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ABSTRACT 
The unsteady magnetohydrodynamic 

flow of a viscous incompressible electrically 

conducting fluid bounded by an infinite porous 

flat plate in a rotating system in the presence of a 

uniform transverse magnetic field has been 

analyzed. Initially ( = 0t ) the fluid at infinity 

moves with uniform velocity 0U . At time > 0t , 

the plate suddenly starts to move with uniform 

velocity 0U  in the direction of the flow. The 

velocity field and the shear stresses at the plate 

have been derived using the Laplace transform 

technique. Solutions are also obtained for small 

time. It is observed that the primary velocity 

increases whereas the secondary velocity 

decreases with an increase in either rotation 

parameter  or magnetic parameter. It is also 

found that the shear stress at the plate due to the 

primary flow decreases with an increase in either 

rotation parameter or magnetic parameter. On 

the other hand, the shear stress at the plate due 

to the secondary flow decreases with an increase 

in rotation parameter while it increases with an 

increase in magnetic parameter. 

Keywords: Magnetohydrodynamic, rotation, 

inertial oscillation and porous plate.  
 

I.  INTRODUCTION 
When a vast expanse of viscous fluid 

bounded by an infinite flat plate is rotating about an 

axis normal to the plate, a layer is formed near the 

plate where the coriolis and viscous forces are of the 

same order of magnitude. This layer is known as 

Ekman layer. The study of flow of a viscous 

incompressible electrically conducting fluid induced 

by a porous flat plate in rotating system under the 

influence of a magnetic field has attracted the 

interest of many researchers in view of its wide 

applications in many engineering problems such as 

oil exploration, geothermal energy extractions and 

the boundary layer control in the field of 

aerodynamics. The unsteady flow of a viscous 

incompressible fluid in a rotating system has been 

studied by Thornley[2], Pop and Soundalgeker[3], 

Gupta and Gupta[4], Deka et al.[5] and many other 

researchers. Flow in the Ekman layer on an 

oscillating plate has been studied by Gupta et al.[6]. 

Guria and Jana[7] have studied the hydromagnetic 

flow in the Ekman layer on an oscillating porous 

plate in the presence of a  

 

uniform transverse magnetic field. Recently, Das et 

al.[8] have studied the unsteady viscous 

incompressible flow induced by a porous plate in a 

rotating system. 

      This paper is devoted to study the effect of the 

magnetic field on the unsteady MHD flow of a 

viscous incompressible electrically conducting fluid 

induced by an infinite porous flat plate in a rotating 

system. Initially ( = 0)t , the fluid at infinity moves 

with uniform velocity 0U . At time > 0t , the plate 

suddenly starts to move with a uniform velocity 0U  

in the direction of the flow. The velocity 

distributions and the shear stresses at the plate due to 

the primary and secondary flows are also obtained 

for small time t . To demonstrate the effects of 

rotation and applied magnetic field on the flow field, 

the the velocity distributions and shear stresses due 

to the primary and the secondary flows are depicted 

graphically. It is observed that the primary velocity 

increases whereas the secondary velocity decreases 

with an increase in either rotation parameter 2K  or 

magnetic parameter 2M . Further, it is found that the 

series solution obtained for small time converges 

more rapidly than the general solution. 

 

II. FORMULATION OF THE PROBLEM 

AND ITS SOLUTION 
Consider the flow of a viscous 

incompressible electrically conducting fluid filling 

the semi infinite space 0z   in a cartesian 

coordinate system. Initially, the fluid flows past an 

infinitely long porous flat plate when both the plate 

and the fluid rotate in unison with an uniform 

angular velocity   about an axis normal to the 

plate. Initially ( = 0)t , the fluid at infinity moves 

with uniform velocity 0U  along x -axis. A uniform 

magnetic field 0H  is imposed along z -axis [See 

Fig.1] and the plate is taken electrically non-

conducting. At time > 0t , the plate suddenly starts 

to move with the same uniform velocity as that of 

the free stream velocity 0U . 
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   Fig.1: Geometry of the problem  

 

      At time ( = 0)t , the equations of motion are  
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dz x dz
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0 = ,
p

z


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
                                           (3) 

where 0
ˆ ˆ( , , )u v w  are the velocity components along 

x , y  and z -directions, p  the pressure including 

centrifugal force,   the fluid density,   the 

kinematic coefficient of viscosity,   the electrical 

conductivity and 0w  being the suction velocity at 

the plate. 

