
J.Ramachandra,

J.Ravi kumar,Y.V.Sricharan,Y.Venkata Sreekar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue4, July-August 2012, pp.2272-2277

2272 | P a g e

Uncertainty Based Text Summarization

J.Ramachandra
1

J.Ravi kumar

2

 Y.V.Sricharan
3

Y.Venkata Sreekar
4

 1 2nd Year M.Tech, CREC, Tirupati
2 Professor of Department of CSE, CREC, Tirupati

Abstract
Effective extraction of query relevant

information present within the webpages is a

nontrivial task. QTS, task by filtering and

aggregating important query relevant sentences

distributed across the webpages. This system

captures the contextual relationships among

sentences of these webpages and represents them

as an “integrated graph”. These relationships are

exploited and several subgraphs of integrated

graph which consist of sentences that are highly

relevant to the query and that are highly related to

each other are constructed. These subgraphs are

ranked by the scoring model. The subgraph with

highest rank which is rich in query relevant

information is returned as a query specific

summary. QTS is domain independent and

doesn’t use any linguistic processing, making it a

flexible and general approach that can be applied

to unrestricted set of articles found on WWW.

Experimental results prove the strength of

QTS.Very little work is reported on query specific

multiple document summarization.The quality of

summaries generated by QTS is better than

MEAD(one of the popular summarizers).

Introduction
 with the increased usage of computers huge

amounts of data is being added to web constantly.

This data is stored either on personal computers or
data servers accessible through Internet. The

increased disk space and popularity of Internet has

resulted in vast repositories of data available at

fingertips of a computer user resulting in

“Information Overload” problem. The World Wide

Web has become the largest source of information

with heterogeneous collections of data. A user in

need of some information is lost in the overwhelming

amounts of data.

Search engines try to organize web

dynamically by identifying, retrieving and presenting
web pages relevant to users search query. Clustering

search engines like cluster go a step further to

organize the retrieved search results list into

categories and allow user to do a focused search.

A web user seeking information on a broad

topic will either visit a search engine and type in a

query or browse through the web directory. In both

these cases, the number of web pages that are

retrieved to satisfy user‟s need is very high.

Moreover, information pertaining to a query might be

distributed across several sources. So, it is a difficult

thing for a user to sift through all these documents

and find the information that it needs. Neither web

directories nor search engines are helpful in this

matter. Hence it would be very useful to have a

system which could filter and aggregate information

relevant to user‟s query from various sources and

present it as a digest or a summary. This summary

would help in getting an overall understanding of the

query.
Automatic Query Specific Multi-document

Summarization is the process of filtering important

relevant information from the input set of documents

and presenting the concise version of that documents

to the user. QTS fulfills this objective by generating a

summary that is specific to the given query on a set of

documents. Here we focus on building a coherent and

highly responsive multi-document summary which is

complete. This process poses significant challenges

like maintaining intelligibility, coherence and non-

redundancy.
Intelligibility/responsiveness it is the

property that determines if the summary satisfies

user‟s needs or not while Coherence determines the

readability and information flow. As user‟s query in

the context of a search engine is small (typically 2 or

3 words), we need to appropriately select important

relevant sentences. Some sentences may not contain

query terms but can still be relevant. Not selecting

these sentences will affect the intelligibility of

summary. Moreover, selecting sentences while

summarizing long documents without considering the

context in which it appears will result in an
incoherent text. Specific to multi-document

summarization, there are problems of redundancy in

input text and the ordering of selected sentences in

the summary.

Summarization process proceeds in three

stages - source representation, sentence filtering and

ordering. In QTS system, the focus is on generating

summaries by a novel way of representing the input

documents, identifying important sentences which are

not redundant and presenting them as summary. The

intention is to represent the contextual dependencies
present between sentences as a graph by connecting a

sentence to another sentence if they are contextually

similar and highlight how these relationships can be

exploited to score and select sentences.

J.Ramachandra,

J.Ravi kumar,Y.V.Sricharan,Y.Venkata Sreekar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue4, July-August 2012, pp.2272-2277

2273 | P a g e

 IG is built to reflect inter and intra document

contextual similarities present between sentences of

the input documents. It is highly probable that the

neighborhood of a node in this graph contains

sentences that have similar content. So, from each

node in this graph by exploiting its neighborhood, a

summary graph called SGraph is built which will
contain query relevant information.

This approach is domain independent and

doesn‟t use any linguistic processing, making it a

flexible and general approach that can be applied to

unrestricted set of articles. We have implemented

QTS and it works in two phases. First phase deals

with creation of IG and necessary indexes that are

query independent and can be done offline.

