
Safwan M. Shatnawi, Fawzi Albalooshi, Khaleel Rababa'h / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.1638-1644

1638 | P a g e

Generating Timetable and Students schedule based on data

mining techniques

Safwan M. Shatnawi
1

Administrative and Technical

Programs

College of Applied Studies

University of Bahrain

Fawzi Albalooshi
Quality Assurance Authority for

Education and Training

(QAAET),

The Higher Education Review

Unit (HERU)

Khaleel Rababa'h
Administrative and Technical

Programs

College of Applied Studies

University of Bahrain

Abstract
In this paper we introduce a new technique for

generating an Academic Programme timetable

based on clustering method using data mining

techniques for dynamically forming students'

clusters; then we use a heuristic function to find

the optimal solution. The FP-tree based

generated clusters are used as an initial solution

to the timetable problem; then we generate more

optimized clusters using color mapping

algorithm; as a result a students' timetables also

generated, all hard constraints are satisfied, and

soft constraints are considered while generating

the timetable and the student schedule. We

tested our approach against real data obtained

from the College of Applied Studies in

University of Bahrain.

Keywords: Automated Timetabling, Course

Scheduling, data mining, FP-Tree, and Cluster,

Color mapping

1. INTRODUCTION
Course scheduling is one of the

challenging time consuming problems facing

institutions belonging to the NP-complete class of

problems. Our main challenge is to be able to

automatically time table two year associate degree

programs’ courses’ so that students belonging to

different programs can easily register for courses

with no timetable clashes for the semester they are

studying for. Hard constraints are: the students can

only be scheduled to one event in a time slot; event

rooms meet all required features and their capacity

is respected; no more than one event is allowed per

room and per timeslot. Soft constraints include: to

avoid scheduling classes in the last timeslot of the

day; to avoid scheduling more than two classes in a

row for a student; and avoid scheduling one class in

a day for a student.

A general survey paper by [1] investigates

examination and course timetabling providing up

to-date important information and citations for

further research and possible implementations of

automated timetabling for use in educational

settings. A more comprehensive survey carried by

[2] confirms that a general polynomial bounded

algorithm for solving time tabling problems cannot

be found. However there has been large interest in

applying meta-heuristic-based algorithms that are

general purpose algorithms. The algorithms were

mainly based on three techniques; graph coloring;

constraint-programming; and integer programming.

The author further categorizes the algorithm into

one-staged, two-staged, and algorithms that allow

relaxations. In one-staged optimization algorithms

hard and soft constraints are allowed to be violated

and the algorithm then aims to search for a solution

that satisfies both as much as possible examples of

such algorithms are those reported by [3] and [4].

Two-staged optimization algorithms attempt to

satisfy the hard constraints until an optimization is

reached. The soft constraints are then considered

for optimization as much as possible. Examples of

such algorithms are those proposed by [5] and [6].

The third class of algorithms allows relaxations of

some constraints without violating the hard ones.

Examples of such are proposed [7] and [8]. In his

survey [9] concentrated on the common solution

approaches including graph coloring, integer

programming, network flow techniques, tabu

search, rule-based approach, and constraint logic

programming.

A 3-phase approach succeeded to become the

winning entry in the International Timetabling

Competition is presented by [10]. At first the

timetable is created using graph coloring and

maximum matching algorithm. In the second phase

an attempt is made to satisfy more software

constraints using simulated annealing (SA), and in

the third phase the solution quality is improved by

swapping individual events between time slots

using SA. Burke an active researcher in this field

who published many articles on timetabling

presents a generally applicable approach for

constructing examinations and course timetables

using a generic hyper-heuristic approach [11]. The

authors test their approach on a simulated

benchmark proposed by the Meta-heuristic

Network [12] for course timetabling problems and

compare it with other state of art approaches.

Reference [13] investigates automated timetabling

to come-up with a solution for the Purdue

University class timetabling problem. He

investigates a number of common solutions and

presents an iterative forward search algorithm that

Safwan M. Shatnawi, Fawzi Albalooshi, Khaleel Rababa'h / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.1638-1644

1639 | P a g e

became the basis of his winning entry in the 2007

timetabling competition [14] organized by the

timetabling research community.

