
Harish V. Dixit, Dr. Vikas Gupta / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.303-307

303 | P a g e

 IIR filters using Xilinx System Generator for FPGA

Implementation

Harish V. Dixit , Dr. Vikas Gupta; V.C.E.T

Abstract:
 This paper proposes the

implementation of IIR filter using Xilinx System

Generator software on an FPGA. While

designing any digital filter, the overflow and

quantisation effects must be considered for

stability. The speed of computation is greatly

increased by implementing a filter on an FPGA,

rather than a Conventional DSP processor. We

first design the filter analytically from the given

specifications and simulate it using the Simulink

environment in Matlab. A method to implement

this filter using Xilinx System Generator is

proposed.

Keywords : Simulink, Xilinx, FPGA, System

Generator, Filter

1. Introduction
Digital signal processors or Application

Specific Integrated Circuits (ASICs) are commonly

used for implementing the digital filtering

algorithms. However recent advances in the

technology of Field Programmable Gate Array

(FPGA) have led to the implementation of these

algorithms on FPGAs. This paper proposes a

approach to implement an IIR filter on Field
Programmable Gate Arrays (FPGAs) using Xilinx

System Generator software.

A conventional DSP processor is a serial

device and typically has 1-4 MAC units along with

barrel shifters and other circuits for efficient

computations. A substantial part of the

computations involves the use of multiplication and

accumulation operations. Supposing a DSP unit has

a single MAC unit. A 256 tap filter involves 256

MAC operations per sample. Hence with a single

MAC unit, it takes 256 clock cycles for the output
to be computed in a typical DSP processor. The

speed of computation can be increased by

increasing the clock rate which in turn increases the

system complexity. The following figure shows the

computation factors involved in a DSP device:

Fig1. Implementation of Filter on DSP device [1]

The speed of computation can be

increased substantially without affecting the system

complexity using the parallelism feature of FPGA.

The FPGA contains a large number of gates and

millions of transistors. Hence the filter can be
implemented in a parallel manner as shown in the

fig. 2. The implementation consists of 256 registers

and 256 multiplier unit along with an adder for

final partial product. Hence what took 256 clock

cycles on a DSP processor takes a single clock

cycle on a FPGA. Fig. 2 shows the implementation

of the same filter on an FPGA.

 Fig2. Implementation of Filter on FPGA [1]

2. Digital Filters
A digital filter uses a digital processor to

perform numerical calculations on sampled values

of the signal. Based on the length of impulse

response, digital filters are classified into two types

1) Finite Impulse Response (FIR) Filters

2) Infinite Impulse Response (IIR) Filters

The IIR filters are not well supported by

softwares and Intellectual Property cores as

compared to the FIR filters. In this paper, we

discuss the implementation of IIR Filters on

FPGAs.

3. IIR Filters

Harish V. Dixit / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.

304 | P a g e

The IIR filter can be implemented using

the following structures:

1) Direct Form I

2) Direct Form II

In this paper, we use the Direct Form I approach.

 IIR filter consists of a forward path as well as a
feedback path, both paths contributing to the output

outgoing samples. A forward path is typically a

short FIR like structure. The forward FIR filter,

also known as all-zero filter, comprises of the

numerator, or b, coefficients for the zeros, and a
feedback FIR for the denominator, or a,

coefficients for the poles. A way to express an IIR

Filter is as a z-transfer function with numerator

coefficients bi and denominator coefficients ai.

Each output sample is a sum of a new input and

earlier input values and subtraction of previous

output values, all multiplied by their respective

coefficients Computationally, feedback subtraction
equals to addition with inverted coefficient values.

The time domain expression for the IIR is shown in

following, and it can be seen that some delayed

version of the y(n) output is playing a part in the

output:

a(i) and b(i) are the coefficients of the IIR filter.

The expression is now showing
summation, multiplication, and subtraction, which

are basic DSP building blocks and can be

implemented in FPGA architecture using tools like

System Generator.

Figure 3 - Structure For IIR Filter [2]

4. Implementation Issues of IIR Filter

To ensure satisfactory performance of the fixed

point implementation of IIR Filter, the following

factors should be considered [2]. These factors are-

1) Co-efficient Quantisation

2) Internal Quantisation

3) Overflow

4) Stability

Coefficient Quantisation

For implementing a digital filter, sofwares

are used to define the filter coefficients based on

the given filter specifications. The filter design

software usually computes and displays the filter

coefficients with a high degree of precision. If the

digital filter can be implemented using that same

degree of precision, then the filter will behave as

predicted by the filter design software.

In practice, only a finite number of bits

can be used to represent the digital filter

coefficients. This reduction in each coefficient’s
precision causes the frequency response of the filter

to differ from the “ideal” response due to

coefficient quantization errors.

When using B bits to represent the filter

coefficients, the total number of possible

values that the filter coefficients can take on is 2B.

Thus, instead of having an infinite range of values

for the coefficients, they are instead constrained to

one of the 2B levels.

The location of the poles and zeros of the

filter are also quantized. This is because they

depend on the value of the filter coefficients. The

quantization of the pole and zero locations will

typically move the poles and zeros of the filter to

locations that are different from the

“ideal” setting.
This can have drastic effects on the performance of

the filter.