Second phase deals with generation of

summary relevant to the user‟s query from the IG.

First phase is a time consuming process especially for

sets of documents with large number of sentences.
So, this system can be used on a desktop machine in a

digital library or in an intranet kind of an

environment where documents can be clustered and

graphs can be created .We present experimental

results that prove the strength of QTS.

Related work

Several clustering based approaches were

tried where similar sentences are clustered and a

representative sentence of each cluster is chosen as a

summary. MEAD [2] is a centroid based multi-

document generic summarizer. It follows cluster
based approach that uses features like cluster

centroids, position etc., to summarize documents.

Recently, graph based models are being used

to represent text. They use measures like degree

centrality [3] and eigenvector centrality [4] to rank

sentences. Inspired by PageRank [5], these methods

build a network of sentences and then determine the

importance of each sentence based on its connectivity

with other sentences. Highly ranked sentences form a

summary.

QTS proposes a novel algorithm that does

statistical processing to exploit the dependencies
between sentences and generate a summary by

balancing query responsiveness in it.

System models
URL Extraction And Sentence Extraction

Sentence extraction: A html file is given as

input and paragraphs are extracted from this html file.

These paragraphs are divided into sentences using

delimiters like ".", "!", "?" followed by a gap.

Stemming

 Stemming is the process for reducing

inflected (or sometimes derived) words to their stem,

base or root form – generally a written word form.

The stem need not be identical to the morphological

root of the word; it is usually sufficient that related

words map to the same stem, even if this stem is not

in itself a valid root. The process of stemming, often

called conflation, is useful in search engines for query

expansion or indexing and other natural language

processing problems.

In this project we used Porter Stemmer Algorithm.

The Porter stemming [7] algorithm (or „Porter

stemmer’) is a process for removing the commoner

morphological endings from words in English. Its

main use is as part of a term normalization process
that is usually done when setting up Information

Retrieval systems.

THE PORTER STEMMER ALGORITHM
A consonant in a word is a letter other than

A, E, I, O or U and other than Y preceded by a

consonant. (The fact that the term `consonant' is

defined to some extent in terms of itself does not

make it ambiguous.) So in TOY the consonants are T

and Y and in SYZYGY they are S, Z and G. If a letter
is not a consonant it is a vowel.

A consonant will be denoted by c and a

vowel by v. A group of consonants of length greater

than zero will be denoted by C, and a group of vowels

of length greater than zero will be denoted by V. Any

word, or part of a word, therefore has one of the four

forms: CVCV ... C, CVCV ... V, VCVC ... C, VCVC

... V. These may all be represented by the single form

[C] VCVC ... [V]. Here the square brackets denote

arbitrary presence of their contents. Using (VC) {m}

to denote VC which is repeated m times, this may
again be written as [C](VC)

{m}[V]. “m” will be called the measure of any word

or word part when represented in this form. The case

m = 0 covers the null word as follows:

 m=0 TR, EE, TREE, Y, BY.

 m=1 TROUBLE, OATS, TREES, IVY.

 m=2 TROUBLES, PRIVATE, OATEN,

ORRERY.
The rules for removing a suffix will be given

in the form (Condition) S1 -> S2.This means that if a

word ends with the suffix S and the stem before S1
satisfies the given condition, S1 is replaced by S2.

The condition is usually given in terms of m, e.g., (m

> 1) EMENT -> .Here S1 is “EMENT” and S2 is

null. This would map REPLACEMENT to REPLAC,

since REPLAC is a word part for which m = 2. The

“condition” part may also contain the following:

 *S - the stem ends with S (and similarly for

the other letters).

 v - the stem contains a vowel.

 *d - the stem ends with a double consonant

(e.g., -TT, -SS).

 *o - the stem ends with cvc, where the second
c is not W, X or Y

 (e.g., – WIL,-HOP).

Summarization Framework

Contextual Graph

All the non-textual elements like images,

tables etc are removed from the document .We use

“.” as a delimiter to segment the document into

sentences and this document is represented as a

J.Ramachandra,

J.Ravi kumar,Y.V.Sricharan,Y.Venkata Sreekar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue4, July-August 2012, pp.2272-2277

2274 | P a g e

contextual graph with sentences as nodes and

similarity between them as edges.

Definition 1 Contextual Graph(CG): A contextual

graph for a document d is defined as a weighted

graph, CG(d) = (V(d),E(d)) where V (d) is a finite set

of nodes where each node is a sentence in the
document d and E(d) is a finite set of edges where an

edge eij ∈ E(d) is incident on nodes i, j ∈ V (d) and is

assigned a weight reflecting the degree of similarity

between nodes i and j. An edge exists only if its

weight exceeds a threshold μ. Edges connecting

adjacent sentences in a document are retained,

irrespective of the threshold.