Clustering technique is another approach used for

timetabling; clustering is the process of finding

classes of objects that share common characteristics

[15]. Clustering is mainly based on splitting the

events into clusters or groups were each cluster is

scheduled in the same timeslots without having

conflicts. Clustering methods satisfy the soft

constrains using additional optimizing rules for

obtaining good solution, in order to use this

approach the courses are grouped into fixed clusters

at early stages of the algorithm; the formation of

the cluster is done manually based on some

predefined rules which leads to poor quality

timetable [16].

An FP-tree is a compressed representation of the

input data (transactions). It is constructed by

reading the data set one transaction at a time and

mapping each transaction onto a path in the FP-tree

[15]. FP-tree technique has been used in many

applications such as clustering and document

organization. In this paper we customize a FP-tree

algorithm to dynamically generate clusters from the

students transactions (courses to be registered for

the coming semester)

2. WEEKLY TIME TABLE
The week consists of five study days each

staring at eight in the morning till five in the

evening. Lectures and laboratory sessions are

regularly timetabled either on Sunday (U), Tuesday

(T), and Thursday (H) sessions or Monday (M) and

Wednesday (W) sessions. A course can have one or

more sections depending on the number of students

that are expected to register for it and each section

can take up to 25 students. For example if 50

students are expect to register for a course two

sections for the course need to be offered. They can

be at the same or different timings. A section is

timetabled at fixed times over the study week. For

example, a three weekly lecture course can be

timetabled nine to ten on UTH so that the start and

end of sessions is at the same time on different days

of the week. Weekly contact hours for a course

section can vary but the norm is five (two lecture

and three laboratory sessions) and three (three

lecture sessions)

3. DATA PREPROCESSING

3.1 Students Advising and Courses Statistics

Generation System

In previous work [16] we developed an

online advising system that can be utilized by

students, advisors, and course timetable planners.

Students are given informative advice on which

courses to register for in the next semester and are

informed of their remaining graduation

requirements; advisors are able to see students’

progress towards their graduation requirements;

and timetable planners are given statistics on

courses and sections requirements for the coming

semester.

The main source of information in our above

mentioned work was the official university

registration system. From it students’ academic

records and achievements, data were extracted and

processed for advising purposes. It was important

to maintain two new tables: the first holds details of

courses belonging to a program and the other holds

details of courses’ prerequisites. Essential

information for timetabling that was also generated

in our same previous work was the generation of

course requirements for a coming semester based

on existing students’ achievements, for more details

please refer to [16].

In our earlier work other information was extracted

from the university registration system for further

processing, but we used the resulted information

for the timetable generation approach described in

this paper.

In order to obtain the set of courses a student will

enroll in a given next semester, we apply the

following procedure: for each student, we take the

student’s transcript including the courses a student

currently enrolled in and compare it against the

program study plan, we get the list of not yet

registered courses and failed courses needed to be

re-taken, then for each course in the resulted list we

compare it against student’s transcript to find if the

student satisfied the prerequisites for that course.

The end result is the list of courses and number of

students expected to enroll in them in the following

semester.

3.2 Preparing students data to FP-Tree

Algorithm

In order to prepare the data for FP-tree Algorithm,

first each next semester courses to be registered by

students are considered as transaction; so our

transactions are set of courses to be register next by

all students; each student represent a transaction;

the following model our approach

Let C = {c1,c2,…., cn} be set of all courses offered

by the college

Let S={s1, s2,…,sn} be set of all students enrolled

in the college

Let T={t1, t2,…,tn} be set of all transactions in the

college; where each ti={{si,cj}+}; cj belongs to C

and registered by si belonging to S.

