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Abstract 
In this project, a simple demodulator for 

GFSK receivers is developed, which averages the 

phase based on the signal-to-noise ratio (SNR) 

maximizing criterion, and does not require 

knowledge of the exact modulation index. 

Compared to demodulators with similar 

complexity, such as the LDI, the presented 

receiver can achieve superior performance. In 

digital modulation, Gaussian frequency shift 

keying(GFSK) is one of the shifting technique. we 

are  facing a challenging task in simple and high 

performance receivers for GFSK. In our project 

we develop an optimized differential GFSK 

demodulator and investigate the phase wrapping 

issue in its implementation. The Experimental 

results shows performance of bit error rate  

improvement  in with conventional differential 

demodulators in both AWGN and flat fading 

channels. We also compare the simulation results 

with other exiting techniques like fading channels . 

 

Keywords Gaussian frequency shift keying 

(GFSK), differential demodulation, phase 

wrapping. 

 

I.  INTRODUCTION  
Gaussian Frequency-Shift Keying (GFSK) is 

a type of Frequency Shift Keying modulation that 

uses a Gaussian filter to smooth positive/negative 

frequency deviations, which represent a binary 1 or 0. 

It is used by DECT, Bluetooth. Bluetooth is a 

proprietary open wireless technology standard for 

exchanging data over short distances (using short-

wavelength radio transmissions in the ISM band from 

2400–2480 MHz) from fixed and mobile devices, 

creating personal area networks (PANs) with high 

levels of security. Created by telecoms vendor 

Ericsson in 1994, it was originally conceived as a 

wireless alternative to RS-232 data cables. It can 

connect several devices, overcoming problems of 

synchronization. 

Bluetooth is managed by the Bluetooth 

Special Interest Group, which has more than 16,000 

member companies in the areas of 

telecommunication, computing, networking, and 

consumer electronics. The SIG oversees the  

 

development of the specification, manages the 

qualification program, and protects the trademarks. 

To be marketed as a Bluetooth device, it must be 

qualified to standards defined by the SIG. A network 

of patents is required to implement the technology 

and are licensed only for those qualifying devices; 

thus the protocol, whilst open, may be regarded as 

proprietary. GFSK  is an important digital modulation 

scheme. It is widely used in low cost and low power 

consumption systems such as Bluetooth in the 

unlicensed 2.4 GHz industrial, scientific and medical 

(ISM) band due to its spectral efficiency, constant 

signal envelope property and the possibility for low 

complexity receivers. The optimum GFSK receiver 

consists of a correlator followed by a maximum-

likelihood sequence detector that searches for the 

minimum Euclidean distance path through the state 

trellis based on Viterbi algorithm. 

 

However, due to the complexity of the 

matched filter bank and carrier synchronization, such 

a receiver has very limited applications. In addition, 

these designs always assume a certain nominal value 

for the modulation index ℎ . However, the modulation 

index may vary in a relatively wide range (for 

Bluetooth, the modulation index is allowed to vary 

between 0.28 and 0.35), leading to a varying trellis 

structure for sequence detection with possibly 

tremendous number of states. All these render this 

optimum receiver impractical. 

 

Hence non-coherent suboptimal receivers 

are typically preferred, especially in systems where it 

is desirable to have a simpler receiver structure. The 

technique phase wrapping shown is successful 

provided that the true gradient is bounded to < π. It is 

unlikely so when both the sampled topography is 

rough and elevations are > Δ Hamb. Slow varying 

topographies are not a problem even if elevations are 

large. Rough topographies are not a problem if 

elevations are contained. We adopt a high-

performance GFSK receiver that achieves near 

optimum performance in AWGN [1] but uses a 

prohibitively complex bank of filters to match a large 

set of legitimate waveforms over several bit intervals. 

However, we reduce the computational cost by 
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performing filtering over a single bit interval, and 

propagating the results over successive bit periods, 

thereby eliminating redundancy in providing the 

matched filter outputs. We also propose a blind 

algorithm for carrier frequency correction. It is based 

on the observation of the phase gain in the transmit 

signal over a finite time-interval. Our derivation 

concurs with work by other researchers [7]. 

