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Abstract 
In this paper we introduce a new technique for 

generating an Academic Programme timetable 

based on clustering method using data mining 

techniques for dynamically forming students' 

clusters; then we use a heuristic function to find 

the optimal solution. The FP-tree based 

generated clusters are used as an initial solution 

to the timetable problem; then we generate more 

optimized clusters using color mapping 

algorithm; as a result a students' timetables also 

generated, all hard constraints are satisfied, and 

soft constraints are considered while generating 

the timetable and the student schedule. We 

tested our approach against real data obtained 

from the College of Applied Studies in 

University of Bahrain.  
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1.   INTRODUCTION 
Course scheduling is one of the 

challenging time consuming problems facing 

institutions belonging to the NP-complete class of 

problems. Our main challenge is to be able to 

automatically time table two year associate degree 

programs’ courses’ so that students belonging to 

different programs can easily register for courses 

with no timetable clashes for the semester they are 

studying for.  Hard constraints are: the students can 

only be scheduled to one event in a time slot; event 

rooms meet all required features and their capacity 

is respected; no more than one event is allowed per 

room and per timeslot. Soft constraints include: to 

avoid scheduling classes in the last timeslot of the 

day; to avoid scheduling more than two classes in a 

row for a student; and avoid scheduling one class in 

a day for a student.  

A general survey paper by [1] investigates 

examination and course timetabling providing up 

to-date important information and citations for 

further research and possible implementations of 

automated timetabling for use in educational 

settings. A more comprehensive survey carried by 

[2] confirms that a general polynomial bounded 

algorithm for solving time tabling problems cannot 

be found. However there has been large interest in  

 

applying meta-heuristic-based algorithms that are 

general purpose algorithms. The algorithms were 

mainly based on three techniques; graph coloring; 

constraint-programming; and integer programming. 

The author further categorizes the algorithm into 

one-staged, two-staged, and algorithms that allow 

relaxations. In one-staged optimization algorithms 

hard and soft constraints are allowed to be violated 

and the algorithm then aims to search for a solution 

that satisfies both as much as possible examples of 

such algorithms are those reported by [3] and [4]. 

Two-staged optimization algorithms attempt to 

satisfy the hard constraints until an optimization is 

reached. The soft constraints are then considered 

for optimization as much as possible. Examples of 

such algorithms are those proposed by [5] and [6]. 

The third class of algorithms allows relaxations of 

some constraints without violating the hard ones. 

Examples of such are proposed [7] and [8]. In his 

survey [9] concentrated on the common solution 

approaches including graph coloring, integer 

programming, network flow techniques, tabu 

search, rule-based approach, and constraint logic 

programming.      

A 3-phase approach succeeded to become the 

winning entry in the International Timetabling 

Competition is presented by [10]. At first the 

timetable is created using graph coloring and 

maximum matching algorithm. In the second phase 

an attempt is made to satisfy more software 

constraints using simulated annealing (SA), and in 

the third phase the solution quality is improved by 

swapping individual events between time slots 

using SA. Burke an active researcher in this field 

who published many articles on timetabling 

presents a generally applicable approach for 

constructing examinations and course timetables 

using a generic hyper-heuristic approach [11]. The 

authors test their approach on a simulated 

benchmark proposed by the Meta-heuristic 

Network [12] for course timetabling problems and 

compare it with other state of art approaches. 

Reference [13] investigates automated timetabling 

to come-up with a solution for the Purdue 

University class timetabling problem. He 

investigates a number of common solutions and 

presents an iterative forward search algorithm that 
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became the basis of his winning entry in the 2007 

timetabling competition [14] organized by the 

timetabling research community. 

Clustering technique is another approach used for 

timetabling; clustering is the process of finding 

classes of objects that share common characteristics 

[15]. Clustering is mainly based on splitting the 

events into clusters or groups were each cluster is 

scheduled in the same timeslots without having 

conflicts. Clustering methods satisfy the soft 

constrains using additional optimizing rules for 

obtaining good solution, in order to use this 

approach the courses are grouped into fixed clusters 

at early stages of the algorithm; the formation of 

the cluster is done manually based on some 

predefined rules which leads to poor quality 

timetable [16]. 