Internal Quantisation

A DSP function involves multiplication

and addition/subtraction operations. However, there

is bit growth due to these operations, and at some

point, the bit widths have to be reduced. Operations

like wrapping/saturation for the most significant

bits and rounding/truncation for the least significant

bits have to be used. The rounding process reduces

bit width but is a source of noise and contributes to
output round-off noise and, hence, affects the

signal-to-noise ratio. The flexibility of FPGA

Harish V. Dixit / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.

305 | P a g e

architecture allows for increasing the word length

and reducing the round-off noise

Overflow

For a fixed-point implementation, there is

a certain bit width and, hence, a range. As a result

of calculations, the filter may exceed its
maximum/minimum ranges. To minimize the

effects of overflows, scaling can be used.

Therefore, values can never overflow. There are

different kinds of scaling and these tend to be used

by DSP processors to fit within their fixed

structure. However, this has an effect on the signal

to noise ratios.

Stability

The roots of the denominator polynomial

must be less than 1. It must be ensured that the

quantisation effects do not shift the roots to be

greater than 1 rendering the filter unstable.

5. Implementation Methodology
The following implementation

methodology is identified. Various steps according

to flow graph are:

Step 1: Design the Filter

Step 2: Create Simulink Model.

Figure 4 - Implementation Methodology

Step 3: Implement Simulink model with the help of
MATLAB.

Step 4: Code generation using SysGen/Accel DSP.

Step 5: Simulate and debug the logic program and

make necessary correction to design of Step 3.

Step 6: Simulate and generate RTL schematic and
check for resource utilization

Step 7: Run an automatic place and route program.

This will place the logic block in appropriate places

in FPGA and then route the interconnection

between logic blocks.

Step 8: Run a program that will generate the bit
pattern necessary to program FPGA.

Step 9: Download bit pattern into internal

configuration, memory cells in FPGA and test
operation of FPGA.

6. Filter Specifications

An IIR Butterworth Low Pass Filter with the

following specifications is desired:
Attenuation in pass band, Ap = 1

Attenuation in stop band, As = 22

Pass band Frequency, fp= 2.1Khz

Stob Band Frequency, fs = 2.9 Khz

Sampling Frequency, fsamp = 6.5Khz

The transfer function of such a filter is obtained as

∴H(z) =

7. Simulation Results

 The Simulink environment from

Mathworks MATLAB is used for the simulation of

the designed filter. Bandlimited white noise is

given as an input to the FDA Tool and the output is

obtained on the spectrum scope. The output on the

scope verifies the stop band frequency of 2.9 Khz.

 Figure 5 – set up for Frequency response of filter

Harish V. Dixit / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.

306 | P a g e

Figure 6 – frequency response of filter

Figure 7 – Illustration of filtering

We now illustrate the filtering action by giving the

filter two sinusoidal inputs of frequency 2.1Khz

and 2.9 Khz. The 2.1Khz input is passed to the

scope as it falls within the cutoff range and the 2.9

Khz input is heavily attenuated as falls near the
cutoff frequency.

Figure 8 – inputs to the filter

Figure 9 – Output without filter

Figure 10 – output with filter

Synthesis
 As seen, the simulation results have

matched the specifications and Xilinx System

Generator For DSP software is used to synthesise

this filter. The following architecture is proposed

for the implementing the designed filter using the

basic available blocks in the Xilinx DSP blockset

of System Generator like adders, multipliers and

delays

.

Figure 11 – Implementation of filter in System

Generator
In the above figure the Third Order block is

modelled as follows.

Figure 12 – Implementation of Filter block

In the above figure the adder block is modelled as,

Figure 13 – Implementation of Adder block

Conclusion:
This Paper discusses the implementation

of an IIR Digital filter on an FPGA. The parallel

processing capability of the FPGA greatly increases

the speed of operation in the implementation of the

Harish V. Dixit / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.

307 | P a g e

Digital filter. Simulink is used to obtain the

simulation of the designed filter. The filter may be

rendered unstable because of quantisation effects

and overflow errors. So, it must be carefully

designed and guarded against them. Finally, a

method is proposed to implement this filter using

Xilinx System Generator.

References:
1. Xilinx white paper number 213,

www.xilinx.com

2. Xilinx white paper number 330,

www.xilinx.com

3. Chi-Jui Chou, Satish Mohanakrishnan,

Joseph B. Evans, FPGA implementation

of digital filters, Proc. of ICSPAT, 1993.

4. Juan J. Rodriguez, Andina Maria J.
Moure, Maria D. Valdes, Features, design

tools and application domains of FPGA,

IEEE transactions on industrial

electronics, 2007, pp: 1810-1823.

5. Louis Litwin, FIR and IIR digital filters,

IEEE potentials, 2002.

6. Robert Esposito, Digital signal processing

: A hardware based approach, proc of the

2007 middle Atlantic section fall

conference of the American society for

engineering education.
7. Sanjit K. Mitra, Digital signal processing :

a computer based approach, McGraw Hill,

2006.

8. Xilinx system generator, basic tutorial,

www.xilinx.com

http://www.xilinx.com/