An edge weight w(eij) represents contextual

similarity between sentences si and sj . It is computed

using cosine similarity measure. The weight of each

term t is calculated using tft * isft where tft is the term
frequency and isft is inverse sentential frequency i.e.,

log(n/(nt+1)), where n is the total number of

sentences in the document and nt is number of

sentences containing the term t in the graph under

consideration. Stop words are removed and remaining

words are stemmed before computing these weights.

The edges that are having very low similarity value

i.e. with an edge weight below a threshold μ(=0.001)

are discarded. These edges and their weights reflect

the degree of coherence in the summary.

 Integrated Graph Generation
The input is the set of documents that are

related to the particular topic that we have to search

in multi-document summarization. Let χ=(D,T) be a

set of documents D on a topic T. For each document

in this set χ are combined incrementally which forms

a graph called as integrated graph. As these

documents are related to a topic T, they will be

similar and may contain some redundant sentences

i.e., repeating sentences. These redundant sentences
are identified and only one of them is placed in the

integrated graph. Then the similarities between

documents are identified by establishing edges across

nodes of different documents and the edge weights of

IG are calculated. Thus the integrated graph reflects

inter as well as intra-document similarity

relationships present in document set χ. Algorithm

for integrated graph construction is given in later

sections.

Whenever a query related to the particular

topic T is given, relevancy scores of each node are
computed with respect to each query term. During

this process, sentences that are not related to query

directly (by having terms), but are relevant are to be

considered which can be called as supporting

sentences. To handle this, centrality based query

biased sentence weights are computed that not only

consider the local information i.e., whether the node

contains the query terms, but also global information

like the similarity with its adjacent nodes. A mixture

model is also used to define the importance of a node

with respect to a query term in two aspects: the

relevance of sentence to the query term and the kind

of neighbors it is connected to. Initially each node is

initialized to query similarity weight and then these

weights are spread to their neighbors via the weighted

graph IG. This process is repeated until the weights

come to a steady state. Following this idea, the node
weights for each node with respect to each query term

qi ∈ Q where Q = {q1,q2,...,qt} are computed using

the following equation 1.

……………………(1)

where wq(s) is node weight of node s with respect to

query term q, d is bias factor, N is number of nodes

and sim(si,sj) is cosine similarity between sentences si

and sj. First part of equation computes relevancy of

nodes to the Query and second part considers

neighbors‟ node weights. The bias factor d gives

trade-off between the set parts and is determined

empirically. For higher values of d, more importance

is given to the similarity of node to the query when

compared to the similarity between neighbors. The
denominators in both terms are for normalization.

When a query Q is given to the system, each word is

assigned weight based on tf∗isf metric and node

weights for each node with respect to each query term

are calculated. Intuitively a node will have a high

score value if:

1) It has information relevant to the query and

2) It is connected to similar context nodes which

share query relevant information.

If a node doesn‟t have any query term but is

linked to nodes having it, then the neighbor weights
are propagated in proportion to the edge weight such

that it gets a weight greater than zero. Thus high node

weight indicates a highly relevant node present in a

highly relevant context and is used to indicate the

richness of query specific information in the node.

CTree AND SGraph
For each query word, the neighborhood of

each node in IG is explored and a tree rooted at each
node is constructed from the explored graph. These

trees are called as contextual trees (CTrees).

Definition 2
Contextual Tree (CTree) : A CTreei =(Ni,Ei,r,qi) is

defined as a quadruple where Ni and Ei are set of

nodes and edges respectively. qi is ith term in the

query. It is rooted at r with at least one of the nodes

having the query term qi. Number of children for each

node is at most b (beam width). It has at most (1+ bd)

nodes where d is the maximum depth. CTree is

J.Ramachandra,

J.Ravi kumar,Y.V.Sricharan,Y.Venkata Sreekar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue4, July-August 2012, pp.2272-2277

2275 | P a g e

empty if there is no node with query term qi with in

depth d.

CTrees corresponding to each query term

that are rooted at a particular node, are merged to

form a summary graph (SGraph) which is defined as

follows:

Definition 3
Summary Graph (SGraph): For each node r in IG,

if there are t query terms, we construct a summary

graph SGraph = (N‟, E‟, Q‟) where N‟ and E‟ are

union

of the set of nodes and edges of CTreei rooted at r

respectively and Q = {q1,q2,...,qt}.