 

II. GFSK SIGNAL MODEL  
A pass-band transmitted GFSK signal can be 

represented as 
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Where 𝐸𝑏is the energy per bit, 𝑇is the 

symbol period, 𝑓0 is the carrier frequency, 0 is an 

arbitrary constant phase shift. The output phase 

deviation (𝑡,) is determined by the input data 

sequence 𝜶= ..., 𝛼−2, 𝛼−1, 𝛼0, 𝛼1, 𝛼2, with         𝛼𝑖∈+/-
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Being the frequency pulse with constant 𝛾= 

2𝜋/√(In(2)) and 𝑄(x) is the Gaussian Q-function. 𝐵𝑇 

is the 3 dB bandwidth-time product. Generally 

speaking, the smaller the 𝐵𝑇values, the more 

significant the ISI introduced due to the increase of 

the effective frequency pulse duration. In the 

Bluetooth standard, ℎ can vary between 0.28 and 0.35 

and 𝐵𝑇equals 0.5 with 𝑇= 10−6s, giving rise to a (𝑡) 
with effective duration of 2T. 

 

A. Baseband Equivalent System Model: 

The channel model considered is Rayleigh 

flat fading with additive white Gaussian noise 

(AWGN). The received signal is first passed through 

a receiver filter with transfer function (𝑓), then the 

phase differential detection is performed on the 

output signal of the filter. The input signal to the 

receiver filter is 

  )()(*)((t)r tntsthe l

tj  

   (4) 

ℎ0~𝒞𝒩(0, 1), 𝑛(𝑡) is zero mean white Gaussian noise 

with single-sided spectral density 𝑁0, and 𝑠𝑙(𝑡) is the 

complex envelope of the GFSK transmitted signal 

𝜃(𝑡) is the time-varying channel phase, ℎ(𝑡) is the 

channel impulse response. 
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We assume that the receiver filter has 

sufficient band width such that it will introduce 

negligible distortion on the signal while band limiting 

the noise. Thus the output of the receiver filter is 
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Where (𝑡) = (𝑡) + 𝑗𝜂𝑖(𝑡)is band limited zero mean 

Gaussian noise with autocorrelation 
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Where 𝐵𝑛 is the equivalent noise bandwidth 

of the receiver filter. We assume that (𝑡) does not 

change over a symbol period. For the phase 

differential demodulation, we take the difference of 

consecutive phase samples; the unknown phase is 

thus canceled. In addition, 𝜂𝑟and 𝜂𝑖are independent 

and each has a distribution of (0, 𝜍2), where the 

variance 𝜍2 is defined as 𝜍2 =(0) = 𝑁0𝐵𝑛. Hence the 

joint distribution of 𝜂𝑟 and is 
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III. OPTIMIZED GFSK DEMODULATOR  
In this section, we first present the basic 

ideas of conventional phase differential 

demodulation. To facilitate the design of our 

optimized differential demodulator, the phase noise 

distribution is then derived. Based on the phase noise 

distribution, we will then propose an optimized 

differential demodulator and investigate the phase 

wrapping problem. 

 

A. Differential GFSK Demodulation; 

In this subsection, we consider the basic 

ideas about differential demodulation in AWGN. For 

Bluetooth standard, the effective frequency pulse 
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duration is 2𝑇, giving rise to a piecewise monotonic 

phase trellis within each symbol duration. The 

direction of the monotonic change is determined by 

the binary symbol value. Hence, a phase differential 

demodulator can be employed. We first extract the 

phase of the received signal. 

 

  )()()( tttrt  
 (10) 

Where 𝜑 (𝑡)is determined by the transmitted 

phase and (𝑡)is a random variable due to the AWGN. 

Essentially, the conventional differential demodulator 

involves sampling (𝑡) in (9) at symbol rate to obtain () 

and then taking the difference of the neighboring 

samples. 

)()()( TnTnTnT  
(11

) 

A decision can then be made based on the 

sign of Δ(𝑛𝑇).However, due to the randomness of the 

phase noise, the decision based on a single phase 

sample per symbol lacks sufficient reliability so that 

conventional differential demodulator suffers from 

degraded performance. Intuitively, one can average a 

portion of every symbol long trellis segment instead 

of a single sample at each end before taking the 

difference. This may provide some gain in the signal-

to-noise ratio (SNR). In the case of Gaussian noise, 

the gain in SNR leads to improvement in BER. To 

facilitate the design of an optimum differential 

demodulator, we will next study the distribution of 

phase noise (𝑡). For the simplification of analysis, we 

will first consider the AWGN channel. The result can 

then be easily extended to flat fading channels. 

 

B. Phase Noise Distribution: 

For notational simplicity, let (𝑡) = 0in (9) 

without loss of generality. It then follows that (𝑡) =  

(𝑡). Denote the probability density function (PDF) 

and the cumulative density function (CDF) of the 

random variable (𝑡) as (𝜑) and (𝜑), respectively. We 

first consider 0 ≤ (𝑡) ≤ 𝜋/2, on which. 
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Then by Leibnitz’s rule, the PDF is derived as 

 

  dxx
d

d
x

e

F
d

d
f

x





















tan

)(

2

1

)(

2

2
2

2

2

tan

2
















    

(13) 

 











 

















cos

2

sin

2
2

22

2

2

2

cos

2

1 Q

ee

(14) 
For 𝜋/2 < (𝑡) <2𝜋, only the integral interval 

in (10)is slightly different for each quadrant, and it 

can be readily shown that the final PDF results are the 

same as (11) for all(𝑡)values. At high SNR (large 𝜌), 

we have exp (− 𝜌2 2𝜍2 ) ≈ 0and 𝑄(−𝜌coos𝜙𝜍) ≈ 1. 