An FP-tree is a compressed representation of the 

input data (transactions). It is constructed by 

reading the data set one transaction at a time and 

mapping each transaction onto a path in the FP-tree 

[15]. FP-tree technique has been used in many 

applications such as clustering and document 

organization.  In this paper we customize a FP-tree 

algorithm to dynamically generate clusters from the 

students transactions (courses to be registered for 

the coming semester) 

2. WEEKLY TIME TABLE 
The week consists of five study days each 

staring at eight in the morning till five in the 

evening. Lectures and laboratory sessions are 

regularly timetabled either on Sunday (U), Tuesday 

(T), and Thursday (H) sessions or Monday (M) and 

Wednesday (W) sessions. A course can have one or 

more sections depending on the number of students 

that are expected to register for it and each section 

can take up to 25 students. For example if 50 

students are expect to register for a course two 

sections for the course need to be offered. They can 

be at the same or different timings. A section is 

timetabled at fixed times over the study week. For 

example, a three weekly lecture course can be 

timetabled nine to ten on UTH so that the start and 

end of sessions is at the same time on different days 

of the week. Weekly contact hours for a course 

section can vary but the norm is five (two lecture 

and three laboratory sessions) and three (three 

lecture sessions) 

3.  DATA PREPROCESSING   

3.1 Students Advising and Courses Statistics 

Generation System 

In previous work [16] we developed an 

online advising system that can be utilized by 

students, advisors, and course timetable planners. 

Students are given informative advice on which 

courses to register for in the next semester and are 

informed of their remaining graduation 

requirements; advisors are able to see students’ 

progress towards their graduation requirements; 

and timetable planners are given statistics on 

courses and sections requirements for the coming 

semester. 

The main source of information in our above 

mentioned work was the official university 

registration system. From it students’ academic 

records and achievements, data were extracted and 

processed for advising purposes. It was important 

to maintain two new tables: the first holds details of 

courses belonging to a program and the other holds 

details of courses’ prerequisites. Essential 

information for timetabling that was also generated 

in our same previous work was the generation of 

course requirements for a coming semester based 

on existing students’ achievements, for more details 

please refer to [16].  

In our earlier work other information was extracted 

from the university registration system for further 

processing, but we used the resulted information 

for the timetable generation approach described in 

this paper. 

In order to obtain the set of courses a student will 

enroll in a given next semester, we apply the 

following procedure: for each student, we take the 

student’s transcript including the courses a student 

currently enrolled in and compare it against the 

program study plan, we get the list of not yet 

registered courses and failed courses needed to be 

re-taken, then for each course in the resulted list we 

compare it against student’s transcript to find if the 

student satisfied the prerequisites for that course. 

The end result is the list of courses and number of 

students expected to enroll in them in the following 

semester. 

3.2 Preparing students data to FP-Tree 

Algorithm 

In order to prepare the data for FP-tree Algorithm, 

first each next semester courses to be registered by 

students are considered as transaction; so our 

transactions are set of courses to be register next by 

all students; each student represent a transaction; 

the following model our approach 

Let C = {c1,c2,…., cn} be set of all courses offered 

by the college 

Let S={s1, s2,…,sn} be set of all students enrolled 

in the college 

Let T={t1, t2,…,tn} be set of all transactions in the 

college; where each ti={{si,cj}+}; cj belongs to C 

and registered by si belonging to S. 

Before starting our modified FP-tree algorithm, we 

prepare the students data by comparing student’s 

transcript to his/her study plan, as a result, we 

obtained list of courses he/she can register in the 

following semester, each student represents 

transaction for the FP-tree algorithm tj, and each 

course a student can register represents an item ci, 

in that transaction, then we calculate the number of 

students who are to register for each course, the list 
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of courses is then sorted  in descending order and 

called header table in the FP-tree algorithm, next 

courses  in every transaction tj are sorted in 

descending order based on the number of students 

to register ci next semester based on the header 

table index, now the transactions are ready to be 

processed by the FP-tree algorithm;  the following 

example demonstrates the process of preparing the 

students data: 

Let S ={20100001, 20100002, 20100003, 

20100004, 20100005} be list of students in the 

college 

Let C={C1, C2, C3, C4, C5, C6} be list of courses 

to be register in the following semester 

Let T ={ {20100001,C1,C2,C3}, {20100002, C2, 

C3,C4}, {20100003, C2,C3,C6}, {20100004, C1, 

C2,C6},{20100005,C2,C5}} list of courses to be 

registered by each student. Table 1.  represents the 

header table. 

