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Abstract 
Transient simulation of electric network 

with non – zero initial values could be quite 

challenging even in frequency domain, especially 

when transient equation formulation involves 

vectorial sense establishment of the initialization 

effect of the storage elements. In this paper, we 

derived a robust laplace frequency transient mesh 

equation which takes care of the vectorial sense of 

these initialization effects by mere algebraic 

formulation. The result of the new derived 

transient mesh equation showed promising 

conformity with the existing simpowersystem 

simulation tool with just knowledge of the steady 

state current and not the state variables. 

 

Keyword: transient simulation, mesh equation, 

state variables, and non – zero initialization. 

                                                                                            

1 INTRODUCTION 
A single run of a conventional simulation 

provide limited information about the behaviour of 

electrical circuit. It determines only how the circuit 

would behave for a single initial, input sequence and 

set of circuit parameter characterizing condition. 

Many cad tasks require more extensive information 

than can be obtained by a single simulation run. For 

example the formal verification of a design requires 

showing that the circuit will behave properly for all 

possible initial start sequences that will detect a given 

set of faults, clearly conventional simulation is of 

little use for such task [1]. 

            Some of these tasks that cannot be solved 

effectively by conventional simulation have become 

tractable by extending the simulation to operate a 

symbolic domain. Symbolic simulation involves 

introducing an expanded set of signal values and 

redefining the basic simulation functions to operate 

over this expanded set. This enables the simulator 

evaluate a range of operating conditions in a single 

run. By linearizing the circuits with lumped 

parameters at particular operating points and 

attempting only frequency domain analysis, the 

program can represent signal values as rational 

functions in the s ( continuous time ) or z (discrete 

time) domain and are  generated as sums of the 

products of symbols which specify the parameters of  

 

 

 

circuits elements [2 – 4]. Symbolic formulation grows 

exponentially with circuit size and it limits the 

maximum analyzable circuit size and also makes 

more difficult, formula interpretation and its use in 

design automation application [5 – 10]. This is 

usually improved by using semisymbolic formulation 

which is symbolic formulation with numerical 

equivalent of symbolic coefficient. Other methods of 

simplification include simplification before 

generation (SBG), simplification during generation 

SDG, and simplification after generation (SAG) [11 – 

16]. 

 Symbolic response formulation of electrical 

circuit can classified broadly as modified nodal 

analysis (MNA) [17], sparse tableau formulation and 

state variable formulations. The state variable method 

were developed before the modified nodal analysis, it 

involves intensive mathematical process and has 

major limitation in the formulation of circuit 

equations. Some of the limitations arise because the 

state variables are capacitor voltages and inductor 

currents [18]. The tableau formulation has a problem 

that the resulting matrices are always quite large and 

the sparse matrix solver is needed. Unfortunately, the 

structure of the matrix is such that coding these 

routine are complicated. MNA despite the fact that its 

formulated network equation is smaller than tableau 

method, it still has a problem of formulating matrices 

that are larger than that which would have been 

obtained by pure nodal formulation [19]. 

 In this paper a new mesh analytical method 

is introduced which may be used on linear or 

linearized RLC circuit and can be computer 

applicable and user friendly. The simplicity of the 

new transient mesh formulation lies in the fact that 

minimal mesh index is enough to formulate transient 

equation and also standard method of building steady 

state mesh impedance bus is just needed to build the 

two formulated impedance buses that are required to 

formulate the new transient mesh equation. 

Simplicity, compactness and economy are the 

advantages of the newly formulated transient mesh 

equation. 

 

2 New Transient Mesh Equation. 
Mesh analysis may not be as powerful as the  
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nodal analysis in power system because of a little bit 

of application complication in circuits with multiple 

branches in between two nodes, when power system 

is characterized with short line model, mesh analysis 

become a faster option especially when using laplace 

transient analysis. The new mesh method sees a linear 

RLC transient network in frequency domain as one 

that sets up complementary circuit by the initial dc 

quantities at transient inception. With this mesh 

method, the complimentary circuit sets its resultant 

residual quantities (voltage drop) which complement 

the mesh transient voltage source. 

The constitutional effect of the initial 

quantities at the transient inception combine with the 

voltage sources on the RLC linear circuits (1) is 

setting up of two identifiable impedance diagrams. 

One impedance diagram is the normal laplace 

transformed impedance diagram of the original circuit 

elements, in this paper it is called the auxiliary 

transient Impedance diagram. The other impedance 

diagram is due to non zero transient initialization 

effect of the storage elements and it is called the 

complementary transient impedance diagram in this 

paper. 