As a result, the complicated noise distribution can be 

approximated as: 
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             Which is simply the Gaussian distribution 

with zero mean and variance (𝜍/𝜌)2. Such a Gaussian 

approximation of the phase noise distribution can be 

very useful if the approximation is accurate. This is 

because our demodulator design is intended to 

optimize the ultimate BER performance of the 

system. In the case of Gaussian noise, minimizing 

BER is equivalent to maximizing the SNR, leading to 

a readily-achievable SNR maximizing system 

optimization criterion. This is generally not true for 

non-Gaussian noise. In order to assess the accuracy of 

our approximation; we perform two sets of 

simulations. In the first simulation, we compare the 

true and approximate PDF curves at various SNR 

values. As below shown in Figure 1, we observe that 

these curves are already very close at 𝜌2/ (2𝜍2) = 2 

dB, and are nearly identical at 𝜌2/(2𝜍2) = 8 dB. We 

also simulate and compare the BER performance of a 

simple binary system where the additive noise 

follows either the true noise PDF or the Gaussian 

approximation. The result in Below Figure. 2 shows 

that the BER performances of the two are very 

similar. You may note that the BER gap at higher 

SNR seems to be larger than the gap at lower SNR. 

However, since the scale is different in the BER axis, 

the approximation is actually much better at higher 

SNR, which confirms our previous analysis .So far, 

we have verified that the noise in the extracted phase 

can be well approximated as Gaussian distributed. 

With all the knowledge above, we will develop our 

optimized differential GFSK demodulator in the 

following subsection. 

 

C. Optimized Differential GFSK Demodulator: 

              Each symbol-long phase trellis segment can 

take one of the four shapes depending on the specific 
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symbol sequence. For example, for an input data 

sequence of (1,−1, 1,−1, 1, 1, 1, 1),  

 
    Figure 1: PDF curves for 𝜌/(𝜍) = 0.2828 and 𝜌/(𝜍) 

=0.6083 

phase trellis during [0, 𝑇) is linear in the first 

half and nonlinear in the second half (which we term 

as type 𝐷); the phase trellis during [𝑇, 2𝑇) is 

nonlinear throughout the entire duration (which we 

term as type 𝐶); the phase trellis during [4𝑇, 5𝑇) is 

nonlinear in the first half and  

 

 
Figure 2:  BER performance for the exact phase noise 

and the approximated Gaussian phase noise 

linear   in the second half (which we term as 

type 𝐵); and the phase trellis during [5𝑇, 6𝑇) is linear 

throughout (which we term as type 𝐴). Without loss 

of generality, we will start from the linear phase 

segment and then generalize to the nonlinear and 

partly nonlinear ones. A linear phase curve segment 

has a function (𝑡) = 𝐴⋅𝑡/𝑇, 𝑡∈[0,  ). Note that the 

scalar 𝐴is proportional to the modulation index ℎ. 

However, since its value does not affect the 

optimization result, we will normalize it to 1 for 

notational simplicity (the same for the nonlinear 

phase curve cases). Let𝑇𝑜be the portion at each end 

of this segment over which we average before taking 

the difference, as illustrated in Then the resultant 

SNR is: 
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(16) 
As we have shown in the preceding 

subsection, the phase noise can be well approximated 

as Gaussian distributed even at fairly low SNR. 

Hence, the SNR-maximizing 𝑇𝑜is essentially also 

BER-minimizing. Maximizing SNR𝐴for a given 

symbol duration 𝑇and 𝐴2/𝜍2, we obtain 
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Which results in 𝑇𝑜= 𝑇/3. This indicates that 

one should average the first and last 33% of each 

symbol-long phase segment and then take their 

difference on which a decision can be made. Next we 

consider the type-C phase segment during [𝑇, 2). The 

exact function for this segment does not have a closed 

form (containing the integral of Gaussian Q function). 