The boundary conditions for û  and v̂  are  

0
ˆ ˆ ˆ= 0, = 0, = at 0u v w w z   

0
ˆ ˆ, 0 au U v s z   .                        (4) 

The Ohm's law is  

= ( ),ej E q H  
  

                                     (5) 

 where H


 is the magnetic field vector, E


 the 

electric field vector, e  the magnetic permeability. 

We shall assume that the magnetic Reynolds number 

for the flow is small so that the induced magnetic 

field can be neglected. The solenoidal relation 

. = 0H


 for the magnetic field gives 0= =zH H  

constant everywhere in the fluid where 

( , , )x y zH H H H


. The equation of conservation of 

the charge = 0j


 gives =zj  constant where 

( , , )x y zj j j j


. This constant is zero since = 0zj  

at the plate which is electrically non-conducting. 

Thus = 0zj  everywhere in the flow. Since the 

induced magnetic field is neglected, the Maxwell's 

equation = e

H
E

t



 






 becomes = 0E


 

which in turn gives = 0xE

z




 and = 0

yE

z




. This 

implies that =xE  constant and =yE  constant 

everywhere in the flow.  

In view of these conditions, equation (5) yields  

0
ˆ= ( ),x x ej E H v                                      (6) 

0
ˆ= ( ).y y ej E H u                                      (7) 

As the magnetic field is uniform in the free stream, 

we have from =j H


 that 0xj  , 0yj   as 

z  . Further, ˆ 0u  , ˆ 0v   as z   gives 

0 0= 0, =x y eE E H U . 

 

Substituting the values of xE  and yE , equations (6) 

and (7) become  

     0 0 0
ˆ ˆ= , = ( ).x e y ej H v j H u U             (8) 

On the use of (8) and usual boundary layer 

approximations, equations (1) and (2) become  

  
2 22

0
0 02

ˆ ˆ
ˆ ˆ2 = ,e Hdu d u

w v u U
dz dz





            (9) 

 
2 22

0
0 0 2

ˆ ˆ
ˆ ˆ2 = .e Hdv d v

w u U v
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
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Introducing the non-dimensional variables  

0

0

ˆ ˆ( )ˆ= , = , = 1,
U z u iv

F i
U





      (11) 

 equations (9) and (10) become  

   

   
2

2 2 2 2

2

ˆ ˆ
ˆ2 2 ,

d F dF
S M iK F M iK

dd 
      12) 

 where 0

0

=
w

S
U

 is the suction parameter, 2

2
0

=K
U


 

the rotation parameter and 
2 2

2 0

2
0

= e H
M

U

 


 the 

magnetic parameter. 

The corresponding boundary conditions for ˆ ( )F   

are  

ˆ ˆ0 at 0 and 1 as .F F            (13) 

 

The solution of (12) subject to the boundary 

conditions (13) can be obtained, on using (11), as  

1
1

0

ˆ
= 1 cos ,

au
e b

U





                   (14) 

1
1

0

ˆ
= sin ,

av
e b

U





                        (15) 

 where  
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 (16) 

 The solutions given by (14) and (15) are valid for 

both suction ( > 0)S  and blowing ( < 0)S  at the 

plate. If 2 = 0M , the equations (14) and (15) are 

identical with the equation(12) of Gupta[9]. 

At time > 0't , the plate suddenly starts to move 

with a uniform velocity 0U  along x -axis in the 

direction of the flow. Assuming the velocity 

components 0( , , )u v w  along the coordinate axes, 

we have the equations of motion as  
2

0 2

1
2

u u p u
w v

t z x z




   
     
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2 2
0

0( ),e H
u U




                          (17) 

2 22
0

0 2

1
2 = ,e Hv v p v

w u v
t z y z


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 

   
     
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     (18) 

1
0 .

p

z


 


                                  (19) 

The initials and boundary conditions are  

ˆ ˆ, at 0 for 0,u u v v t z     

0 , 0 at 0, > 0u U v z t    

0 , 0 as , > 0u U v z t                (20) 

It is observed from the equation (19) that the 

pressure p  is independent of z . Using equations 

(17) and (18) together with conditions 0u U  and 

0v   as z  , we have  

1 1
0 and 0.

p p

x y 

 
   

 
                      (21) 

On the use of (20), equations (17) and (18) become  
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   
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Equations (22) and (23) can be written in combined 

form as  

     
2 22

0
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 where  
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u iv
F

U


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On the use of (11) together with 
2
0=

U t
t




, equation 

(24) yields  
2

2 2

2
= ( 2 ) .