Before starting our modified FP-tree algorithm, we

prepare the students data by comparing student’s

transcript to his/her study plan, as a result, we

obtained list of courses he/she can register in the

following semester, each student represents

transaction for the FP-tree algorithm tj, and each

course a student can register represents an item ci,

in that transaction, then we calculate the number of

students who are to register for each course, the list

Safwan M. Shatnawi, Fawzi Albalooshi, Khaleel Rababa'h / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.1638-1644

1640 | P a g e

of courses is then sorted in descending order and

called header table in the FP-tree algorithm, next

courses in every transaction tj are sorted in

descending order based on the number of students

to register ci next semester based on the header

table index, now the transactions are ready to be

processed by the FP-tree algorithm; the following

example demonstrates the process of preparing the

students data:

Let S ={20100001, 20100002, 20100003,

20100004, 20100005} be list of students in the

college

Let C={C1, C2, C3, C4, C5, C6} be list of courses

to be register in the following semester

Let T ={ {20100001,C1,C2,C3}, {20100002, C2,

C3,C4}, {20100003, C2,C3,C6}, {20100004, C1,

C2,C6},{20100005,C2,C5}} list of courses to be

registered by each student. Table 1. represents the

header table.

Next all transactions in T should be reordered

according to the header table index, as a result, we

obtained the following:

 T={ {20100001,C2,C3,C1},

{20100002,C2,C3,C4}, {20100003, C2,C3,C6},

{20100004,C2,C1,C6}, {20100005,C2,C5}}. Now

the data is ready to be processed by the FP-tree

algorithm. Table 1. Shows the FP-Tree header table

for the aforementioned example

Table 1 FP Tree Header Table

Course Count



Course Count

C1 2 C2 5

C2 5 C3 3

C3 3 C1 2

C4 1 C4 1

C5 1 C5 1

C6 1 C6 1

3.3. Information Representation

FP-Tree Structure: Students transactions are

represented as tree structure; where each node in

the tree contains the course to register for, the

number of students who will register this course ,

links to the parent of the node, and an array of links

to the node’s children; while the original FP-tree

doesn’t care about the owner of the transaction

(student), we modify this structure since we need to

keep track of who will register this course to avoid

conflicts in the latter processing of the FP-tree

results; so we add an array of students who will

register the course next to each FP-tree node.

Weekly Time Slots structure: As we mentioned

earlier in section 2 the week is represented by 39

slots distributed as 27 one hour slots for UTH and

12 one hour and half Slots for MW, we represented

the week slots into two matrixes the first matrix for

UTH slots and the second matrix for MW slots.

Since the lab session is spanned over 3 hours, we

divide the UTH slots into 3 parts and the MW slots

into 3 parts also(as well).

Courses structure: Each course structure contains

the course code, credit hours, classes, and lab

session information.

Students’ information: for the sake of our modified

FP-tree algorithm, we need only the student ID for

processing the transactions; however we store the

student basic information like name and program

name for generating meaningful reports.

Timeslots: the aforementioned slots are grouped

into fixed group where each group will be mapped

to one level that is generated by applying our

modified algorithm

4. TIME TABLE GENERATION PROCESS

4.1 Phase I: FP-Tree generating

The algorithm scans the transactions and

builds the FP-tree structure described earlier; figure

1 describes the FP-tree algorithm used to generate

FP-tree structure. To form the clusters we

processed the FP-tree generated by the original FP-

tree algorithm in order to minimize the clusters

generated by the original FP-tree algorithm, the

algorithm used to cluster the FP-tree is described in

figure 2. This algorithm is described in details

in[17]. After modifying fp-tree we obtained the

clusters which are displayed in figure 3.

1) FP-Tree Results and analysis

After applying FP-tree algorithm, we

obtained clusters; where each cluster consists of a

group of courses; clusters are not balanced, i.e.

number of courses in each cluster (levels) are not

equal, even more the number of students register in

each course inside the cluster are not equal,

moreover the same course can be found in different

clusters with different attributes. If we say that n is

the average student in each section; where N >10

and N < room size, then any course in the cluster

can have M students, where M is one of the

following cases:

M < 10: means that this section cannot be opened

and since the number of students are less than the

minimum allocation for a section size, but we still

can find another cluster that has the same course

and we can merge these two courses together to

open section, this requires the algorithm to search

for another course that can be merged with.

10 < M < N: this section can be opened and no

more processing is required.