Next all transactions in T should be reordered 

according to the header table index, as a result, we 

obtained the following: 

 T={ {20100001,C2,C3,C1}, 

{20100002,C2,C3,C4}, {20100003, C2,C3,C6}, 

{20100004,C2,C1,C6}, {20100005,C2,C5}}.  Now 

the data is ready to be processed by the FP-tree 

algorithm. Table 1. Shows the FP-Tree header table 

for the aforementioned example 

Table 1 FP Tree Header Table 

Course Count 

 

Course Count 

C1 2 C2 5 

C2 5 C3 3 

C3 3 C1 2 

C4 1 C4 1 

C5 1 C5 1 

C6 1 C6 1 

3.3. Information Representation 

FP-Tree Structure: Students transactions are 

represented as tree structure; where each node in 

the tree contains the course to register for, the 

number of students who will register this course , 

links to the parent of the node, and an array of links 

to the node’s children; while the original FP-tree 

doesn’t care about the owner of the transaction 

(student), we modify this structure since we need to 

keep track of who will register this course to avoid 

conflicts in the latter processing of the FP-tree 

results; so we add an array of students who will 

register the course next to each FP-tree node. 

Weekly Time Slots structure: As we mentioned 

earlier in section 2 the week is represented by 39 

slots distributed as 27 one hour slots for UTH and 

12 one hour and half Slots for MW, we represented 

the week slots into two matrixes the first matrix for 

UTH slots and the second matrix for MW slots. 

Since the lab session is spanned over 3 hours, we 

divide the UTH slots into 3 parts and the MW slots 

into 3 parts also(as well). 

Courses structure: Each course structure contains 

the course code, credit hours, classes, and lab 

session information. 

Students’ information: for the sake of our modified 

FP-tree algorithm, we need only the student ID for 

processing the transactions; however we store the 

student basic information like name and program 

name for generating meaningful reports. 

Timeslots: the aforementioned slots are grouped 

into fixed group where each group will be mapped 

to one level that is generated by applying our 

modified algorithm 

4.  TIME TABLE GENERATION PROCESS 

4.1 Phase I: FP-Tree generating 

The algorithm scans the transactions and 

builds the FP-tree structure described earlier; figure 

1 describes the FP-tree algorithm used to generate 

FP-tree structure. To form the clusters we 

processed the FP-tree generated by the original FP-

tree algorithm in order to minimize the clusters 

generated by the original FP-tree algorithm, the 

algorithm used to cluster the FP-tree is described in 

figure 2. This algorithm is described in details 

in[17]. After modifying fp-tree we obtained the 

clusters which are displayed in figure 3. 

1) FP-Tree Results and analysis 

After applying FP-tree algorithm, we 

obtained clusters; where each cluster consists of a 

group of courses; clusters are not balanced, i.e. 

number of courses in each cluster (levels) are not 

equal, even more the number of students  register in 

each course inside the cluster are not equal, 

moreover the same course can be found in different 

clusters with different attributes.  If we say that n is 

the average student in each section; where N >10 

and N < room size, then any course in the cluster 

can have M students, where M is one of the 

following cases: 

M < 10: means that this section cannot be opened 

and since the number of students are less than the 

minimum allocation for a section size, but we still 

can find another cluster that has the same course 

and we can merge these two courses together to 

open section, this requires the algorithm to search 

for another course that can be merged with. 

10 < M < N: this section can be opened and no 

more processing is required. 

 

1. Scan the transaction database for the first time. 

1.1 Find frequent items (single item 

patterns) and sort them 

into a list L in decreasing support 

count. 

2. For each transaction ti  T, order its frequent 

items ci  C according to the order in L. 

2.1 The algorithm makes a second scan over 

the database to construct FP-tree by 
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reading each transaction in step 2 as a 

branch on the tree. 

