complex instructions. The further seventh-stage 

pipelining has increased the clock frequency of the 

architecture without prohibitively increasing the 

latency, which leads to the fastest point 

multiplication time reported in the literature. Hence, 

the use of an application specific instruction set in 

conjunction with pipelining has better exploited 

operation  parallelism compared with  duplicating 

arithmetic circuits as proposed.  

 

Comparing against our recently reported pipelined 

ASIP architecture, a 10.12% improvement in point 

multiplication time was attained, but the resource 

usage was only increased by around 2%. The 

improvement comes as a result of the new 

combined algorithm to perform DBL and ADD 

fewer instructions are required, which reduces the 

latency and the increased pipeline depth, which 

increases the clock frequency. 
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 VI. CONCLUSION 
    A high-performance ECC has been 

implemented using FPGA technology. A combined 

algorithm to perform DBL and ADD was developed 

based on the  Lopez  Dahab Point multiplication 

algorithm .The data path was pipelined, allowing 

operation parallelism to be perform fastly and taking 

less  time. Consequently, an implementation with a 

four-stage pipeline achieved a point multiplication 

on Xilinx Virtex-4 device, making it the fastest 

implementation. This work has confirmed the 

suitability of a pipelined data path and an efficient 

Galois field multiplier (2^163) is developed and  

implementations of  ECC over GF(2^163) performs 

the better security with less key size . 
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