1. Scan the transaction database for the first time.

1.1 Find frequent items (single item

patterns) and sort them

into a list L in decreasing support

count.

2. For each transaction ti  T, order its frequent

items ci  C according to the order in L.

2.1 The algorithm makes a second scan over

the database to construct FP-tree by

Safwan M. Shatnawi, Fawzi Albalooshi, Khaleel Rababa'h / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.1638-1644

1641 | P a g e

!

))1().....(2()1(

!)!(

!

N

NMMMM

NNM

M

N

M















reading each transaction in step 2 as a

branch on the tree.

Figure XX : FP-Tree Algorithm

M > N: this section should be split over two or

more sections; again we have to satisfy all hard

constraints before splitting this section.

The generated clusters come from courses that is

distributed over FP-tree levels where all courses in

a given level can be schedule in the same time slots

without getting clashes, however as we mentioned

above, the number of students in each course may

be divided into two or more sections, as a result, we

need to move the generated sections into multiple

levels to fulfill the business soft constraint, which

states that no more than two sections should be

scheduled at the same time slots, so we need to

move the new generated sections into different

levels without causing any clashes, another issue in

the generated clusters that the number of clusters

may span over the available.

A. void cluster (fptree) {

1. For each Node in FP-tree starting from root in FP-tree level by level do:

1.1. For each CH1 in Node’s children do

 a. For each CH2 in Node’s children do

 If CH1->item == CH2->item then Move (CH2, CH1)

 b. Next CH2

 1.2. Next CH1

 1.3. For each CH in Node’s children do:

 1.3.1. Let source = CH

 1.3.2. Find CH->item header table entry

 1.3.3. For each HL in header table links

 a. If (HL->node != source) &&

 (HL->predecessor == source->parent) then

 i. Move(source,HL->node)

 ii. source =HL->node

 b. End If

 1.3.4. Next HL

 1.4. Next CH

2. Next Node}

B. void Move (node source, node target) {

 1. target -> item-count += source -> item-count

 2. For each CH in source’s children do:

 2.1. create a link from the target node to CH

 2.2. CH->parent = target

 2.3. delete source’s link in the header table

 2.4. delete source

 3. Next CH}

Figure YY: FP-tree based clustering algorithm

week slots, so again we need to minimize the

number of clusters without causing any clashes.

Hence It is obvious that the FP-tree algorithm

cluster the students, but still it is not the optimal

solution for the problem or even a solution to the

problem; in other words the FP-tree algorithm just

redefines the problem in a way or another.

It is guarantee that each course exists in any

cluster’s level can be registered in the same time

without clashing, however we still can minimize

the number of the cluster levels (depth of the

cluster) by applying a color mapping algorithm or

an appropriate searching algorithm; in this paper

we used color mapping algorithm.

The depth of each cluster is not guaranteed not to

exceed the maximum levels count (depth); where

the maximum depth should not exceed the week’s

slots; the depth of the clusters (levels) in phase II of

this methodology are minimized and controlled The

number of different registration combination, i.e.

different paths in the FP-tree structure can be

obtained by the following rules:

Let M be number of courses that are offered by the

college; M any positive integer

Let Z be the number of students registered in the

college; Z any positive integer

Let N be the maximum possible load; N <=M, then

the different students registration combinations will

be (SRC) ={

Case 1:

 if Z >

!

))1().....(2()1(

N

NMMMM  then

SRC=

Case 2 :

if Z <

!

))1().....(2()1(

N

NMMMM  then

SRC = Z }

Safwan M. Shatnawi, Fawzi Albalooshi, Khaleel Rababa'h / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.1638-1644

1642 | P a g e

Maximum FP-tree depth = N

Maximum modified FP-tree level = M

Maximum levels in the week = time slots

/maximum course slot

Optimal number of cluster = N

 Figure 3: Obtained Clusters

2) Optimality in timetabling

Optimal solution for timetabling problem

is domain dependent, so before searching for the

optimal solution we should first define optimality,

in our study domain we have several parameters

that define optimality, of course the hard

constraints is the base to find the solution, but the

soft constraints represent the optimal or desired

solution, following are some parameters for

defining optimality:

 Number of internal time slots fragmentation in

the student schedule ; minimize

 Number of sections (classes) of the same

course in each time slot; (minimize)

 Utilization of timeslots ; (maximize)

 Utilization of resources (maximize)

 Internal fragmentation in each resource;

(minimize)

 Total number of sections; (minimize)

3) Phase II: Processing modified FP-Tree for

timetable generating

Starting from the fact that the result of the modified

FP-tree algorithm can further be optimized, we will

start by minimizing the resulted cluster; a color

mapping algorithm is used to minimize the clusters

and the nodes (sections) in each cluster; the task of

this phase is to minimize the depth of the obtained

clusters in phase I; and to form clusters to be

processed by phase III; in this process if we found

multiple instances of a course in a level, we merge

these instances into one instance; again the formed

cluster has the same properties described in section

4.1.1. Figure 4 shows the color mapping algorithm

used in this phase.

4) Phase III: Generating sections and

assigning timeslots.

We obtained courses’ clusters where each cluster

contains courses that can be registered in the same

timeslots without causing clashes in the students’

timetable; heuristic function based on the

optimality guidelines described in section

(optimality in timetabling) is applied to generate

optimized timetable. Figure WW shows the screen

snap shot for a given program timetable (form). In

this phase we assigned room and lab for each

section while satisfying the no conflict hard

constraints and the number of students less than the

room’s size which is an easy and direct process.

5. EXPERIMENTAL WORK AND ANALYSIS
In order to evaluate our approach, we

tested our approach using real data obtained from

the College of applied studies; the sample contains

information about 1270 students distributed among

8 academic programs; each student may register up

to 5 courses selected among 83

Color mapping pseudo code

Courses=N

Colors =0

For each Level(Vertex)

Color i= Li;

Colors ++; courses --;

For all Courses Ci  C in Li then Color i  Ci

Next level

For each level

Students = number of students in Ci

Section size = M

 If students > section size then

 Split Ci into multiple sections

 For each generated section Si

 Find level Li; Li ∩ Si =0 then

 Color Li  Si;

level color

Next level

Courses=0;

Colors=N;

Figure 4. Color mapping Algorithm

courses, Table 2 shows the statistics of the

experimental work; the estimated required sections

are obtained based on the assumption that the

section size is 25 students; first we obtained the

courses to be register next for all students, then we

prepared the transaction file where each student

next semester courses represents a transaction and

based on the number of students who will register

each course we built the header table mentioned in

section 4.1; next we apply FP-tree algorithm to

obtain the transactions' tree; after that we minimize

the number of clusters by applying out modified

algorithm mentioned in figure 2, the number of

obtained clusters was 25 clusters; to minimize the

number of clusters we apply the color mapping

algorithm mentioned in figure 4, as a result we

obtained minimized number of clusters; for our

data we obtained 10 clusters; the final step is to

Safwan M. Shatnawi, Fawzi Albalooshi, Khaleel Rababa'h / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.1638-1644

1643 | P a g e

generate sections and then assign each level to a pre

fixed time slots; figure 5 shows a snap shot for

ACCA221 section 1 class list, the time slots are

group in a way that there is no clashes (overlaps)

between any two groups of time slots, figure 6

shows snap shot of one time table form; all hard

constraints were satisfied (no time clashes; room

capacity; number of sections in a given time slot,...)

through the use of constraints based approached

were any section being generated should not violate

any of the hard constraints.

Table 2 Experimental statistics

Item Statistics Generated

Number of students 1270 1270

Number of Courses 83 83

Estimated required

sections (optimal)

167 183

Student Conflict 0

6. CONCLUSION
Timetable based on intended courses to be

registered next semester is generated, our approach

goes beyond time conflicts constraints only to

enable students to register all courses they want,

our approach is student oriented and aims to

provide the student with efficient(based on the

students definition) timetable, our algorithm has

advantages over static clustering algorithms; where

the clusters are formed and fixed before finding the

solution; whereas our approach allows dynamic

formation of the clusters and minimize the search

(solution) space for color mapping algorithm. since

the obtained clusters less than the

available weekly timeslots, the students can have

better timetable with minimum internal

fragmentation timeslots, which also makes the

instructors timetable efficient , the color mapping

algorithm makes use of the generated clusters

which minimize the search space for the color

mapping algorithm.