Figure XX : FP-Tree Algorithm 

M > N: this section should be split over two or 

more sections; again we have to satisfy all hard 

constraints before splitting this section. 

The generated clusters come from courses that is 

distributed over FP-tree levels where all courses in 

a given level can be schedule in the same time slots 

without getting clashes, however as we mentioned 

above, the number of students in each course may 

be divided into two or more sections, as a result, we 

need to move the generated sections into multiple 

levels to fulfill the business soft constraint, which 

states that no more than two sections should be 

scheduled at the same time slots, so we need to 

move the new generated sections into different 

levels without causing any clashes, another issue in 

the generated clusters that the number of clusters 

may span over the available. 

 

 

A. void cluster (fptree) { 

1. For each Node in FP-tree starting from root in FP-tree level by level do: 

1.1. For each CH1 in Node’s children do 

         a. For each CH2 in Node’s children do 

            If CH1->item == CH2->item then Move (CH2, CH1) 

         b. Next CH2 

     1.2. Next CH1 

     1.3. For each CH in Node’s children do: 

          1.3.1. Let source = CH 

          1.3.2. Find CH->item header table entry 

          1.3.3. For each HL in header table links 

                 a. If (HL->node != source) &&  

                          (HL->predecessor == source->parent ) then 

                      i. Move(source,HL->node) 

                      ii. source =HL->node 

                 b. End If 

         1.3.4. Next HL 

    1.4. Next CH 

2. Next Node} 

B. void Move (node source, node target) { 

  1. target -> item-count += source -> item-count 

  2. For each CH in source’s children do: 

     2.1. create a link from the target node to CH 

     2.2. CH->parent = target 

     2.3. delete source’s link in the header table 

     2.4. delete source 

  3. Next CH} 

Figure YY: FP-tree based clustering algorithm 

 

week slots, so again we need to minimize the 

number of clusters without causing any clashes. 

Hence It is obvious that the FP-tree algorithm 

cluster the students, but still it is not the optimal 

solution for the problem or even a solution to the 

problem; in other words the FP-tree algorithm just 

redefines the problem in a way or another. 

It is guarantee that each course exists in any 

cluster’s level can be registered in the same time 

without clashing, however we still can minimize 

the number of the cluster levels (depth of the 

cluster) by applying a color mapping algorithm or 

an appropriate  searching algorithm; in this paper 

we used color mapping algorithm. 

The depth of each cluster is not guaranteed not to 

exceed the maximum levels count (depth); where 

the maximum depth should not exceed the week’s 

slots; the depth of the clusters (levels) in phase II of 

this methodology are minimized and controlled The 

number of different registration combination, i.e. 

different paths in the FP-tree structure can be 

obtained by the following rules: 

Let M be number of courses that are offered by the 

college; M any positive integer 

Let Z be the number of students registered in the 

college; Z any positive integer 

Let N be the maximum possible load; N <=M, then 

the different students registration combinations will 

be  (SRC) ={ 

Case 1:  

 if Z  > 

!

))1().....(2()1(

N

NMMMM   then 

SRC=  

 

Case 2 :   

if Z < 

!

))1().....(2()1(

N

NMMMM   then 

SRC = Z } 
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Maximum FP-tree depth = N 

Maximum modified FP-tree level = M 

Maximum levels in the week = time slots 

/maximum course slot 

Optimal number of cluster = N 

  Figure 3: Obtained Clusters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2)  Optimality in timetabling 

Optimal solution for timetabling problem 

is domain dependent, so before searching for the 

optimal solution we should first define optimality, 

in our study domain we have several parameters 

that define optimality, of course the hard 

constraints is the base to find the solution, but the 

soft constraints represent the optimal or desired 

solution, following are some parameters for 

defining optimality: 

 Number of internal time slots fragmentation in 

the student schedule ; minimize 

 Number of sections (classes) of the same 

course in each time slot;   (minimize) 

 Utilization of timeslots ; (maximize) 

 Utilization of resources (maximize) 

 Internal fragmentation in each resource; 

(minimize) 

 Total number of sections; (minimize) 

3) Phase II: Processing modified FP-Tree for 

timetable generating 

Starting from the fact that the result of the modified 

FP-tree algorithm can further be optimized, we will 

start by minimizing the resulted cluster; a color 

mapping algorithm is used to minimize the clusters 

and the nodes (sections) in each cluster; the task of 

this phase is to minimize the depth of the obtained 

clusters in phase I; and to form clusters to be 

processed by phase III; in this process if we found 

multiple instances of a course in a level, we merge 

these instances into one instance; again the formed 

cluster has the same properties described in section 

4.1.1. Figure 4 shows the color mapping algorithm 

used in this phase. 