 

 1                                  (s)(s)IZE(s)Z(s)I(s) CC  

 

Where Z(s) is the Auxiliary impedance bus, s – 

domain equivalent of steady state mesh impedance 

matrix, Zc(s) is the s – domain complementary 

impedance bus, it is the storage element driving point 

impedance bus due to transient inception effect, I(s) is 

the laplace mesh current vector and Ic(s) is the initial 

dc mesh current vector, equivalent to the steady state 

mesh current vector at the transient inception.  

 

2.1 Derivation 

 The newly transient mesh equation may be 

derived by considering a simple three node, three 

mesh linearized RLC circuit, fig. 1, if Kirchhoff’s 

voltage law is applied on the various meshes then, 
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taking the laplace transform of equation (2) to get,  
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Where ik (0) is the initial branch current and s1 is the 

steady state frequency. 

 

 
Figure 1: Three node, three mesh linear transient 

electric circuit. 

 

substituting branch current in (4) with appropriate 

mesh currents to get branch capacitor voltage drops in 

terms of mesh currents, 
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Substituting equation (5) in (3) and simplifying to get,  
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then, 
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where 
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Z(c)k(s) is the dc transient driving point impedance, Lk 

and Ck are the  k – th branch inductance and 

capacitance respectively.  

For mesh 2 

Similarly, Kirchhoff’s voltage law may be applied in 

mesh 2 and simplified as in mesh 1 to get , 
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For mesh 3 

Similarly, Kirchhoff’s voltage law may be applied in 

mesh 3 and simplified as in mesh 1 to get 
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Equations (6), (8) and (8) may be combined to form s 

– domain mesh matrix equation as follows, 
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where m = 1,2 – – –  M–th mesh and also k = 1,2 – – 

–  K–th branch incident on the m–th mesh. 

 

 
Figure 2: s – domain auxiliary circuit diagram for  

                 transient nodal analysis. 

 

2.2 Generalized Matrix Form for Transient Nodal 

Equation 

Equation (11) may be used to generalize an 

equation in the matrix form for transient mesh analysis 

of M th mesh electrical circuit, thus 
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The variables of equation (16) are defined in the 

compact equation of section 2.  

 

              
Figure 3: s – domain complementary circuit diagram 

for mesh analysis.  

 

2.3 Generalized Compact Form For Transient 

Nodal Equation 

The generalized compact form of the 

equation 16 is thus as follows, 
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 Z(s) is laplace frequency domain impedance bus, the 

impedance bus  have the same formulation with the 

common steady state mesh impedance bus only that 

in this equation, the branch impedances are  translated 

to laplace frequency domain. In this paper it is called 

the s – domain auxiliary impedance bus. 
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Z(C)(s) is laplace frequency domain dc driving point  

impedance bus, the impedance bus could be built 

from fig 3 using any standard method of building an 

impedance bus when the branch dc driving point 

impedance Z(C)k(s) of the circuit  is evaluated from 

equation (8). In this paper it is called the s – domain 

complementary admittance bus. 
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I(s) and E(s) are the vector of mesh transient current 

and mesh voltage source (vectorial sum) in laplace 

frequency domain respectively, while Ic(s)is equal to 

I(0) and is the   steady state mesh current at the instant 

of fault inception. Hence Ic(s) is and I(0) will be used 

interchangeably in this paper. 

 

3 ANALYSIS PROCEDURES 
1. Solve for the initial dc mesh current from 

steady             state for example 

 21                                       EZI                        

where Z is the steady state mesh impedance bus, I is 

the steady mesh current vector, E is the mesh sum 

voltage source vector. 

2. Transform all the branch voltage sources to 

laplace equivalent and find the mesh sum (14) and 

eventually convert to vector form (20). 

 

3. Draw the auxiliary laplace impedance 

diagram as in Fig 2. by converting all the branch 

elements to laplace equivalent, then build the laplace 

impedance bus from the impedance diagram by using 

any of the standard method of building steady state 

impedance bus. 

4. From the branch storage elements formulate 

the newly derived branch dc transient driving point 

impedances (8), and then draw the complementary 

impedance diagram as in fig. 3. from the diagram 

build the complementary impedance bus (19) with 

any of the standard method of building steady state 

impedance bus. 

5.  Form equation (16) and solve for I(s) using 

Cramer’s rule.  

6.  Transform I(s) to time domain equivalent 

using laplace inverse transform. Eg. in Matlab, 
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 22                      ))s(I(ilap)t(I           

 

From this branch currents could easily be obtained at 

any instant of the transient. 