F F F
S M iK F

t  
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  
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     (26) 

The corresponding initial and the boundary 

conditions for ( , )F    are  

     ˆ( ,0) = ( ), 0,F F                                  (27) 

(0, ) = 0 for > 0, ( , ) = 0 for > 0,F t t F t t   (28) 

where ˆ ( )F   is given by (11). 

By defining  

 ( , ) = ( , ) ,tF t H t e                      (29) 

 equation (26) becomes  

 
2

2
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
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                    (30) 

 where  

 2 2= ,M iK                               (31) 

 with initial and boundary conditions  

           ˆ( ,0) ( ) for 0,H F                       (32) 

           

(0, ) = 0 for > 0, ( , ) = 0 for > 0.H t t H t t (33) 

On the use of Laplace transform, equation (30) 

becomes  
2

( )

2
= ,id H dH

s sH e
dd

  


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 where  

0
( , ) = ( , ) .stH s H t e dt 




              (35) 

The boundary condition for ( , )H s  are  

(0, ) = 0 for > 0 and ( , ) = 0 for 0.H s t H s t     

(36) 

The solution of the equation (34) subject to the 

boundary conditions (36) is  

2

2 4 ( )
1 1
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a ib
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The inverse Laplace transform of (37) and on the 

use of (29) and (25), we get  

( )
1 1 2

0

1
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S
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 where  
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(39) 

On separating into a real and imaginary parts one 

can easily obtain the velocity components 
0

u

U
 and 

0

v

U
 from equation (38). The solution given by (38) 

is valid for both suction ( > 0)S  and blowing 

( < 0)S  at the plate. If 2 = 0M , then the equation 

(38) is identical with equation (28) of Das et al. [8]. 

 

III.  DISCUSSIONS 
To study the flow situations due to the 

impulsive starts of a porous plate for different values 

of rotation parameter 2K , magnetic parameter 2M , 

suction parameter S  and time t , the velocities are 

shown in Figs.2-5. The primary velocity 
0

u

U
 and 

the secondary velocity 
0

v

U
 are shown in Figs.2 and 

3 against the distance   from the plate for several 

values of 2K  and 2M  with = 0.2t  and =1.0S . It 

is observed that the primary velocity 
0

u

U
 increases 

whereas the secondary velocity 
0

v

U
 decreases with 

an increase in either rotation parameter 2K  or 

magnetic parameter 2M . It is observed that for 

2 = 2M  and 2 5K  , the secondary velocity 
0

v

U
 

shows incipient flow reversal near the plate although 

the primary flow does not. Figs.4 and5 show the 

effect of time t  on the primary and the secondary 

velocities with 2 = 5M , 2 = 2K  and = 1S . It is 

found that the primary velocity increases whereas 

the secondary velocity decreases with an increase in 

time t . 

  

 

 Fig.2: Primary velocity for different 2K  and 
2M when = 0.2t  and = 1S    

  

 Fig.3:Secondary velocity for different 2K  and 
2M when = 0.2t  and = 1S    

 
Fig.4: Primary velocity for different time t  when 

2 = 5M , 2 = 2K  and = 1S    
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Fig.5: Secondary velocity for different time t  when 

2 = 5M , 2 = 2K  and = 1S    

 

We now consider the case when time t  is small 

which correspond to large ( 1)s  . In this case, 

method used by Carslaw and Jaeger [9] is used since 

it converges rapidly for small times. Hence, for 

small times, the inverse Laplace transform of the 

equation (37) gives  

 

1 2 2
22 4

=0

( , ) = (4 )
4

nS
S t

n n

n

S
H t e t i


 


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2

i te
t
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  

 
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 where   is given by (31). 

 

     On the use of (29), equation (40) yields  
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 where erfc(.)ni  denotes the repeated integrals of the 

complementary error function given by  

1erfc( ) = erfc( ) , 0, 1, 2, ,n n

x
i x i d n 


    

0erfc( ) erfc( ),i x x
21 2

erfc( ) = .xi x e


 
 (42) 

  

On the use of (25) and separating into a real and 

imaginary parts, equation (41) gives  

2
2

2 4
1

1
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S S
M t
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e b e

U





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2
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1
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S S
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 where  

 
2

2
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 with  2 = erfc , 0,2,4, .
2

n
nT i n

t

 
 

 
  

      Equations (43) and (44) show that the effects of 

rotation on the unsteady part of the secondary flow 

become important only when terms of order t  is 

taken into account. 