4) Phase III: Generating sections and 

assigning timeslots. 

We obtained courses’ clusters where each cluster 

contains courses that can be registered in the same 

timeslots without causing clashes in the students’ 

timetable; heuristic function based on the 

optimality guidelines described in section 

(optimality in timetabling) is applied to generate 

optimized timetable.  Figure WW shows the screen 

snap shot for a given program timetable (form). In 

this phase we assigned room and lab for each 

section while satisfying the no conflict hard 

constraints and the number of students less than the 

room’s size which is an easy and direct process. 

5. EXPERIMENTAL WORK AND ANALYSIS 
In order to evaluate our approach, we 

tested our approach using real data obtained from 

the College of applied studies; the sample contains 

information about 1270 students distributed among 

8 academic programs; each student may register up 

to 5 courses selected among 83 

Color mapping pseudo code 

Courses=N 

Colors =0 

For each Level(Vertex)  

Color i= Li; 

Colors ++; courses --; 

For all Courses Ci  C  in Li then  Color i  Ci 

Next level 

For each level 

Students = number of students in Ci 

Section size = M 

   If students > section size then  

 Split Ci into multiple sections 

 For each generated section Si 

      Find level Li; Li ∩ Si =0 then  

                 Color Li  Si; 

level color 

Next level 

Courses=0; 

Colors=N; 

Figure 4. Color mapping Algorithm 

 

courses, Table 2 shows the statistics of the 

experimental work; the estimated required sections 

are obtained based on the assumption that the 

section size is 25 students; first we obtained the 

courses to be register next for all students, then we 

prepared the transaction file where each student 

next semester courses represents a transaction and 

based on the number of students who will register 

each  course we built the header table mentioned in 

section 4.1; next we apply FP-tree algorithm to 

obtain the transactions' tree; after that we minimize 

the number of clusters by applying out modified 

algorithm mentioned in figure 2, the number of 

obtained clusters was 25 clusters; to minimize the 

number of clusters we apply the color mapping 

algorithm mentioned in figure 4, as a result we 

obtained minimized number of clusters; for our 

data we obtained 10 clusters; the final step is to 
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generate sections and then assign each level to a pre 

fixed time slots; figure 5 shows a snap shot for 

ACCA221 section 1 class list, the time slots are 

group in a way that there is no clashes (overlaps) 

between any two groups of time slots, figure 6 

shows snap shot of one time table form; all hard 

constraints were satisfied (no time clashes; room 

capacity; number of sections in a given time slot,...) 

through the use of constraints based approached 

were any section being generated should not violate 

any of the hard constraints. 

Table 2 Experimental statistics 

Item Statistics Generated 

Number of students 1270 1270 

Number of Courses 83 83 

Estimated required 

sections (optimal) 

167 183 

Student Conflict 0 

6. CONCLUSION 
Timetable based on intended courses to be 

registered next semester is generated, our approach 

goes beyond time conflicts constraints only to 

enable students to register all courses they want, 

our approach is student oriented and aims to 

provide the student with efficient(based on the 

students definition) timetable, our algorithm has 

advantages over static clustering algorithms; where 

the clusters are formed and fixed before finding the 

solution; whereas our approach allows dynamic 

formation of the clusters and minimize the search 

(solution) space for color mapping algorithm. since  

the obtained clusters less than the 

available weekly timeslots, the students can have 

better timetable with minimum internal 

fragmentation timeslots, which also makes the 

instructors timetable efficient , the color mapping 

algorithm makes use of the generated clusters 

which minimize the search space for the color 

mapping algorithm. 

Figure 5. Course /Student Enrollment 

 

 

 

 

 

 

 

 

Figure 6. Screen Snapshot of one timetable form. 