Scoring Model: CTrees formed from each node in

IG are assigned a score that reflects the degree of

coherence and information richness in the tree.

Definition 4

CTreeScore: Given an integrated graph IG and a

query term q, score of the CTree q rooted at node r is

calculated as

.......

(2)

…………… (3)
Here a is average of top three node weights

among the neighbors of u excluding parent of u and b

is maximum edge weight among nodes incident on u.

The SGraphs formed from each node by merging

CTrees for all query terms are ranked using following

equation and the highest ranked graph is retained as
summary.

Definition 5

SGraphScore: Given an integrated graph IG and a

query Q = {q1,q2,...,qt}, score of the SGraph SG is

calculated as

………

…………. (4)
The function size(SG) is defined as number

of nodes in graph. Using both edge weights

representing contextual similarity and node weights

representing query relevance for selecting a node

connected to root node, has never been tried before.

The summary graph construction is a novel approach

which effectively achieves informativeness in a

summary.

Summarization Methodology
Based on the scoring model presented in the

above section, we design efficient algorithms to

automatically generate query biased summaries from

text.

Integrated Graph Construction
Integrated graph represents the relationships

present among sentences of the input set. We assume

that the longest document contains more number of

sub topics than any other document and its CG is

chosen as a base graph and is added to IG which is

empty initially. The documents in the input set are

ordered in decreasing order of their size and CG‟s of

each document in the ordered list is added

incrementally to IG . There are two important issues

that need to be addressed in multi-document

summarization.

Redundant sentences are identified as those

sentences which have similarity that exceeds
threshold λ. This similarity is computed using cosine

similarity and λ =0.7 is sufficient in most of the cases.

During the construction of IG, if the sentence in

consideration is found to be highly similar to any

sentence of a document other than document being

considered in IG, then it is discarded. Otherwise it is

added as a new node and is connected to existing

nodes with which its similarity is above the threshold

µ.

Sentence ordering in summary affects

readability. For this purpose, an encoding strategy is
followed where an “id” is assigned to each node in IG

such that there is information flow in summary when

nodes are put in increasing order of their ids

Encoding Strategy
Initially all nodes in the base graph are

assigned ids as follows. The ith sentence is assigned (i

− 1) ∗ η as id. This interval η is used to insert all the
nodes from other documents that are closer to i (i.e.,

the inserted node has maximum edge weight with i

among all nodes adjacent to it). The sentences in an

interval are ordered in decreasing order of their edge

weights with i. When a new node is added to IG, an

id is assigned to it. Pseudo code for IG construction is

given in Algorithm 1.

Algorithm 1 Integrated Graph Construction

1: Input: Contextual Graphs CGi in the decreasing

order of number of nodes

2: Output: Integrated graph IG
3: Integrated Graph IG = CG0 {//base graph}

4: Set id of each node in IG as described in IG

Construction

5: i = 1

6: while i <= number of CG’s do

7: for each node n ∈ CGi considered in the document

order do

8: if parent (n) precedes n in the ith document then

{//parent is the maximum weighted adjacent node

in CG}
9: Let p = node representing parent (n) in IG

J.Ramachandra,

J.Ravi kumar,Y.V.Sricharan,Y.Venkata Sreekar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue4, July-August 2012, pp.2272-2277

2276 | P a g e

10: if there is no neighbour x of p such that sim (n, x)

>  then

11: for all y in IG, if sim (n, y) > μ then add an edge

(n, y)

12: Set id of n as described in IG Construction

13: end if

14: else if there is no node x in IG such that sim (n, x)

>  then

15: for all y in IG, if sim (n, y) > μ then add an

edge(n, y)

16: Set id of n as described in IG Construction

17: end if
18: end for

19: i + +

20: end while

If the input document set is singleton set,

then the integrated graph is equivalent to the

contextual graph of that document. Addition of any

new document to the set can be reflected in IG by

adding its CG as described above and the edge

weights are updated accordingly. The integrated

graph for the set of documents can also be computed

offline and stored. When a query is posed on a

document set, its IG can be loaded into memory and
CTrees and SGraphs can be constructed as described

above.

CTree Construction
The neighborhood of a node is explored and

prominent nodes in it are included in CTree rooted at

r. This exploration is done in breadth-first fashion.