 

4   TEST CIRCUIT  
An earth faulted 100kV - double end fed 

70% series compensated 100km single transmission 

line was used for verification of the formulated s – 

domain transient mesh equation. In this analysis 

compensation beyond fault was adopted and fault 

position was assumed to be 40%.  

 
Figure 4: earth faulted single line with compensation 

beyond fault 

 

Test Circuit Parameter  

Generator 1 

E1 (t)=10x10
4
sin(t),  ZG1=(6+j40), S=1MVA 

Generator 2 

E2 (t)=0.8|E1|sin (t+45
0
),  ZG2=(4+j36), S=1MVA 

Line Parameter 

Rs=0.075 /km,   Ls=0.04875 H/km  

Gs=3.75*10
-8

 mho/km,      Cs=8.0x10
-9

F/km 

Line length=100 km 

Fault position 40%    C1=70%compensation. 

 

4.1      Modeling 

A lumped parameter was adopted as a model 

for the test circuit. It was assumed that compensation 

protection had not acted as such the compensation 

was of constant capacitance. More so, the model is 

characterized with constant parameter, shunt 

capacitance and shunt conductance of transmission 

line are neglected. The equivalent circuit of the test 

circuit is below fig 5.  

 

 
Figure 5: single line with compensation beyond earth 

fault equivalent circuit (short line model).  

 

5     Transient Simulation 
5.1 Symbolic Simulation with Formulated 

Equation 

In this paper the transient mesh currents 

were simulated by using the described formulation (s 

– domain mesh equation by method of 

complementary circuitry). Analysis procedures of 

section 3 were used to calculate the s – domain 

rational functions of the mesh currents I(s). The 

obtained s – domain rational functions were 

transformed to close form continuous time functions 

using laplace inverse transformation. Discretization of 

the close form continuous time functions were done 

to plot the mesh current response graphs. 

 

5.2 Simpower Simulation of Test Circuit 

To validate the formulated transient mesh 

equation, a simulation of the earth faulted line end 

series compensated single line transmission was 

performed using matlab simpowersystem software to 

obtain the circuit transient mesh current responses. 

Results were compared with the responses obtained 

from the simulations using the formulated transient 

mesh equation. 

 

6     Results 
Mesh current response were simulated using 

the formulated mesh equation and also using 

simpowersystem package, all simulation were done 

using Matlab 7.40 mathematical tool. Simulated 

responses by these methods for the earth faulted 

double end fed single line transmission were obtained 

and shown in fig 6 through fig 13. Mesh currents 

were taken for various simulating conditions. 

Simulating conditions included; zero initial condition, 

non – zero initial condition, high resistive (1000) 

fault but at zero initial condition, and 1 sec. 

simulation. All simulations were done, except 

otherwise stated on 100km line at 40% fault position 

and 5  earth resistive fault. Sampling interval for the 

formulated equation simulation is 0.0005 sec, while 

that of the simpowersystem simulation is at 0.00005 

sec. The overall result showed almost 100% 

conformity between new mesh symbolic formulation 

and the simpowersystem simulation. 

 

7 Conclusions 
Simulation software has been formulated for 

transient simulation of RLC circuits initiating from 

steady state. The simulation software is especially 

useful for power circuits that are modeled with short 

line parameter. The result of the simulation of this 

new symbolic mesh software showed promising 

conformity with the existing simpowersystem 

package and has the advantage of being able to 

simulate complex value initial conditions and also 

sets the directions and the senses of the state variables 

automatically.  
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Test Circuit Simulated Mesh Voltage Response 

Graphs: 

 All graph are plotted except otherwise 

stated, 100 km Line, Compensation 70% Fault 

Position=40%, And 5 Resistive Earth Fault. 

 

 
Figure 6: Simulation Of Mesh Current Versus time ; 

0% Initial Condition. 

 

  
Figure 7: Simulation Of Mesh Current Versus Time ; 

0% Initial Condition. 

 

 
Figure 8: Simulation of Mesh Current versus Time; 

Initial Conditions, 0.013 Sec of Steady State Run. 

                                          

 
Figure 9: Simulation of Mesh Current versus Time; 

Initial Conditions, 0.013 Sec of Steady State Run. 

 

 
Figure 10: Simulation Of Mesh Current Versus 

Time; 0% Initial Condition, and 1000 Resistive 

Earth Fault. 

 

   
Figure 11: Simulation Of Mesh Current Versus Time; 

0% Initial Condition, and 1000 Resistive Earth Fault. 
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Figure 12: Simulation Of Mesh Current Versus Time ; 

0% Initial Condition. 

         
Figure 13: Simulation Of Mesh Current Versus Time ; 

0% Initial Condition. 
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