 

ACKNOWLEGEMENT 
This project is supported by Deanship of 

Academic research at University of Bahrain , 

underproject number 23-2010 

 

 References 
[1]   M. B., "University timetabling: Bridging 

the gap between research and practice 

(invited paper)," in The 6th Int. Conf. on 

the Practice and Theory of Automated 

Timetabling (PATAT-2006), Brno, 2006.  

[2]   L. R., "A Survey of Metaheuristic-based 

Techniques for University Timetabling 

Problems," in OR Spectrum, 2008..  

[3]   C. M. and P. M., "A Multiobjective 

Genetic Algorithm for The Class/Teacher 

Timetabling Problem," Practice and 

Theory of Automated Timetabling 

(PATAT) III, vol. 2079, pp. 3-17, 2001.  

[4]   D. G. L. and S. A., "Multi-neighbourhood 

Local Search with Application to Course 

Timetabling," Practice and Theory of 

Automated Timetabling (PATAT) IV, vol. 

2740, pp. 262-275, 2003.  

[5]   C. S. and T. J., "Grasping The 

Examination Scheduling Problem," 

Practice and Theory of Automated 

Timetabling (PATAT) IV, vol. 2740, pp. 

233-244, 2003.  

[6]   A. H. and L. A., "A Tabu Search Heuristic 

for a University Timetabling Problem," 

Metaheuristics: Progress as Real Problem 

Solvers, vol. 32, pp. 65-86, 2005.  

[7]  E. E., "A Grouping Genetic Algorithm for 

Graph Colouring and Exam Timetabling," 

Practice and Theory of Automated 

Timetabling (PATAT) III, vol. 2079, pp. 

132-156, 2001.  

[8]   C. P., W. T. and S. R., "Application of a 

Hybrid Multi-Objective Evolutionary 

Algorithm to The Uncapacitated Exam 

Proximity Problem," Practice and Theory 

of Automated Timetabling (PATAT) V, 

vol. 3616, pp. 294-312, 2005. 



Safwan M. Shatnawi, Fawzi Albalooshi, Khaleel Rababa'h / International Journal of 

Engineering Research and Applications (IJERA)      ISSN: 2248-9622    

www.ijera.com   Vol. 2, Issue 4, July-August 2012, pp.1638-1644 

1644 | P a g e  

 

[9]  S. A., "A survey of Automated 

Timetabling," in Artificial Intelligence 

Review, 1999.  

 

[10]  K. P., "The University Course Timetabling 

Problem with a 3-Phase Approach," 

Practice and Theory of Automated 

Timetabling (PATAT) V, vol. 3616, pp. 

109-125, 2005.  

[11]  B. E., M. B, M. A., P. S. and Q. R., "A 

Graph-based Hyper-Heuristic for 

Educational Timetabling Problems," 

European Journal of Operational 

Research, vol. 167, pp. 177-192, 2007.  

[12]  [Online]. Available: 

http://www.metaheuristics.net/. [Accessed 

11 August 2009]. 

[13]  T. Muller, Constraint-based timetabling. 

PhD thesis, Charles University in Prague, 

Faculty of Mathematics and Physics, 

2005.  

[14]  [Online]. Available: 

http://www.cs.qub.ac.uk/itc2007/ . 

[Accessed 11 August 2009]. 

[15]  Pang-Ning-Tan, M. Stienback and V. 

Kumar, Introduction to Data Mining, 

Addison Wesley, Pearson Education, 

2005, pp. 363-370,487- 490. 

[16]  F. Albalooshi and S. Shatnawi, "Online 

academic advising support," in IEEE 

International Joint Conferences on 

Computer, Information, and Systems 

Sciences, and Engineering (EIAE 09), 

2009.  

[17]  S. Safwan, A.-R. Khaleel and B.-I. Basel, 

"Applying a novel clustering technique 

based on FP-tree to university timetabling 

problem: A case study," in International 

Conference on Computer Engineering and 

Systems (ICCES), 2010.  

[18]  G. M. White and P. W. Chan., "Towards 

the Construction of Optimal Examination 

Timetables," in INFOR 17, 1979. 

 