Only b (beam width) prominent nodes are considered

for further exploration at each level. The prominence
of a node j is determined by taking the weight of the

edge connecting j to its parent i and its node score

with respect to the query term q into consideration. It

is computed as (αw(eij) + βwq(j)). These two factors

specify the contribution of the node to the coherence

of the summary and the amount of query related

information. α is the scaling factor defined in

Equation 3. This scaling brings edge weights into the

range of node weights and β determines trade-off

between coherence and importance of query relevant

information. The exploration from selected prominent
nodes (at most b) is continued until a level which has

a node containing a query term (anchor node) or

maximum depth d is reached. All nodes along the

path from root to anchor node, along with their

siblings are added to the CTree. When query Term is

not found till depth d then CTree for that query term

remains empty. If a root node has the query term then

root and its adjacent “b” nodes are added to CTree

and no further exploration is done.

SGraph Construction

The CTrees of the individual terms are

merged to form an SGraph. The SGraph at a node

contains all nodes and edges that appear in any one of

the C Trees rooted at that node. With this,

completeness is ensured as CTrees of all query terms

are merged to form an SGraph and also as we are

merging CTrees rooted at a node, we will have

interconnected set of sentences in the summary and

hence coherence is preserved. The SGraphs thus

formed are ranked based on the score computed as

given in Equation 4. Sentences from the highly
ranked SGraph are returned as summary.

Experimental Results
In the experiments, QTS was compared with

two query specific systems - baseline and MEAD.

Our baseline system generates summaries by

considering only centrality based node weights as per

equation 1 using incremental graph, without

generating CTrees and SGraphs. Nodes which have

high weights are included in summary. Second
system, MEAD is a publicly available feature-based

multidocument summarization toolkit. It computes a

score for each sentence from a cluster of related

documents, as a linear combination of several

features. For our experiments, we used centroid score,

position and cosine similarity with query as features

with 1,1,10 as their weights respectively in MEAD

system. Maximal Marginal Relevance(MMR)

reranker provided in the MEAD toolkit

Was used for redundancy removal with a

similarity threshold as 0.6. Equal number of
sentences as generated by QTS were extracted from

the above two systems.

QTS used four criteria to evaluate the

generated summaries. They are non-redundacy,

responsiveness, coherence ad overall performance.

Summaries generated by three systems QTS, baseline

nd MEAD were evaluated by

A group of 10 volunteers. They were given a

set of instructions defining the task and criteria and

were asked to rate each summary on a scale of 1(bad)

to 10(good) for each criteria without actually seeing
the original documents. An average of these ratings

for each query was computed and mean of them was

calculated. The graph shows that QTS performs better

when compared to other systems.On the whole QTS

performed better than others in terms of user

satisfaction.

Conclusion

A novel framework for multi-document
summarization system that generates a coherent and

intelligible summary. We propose notion of an

integrated graph that represents inherent structure

present in a set of related documents by removing

redundant sentences. Our system generates query

term specific contextual trees (CTrees) which are

merged to form query specific summary graph

(SGraph). We have introduced an ordering strategy to

order sentences in summary using integrated graph

structure. This process of computation has indeed

improved the quality of the summary. We

J.Ramachandra,

J.Ravi kumar,Y.V.Sricharan,Y.Venkata Sreekar / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue4, July-August 2012, pp.2272-2277

2277 | P a g e

experimentally show that our approach is feasible and

is generating user satisfiable summaries.

References
1. M. Sravanthi, C. R. Chowdary, and P. S.

Kumar. QTS: A query specific text

summarization system. In Proceedings of the

21st International FLAIRS Conference,

pages 219–224, Florida, USA, may 2008.

AAAI Press

2. Radev, D. R.; Jing, H.; and Budzikowska,

M. 2000.Centroid-based summarization of

multiple documents: sentence extraction,

utility-based evaluation, and user studies. In

NAACL-ANLP 2000 Workshop on

Automatic summarization,21–30.

Morristown, NJ, USA: Association for
Computational Linguistics.

3. Salton, G.; Singhal, A.; Mitra, M.; and

Buckley, C. 1997.Automatic text structuring

and summarization. Inf. Process. Manage.

33(2):193–207

4. Erkan, G., and Radev, D. R. 2004.

LexPageRank: Prestige in multi-document

text summarization. In EMNLP.

5. Fisher, S.; Roark, B.; Yang, J.; and Hersh,

B.2005. OGI/OHSU Baseline Query

directed Multidocument Summarization
System for DUC-2005. Proceedings of the

Document Understanding Conference

(DUC).John M. Conroy, J. D. S., and

Stewart, J. G. 2005.CLASSY query-based

multi-document summarization.Proceedings

of the Document Understanding Conference

(DUC).

7. http://tartarus.org/~martin/PorterStemmer/

http://tartarus.org/~martin/PorterStemmer/