Figure 5. Course /Student Enrollment

Figure 6. Screen Snapshot of one timetable form.

ACKNOWLEGEMENT
This project is supported by Deanship of

Academic research at University of Bahrain ,

underproject number 23-2010

 References
[1] M. B., "University timetabling: Bridging

the gap between research and practice

(invited paper)," in The 6th Int. Conf. on

the Practice and Theory of Automated

Timetabling (PATAT-2006), Brno, 2006.

[2] L. R., "A Survey of Metaheuristic-based

Techniques for University Timetabling

Problems," in OR Spectrum, 2008..

[3] C. M. and P. M., "A Multiobjective

Genetic Algorithm for The Class/Teacher

Timetabling Problem," Practice and

Theory of Automated Timetabling

(PATAT) III, vol. 2079, pp. 3-17, 2001.

[4] D. G. L. and S. A., "Multi-neighbourhood

Local Search with Application to Course

Timetabling," Practice and Theory of

Automated Timetabling (PATAT) IV, vol.

2740, pp. 262-275, 2003.

[5] C. S. and T. J., "Grasping The

Examination Scheduling Problem,"

Practice and Theory of Automated

Timetabling (PATAT) IV, vol. 2740, pp.

233-244, 2003.

[6] A. H. and L. A., "A Tabu Search Heuristic

for a University Timetabling Problem,"

Metaheuristics: Progress as Real Problem

Solvers, vol. 32, pp. 65-86, 2005.

[7] E. E., "A Grouping Genetic Algorithm for

Graph Colouring and Exam Timetabling,"

Practice and Theory of Automated

Timetabling (PATAT) III, vol. 2079, pp.

132-156, 2001.

[8] C. P., W. T. and S. R., "Application of a

Hybrid Multi-Objective Evolutionary

Algorithm to The Uncapacitated Exam

Proximity Problem," Practice and Theory

of Automated Timetabling (PATAT) V,

vol. 3616, pp. 294-312, 2005.

Safwan M. Shatnawi, Fawzi Albalooshi, Khaleel Rababa'h / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.1638-1644

1644 | P a g e

[9] S. A., "A survey of Automated

Timetabling," in Artificial Intelligence

Review, 1999.

[10] K. P., "The University Course Timetabling

Problem with a 3-Phase Approach,"

Practice and Theory of Automated

Timetabling (PATAT) V, vol. 3616, pp.

109-125, 2005.

[11] B. E., M. B, M. A., P. S. and Q. R., "A

Graph-based Hyper-Heuristic for

Educational Timetabling Problems,"

European Journal of Operational

Research, vol. 167, pp. 177-192, 2007.

[12] [Online]. Available:

http://www.metaheuristics.net/. [Accessed

11 August 2009].

[13] T. Muller, Constraint-based timetabling.

PhD thesis, Charles University in Prague,

Faculty of Mathematics and Physics,

2005.

[14] [Online]. Available:

http://www.cs.qub.ac.uk/itc2007/ .

[Accessed 11 August 2009].

[15] Pang-Ning-Tan, M. Stienback and V.

Kumar, Introduction to Data Mining,

Addison Wesley, Pearson Education,

2005, pp. 363-370,487- 490.

[16] F. Albalooshi and S. Shatnawi, "Online

academic advising support," in IEEE

International Joint Conferences on

Computer, Information, and Systems

Sciences, and Engineering (EIAE 09),

2009.

[17] S. Safwan, A.-R. Khaleel and B.-I. Basel,

"Applying a novel clustering technique

based on FP-tree to university timetabling

problem: A case study," in International

Conference on Computer Engineering and

Systems (ICCES), 2010.

[18] G. M. White and P. W. Chan., "Towards

the Construction of Optimal Examination

Timetables," in INFOR 17, 1979.