For small values of time, we have drawn the velocity 

components 
0

u

U
 and 

0

v

U
 on using the exact 

solution given by equation (38) and the series 

solutions given by equations (43) and (44) in Figs.6 

and 7. It is seen that the series solutions given by 

(43) and (44) converge more rapidly than the exact 

solution given by (38) for small times. Hence, we 

conclude that for small times, the numerical values 

of the velocity components can be evaluated from 

the equations (43) and (44) instead of equation (38). 
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            Fig.6: Primary velocity for general solution 

and solution  for small time with 2 = 5M , 2 = 2K  

and = 1S    

   

 
          Fig.7: Secondary velocity for general solution 

and solution for small time with 2 = 5M , 2 = 2K  

and = 1S    

 

The non-dimensional shear stresses at the 

plate ( = 0)  due to the primary and the secondary 

flows are given by [from equation (38)]  

1 1
0 0

0

= =x y

u iv
i a ib

U
 

 
   

   2 2 2 2erf
2

S
a ib a ib t


   


 

 
2

2 21 a ib t
e

t

  
 



.                                  (47) 

The numerical results of the shear stresses 
0

x  and 

0
y  at the plate ( = 0)  are shown in Figs.8 and 9 

against the magnetic parameter 2M  for several 

values of the rotation parameter 2K , time t  with 

= 1S . It is seen that both the shear stresses at the 

plate ( = 0)  due to the primary and the secondary 

flows decrease with an increase in 2K . Fig.9 reveals 

that for fixed value of 2K , both the shear stresses 

0
x  and 

0
y  decrease with an increase in time t . 

Further, it is observed that 
0

x  steadily decreases 

while 
0

y  steadily increases with an increase in 

2M . 

   

 
Fig.8: Shear stress 

0
x  and 

0
y  when = 0.2t  and 

= 1S    

              

      

 Fig.9:Shear stress
0

x  and 
0

y  when 2 = 2K  and 

= 1S    

The steady state shear stress components at the plate 

( = 0)  are obtained by letting t   as  

1 1 2 2= ( ) ( ).
2

x y

S
i a ib a ib                 (48) 

Estimation of the time which elapses from the 

starting of the impulsive motion of the plate till the 

steady state is reached can be obtained as follows. It 

is observed from (47) that the steady state is reached 

after time 0t  when erf 2 2( ) = 1a ib t . Since 

erf 2 2( ) =1a ib  when 2 2 0 = 2a ib t , it follows 

that  
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1

2 22
2 4

0 = 4 4 .
4

S
t M K


  
       

                (49) 

    It is seen that 0t  decreases with increase in either 

S  or 2K  or 2M . This means that the system with 

suction or rotation or magnetic field takes less time 

to reach the steady state than the case without 

suction or rotation or magnetic field. 

For small time, the shear stresses at the plate 

( = 0)  due to primary and the secondary flows can 

be obtained as  
2

2

4

0
0

(0, ) 1
= =

2

S
M t

x

u t
e

U
 

 
  
 
 


  

 2 2(0, )cos2 (0, )sin 2 ,P t K t Q t K t  
 

               (50) 

2
2

4

0
0

(0, ) 1
= =

2

S
M t

y

v t
e

U
 

 
  
 
 


     

2 2(0, )cos2 (0, )sin 2 ,Q t K t P t K t  
 

                (51) 

 where  

    
2

2
0 1 2 1( , ) = / 4 /

4

S
P t ST Y t M t ST Y t 

 
     

 

 

   
2

2
22 4

4 34 4 /
4

S
M K t ST Y t

   
      
   

 
3

2 2
2 4 212

4 4

S S
M K M

     
          
     

 

   3

6 54 /t ST Y t    (52) 

 2 1
2( , ) = 2 4

Y
Q t K t ST

t


 
 

 
 

 
2

22 2 3
44 4

4

YS
K M t ST

t

   
      

  

 

 
2

2
32 2 6 5

66 8 4 ,
4

YS
K M K t ST

t

     
         

    



                                                        (53) 

 with  

 

2 12 2 1
2 1, where erfc .

2 2

nn n
n

dT Y
Y i

d t t








 
    

 

 (54) 

Table 1. Shear stress at the plate ( = 0)  due to primary flow when 2 = 5M  and = 1S  

  

  
0

x (For  General  solution) 
0

x (Solution for small  times) 

2 \K t  0.002  0.004  0.006  0.002  0.004  0.006  

0 

4 

8 

12 

10.456620 

10.026410 

9.426691 

8.891527 

6.816017 

6.386783 

5.789964 

5.259642 

5.220609 

4.792615 

4.199518 

3.675391 

10.45661 

10.02646 

9.426891 

8.891985 

6.816015 

6.387048 

5.791084 

5.262150 

5.220608 

4.793337 

4.202537 

3.682057 

  

 Table 2. Shear stress at the plate ( = 0)  due to secondary flow when 2 = 5M  and = 1S   

  

 
0

y (For  General  Solution) 
0

y (Solution for small  times) 

2 \K t  0.002  0.004  0.006  0.002  0.004  0.006  

0 

4 

8 

12 

0.000000 

1.268350 

2.004932 

2.504465 

0.000000 

1.186032 

1.840343 

2.257698 

0.000000 

1.123545 

1.715468 

2.070635 

0.000000 

1.268379 

2.004992 

2.504561 

0.000000 

1.186199 

1.840708 

2.258326 

0.000000 

1.124013 

1.716536 

2.072551 

  

For small time, the numerical values of the shear 

stresses calculated from equations (47), (50) and 

(51) are entered in Tables 1 and 2 for several values 

of rotation parameter 2K  and time t . It is 

observed that for small time the shear stresses 

calculated from the equations (50) and (51) give 

better result than those calculated from the equation 

(47). Hence, for small time, one should derived the 

numerical results of the shear stresses from the 

equations (50) and (51) instead of equation (47). 

We also consider the case when t  is large. For 

large times, the asymptotic formula for the 

complementary error function with complex 

argument z   
2

erfc( ) as | | ,
ze

z z
z



                       (55) 

with erfc( ) = 2 erfc( )z z   enables us to derive the 
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asymptotic solution from the equation (38) in the 

following form  

( )
2 2 2

2 2
0

1
= 1 erfc ( )

2 2

S
a ibu iv

e e a ib t
U t

     
    

 

 

( )
2 2

2 2erfc ( ) .
2

a ib
e a ib t

t

    
   

 
          (56) 

Further, if 2 t  , 1t   then the equation (56) 

yields  

2 2( )
2 22

2 2
0 2 2

1
( )

S
a b t

u e

U a b t





  

 


 

 2 2
2 2 2 2cos2 sin 2 sinh cosa K t b K t a b  


 

 2 2
2 2 2 2cos2 sin 2 cosh sin ],b K t a K t a b    (57) 

2 2( )
2 22

2 2
0 2 2( )

S
a b t

v e

U a b t





  




 

 2 2
2 2 2 2cos2 sin 2 cosh sina K t b K t a b  


 

 2 2
2 2 2 2cos2 sin 2 sinh cos ].b K t a K t a b     

(58) 

Equations (57) and (58) show the existence of 

inertial oscillations. The frequency of these 

oscillations is 22K . It is observed that the rotation 

not only induced a cross flow but also occurs 

inertial oscillations of the fluid velocity. The 

frequency of these oscillations increases with an 

increase in the rotation parameter 2K . It may be 

noted that the inertial oscillations do not occur in 

the absence of the rotation. It is interesting to note 

that the frequency of these oscillations is 

independent of the magnetic field as well as 

suction/blowing at the plate. 

 

IV. CONCLUSION 
An unsteady MHD flow of an 

incompressible electrically conducting viscous 

fluid bounded by an infinitely long porous flat plate 

in a rotating system has been studied. Initially, at 

time ( 0)t  , the fluid at infinity moves with a 

uniform velocity 0U . After time > 0t , the plate 

suddenly starts to move with the same uniform 

velocity 0U  as that of the fluid at infinity in the 

direction of the flow. It is observed that the primary 

velocity increases with an increase in magnetic 

parameter 2M . On the other hand, the secondary 

velocity decreases with an increase in magnetic 

parameter which is expected as the magnetic field 

has a retarding influence on the flow field. It is 

interesting to note that the series solution obtained 

for small time converges more rapidly than the 

general solution. Further, for large values of the 

rotation parameter 2 5K  , the secondary flow 

shows an incipient flow reversal near the plate 

although the primary flow does not. It is seen that 

the shear stress components decrease with an 

increase in rotation parameter. 
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