How ever we notice that each half of the segment 

curves in the shape of parabola approximately. Hence 

we use two second-order polynomials to fit each half; 

that is 𝑥1(𝑡) = −0.9202(𝑡/𝑇)2 − 0.1797(𝑡/𝑇) + 0.8158, 

𝑡∈[0, 0.5𝑇), and 𝑥2(𝑡) = 0.9202(𝑡/𝑇)2 − 1.9911(𝑡/𝑇)+ 

1.273, 𝑡∈[0.5𝑇,𝑇).Accordingly, the resultant SNR 

after averaging and difference taking is: 
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(18) 
As a result, the optimal portion should be 

chosen as 𝑇𝑜=0.3675.Similar results can be obtained 

for type-B and type-D phase segments. Due to the 

space limit, these are omitted here. Since the four 

different shapes occur with equal probability, one can 

also find the overall optimum𝑇𝑜by solving 
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which results in 𝑇𝑜= 0.35𝑇.The continuous-

time analysis can be readily extended to the discrete-

time sampled phase segments. Let 2𝐾 denote the 

number of samples per symbol. The problem now is 

to determine the optimum 𝑀, which is the number of 

samples to be averaged at each end of the 2𝐾samples 

per symbol. Denote the second group of 𝑀samples as 

𝑆1, ....,𝑆𝑀, 
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Figure 3:Cumulative Distribution Function 

and the first group of 𝑀samples as 𝑆′1, ...., 𝑆′𝑀. It 

then follows that 𝑆𝑖= (𝐾− 1 + 𝑖)/ (2𝐾− 1) + 𝜂𝑖and 𝑆′ 

𝑖= (𝑖− 1)/(2𝐾− 1) + 𝜂′ 𝑖, 𝑖= 1, . . .,𝑀. Consider again 

the type-A linear phase segment. With the Gaussian 

approximation of the phase noise, the difference 

between the two averages is Σ𝑀 𝑖=1(𝑆𝑖− 𝑆′𝑖)/𝑀, 

leading to an SNR of 
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Where superscript (𝑑) indicates discrete-

time. Clearly, SNR(𝑑 𝐴(𝑀)bears a form very similar 

to SNR(𝑇𝑜) in (13).Not surprisingly, maximizing 

SNR (𝑑) 𝐴(𝑀)results in 𝑀=2𝐾/3, which agrees 

perfectly with the continuous-time result. Using the 

same methodology, we can obtain the optimum 𝑀for 

the general case as 𝑀= 0.7𝐾. Thus, by choosing the 

optimal 𝑀, the SNR is maximized and the error 

probability minimized. The block diagram of our 

optimized differential demodulator is shown in Fig. 4. 

We can see that the only difference between this new 

demodulator and the conventional differential one is 

the averaging part. To evaluate the performance gain 

by using the optimized differential demodulator, we 

notice that the conventional differential demodulator 

can be considered as a special case with 𝑀= 1 for any 

𝐾values. Considering again the type-A phase 

segment, and evaluating(17) at 𝑀= 2𝐾/3 and 𝑀= 

1and taking the relative ratio, we obtain the SNR gain 

over conventional differential demodulator as: 
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This gain is a function of because the optimum 

number of averaged samples 𝑀is dependent on the 

total number of available samples 2𝐾. The above 

results can be readily extended to the flat fading 

channels since each realization of the channel fading 

coefficient is essentially an AWGN case. All these 

results will be verified by simulations. 

 

D. Phase Wrapping Problem: 

When realizing these phase differential 

demodulation algorithms, however, there is an 

implementation problem. Recall that our differential 

operations are performed on the phase function (𝑡)in 

(9). Unlike the original phase trellis (𝑡,) in (2), (𝑡)is 

not only noisy, but also suffers from the phase 

wrapping problem since it assumes a finite range of 

2𝜋.To solve this problem, conventional differential 

demodulator in takes the following structure: the 

received signal (𝑡)is multiplied by a 𝑇-delayed and 

𝜋/2phase-shifted version of itself and then sampled at 

the symbol rate to give the decision statistic. These 

operations will essentially give sin[Δ(𝑛𝑇)]without 

explicitly extracting 𝜙(𝑡), thus avoiding the phase 

wrapping problem. Since the decision only relies on 

the sign of Δ(𝑛𝑇), the above operations leading to 

sin[Δ𝜙(𝑛𝑇)]generally preserves this sign information. 

However, for large modulation index ℎ≥ 1, the phase 

change Δ(𝑛𝑇)over one symbol duration may exceed𝜋. 

In this case, the sin operator cannot preserve the sign 

of Δ(𝑛𝑇)any more. Hence, in both the conventional 

and optimized differential demodulators, we directly 

deal with the phase extracted from the received 

signal. Specifically, the phase is unwrapped by 

simply adding 2𝜋 when the absolute change between 

the Consecutive phase samples is greater than the 

jump tolerance𝜋. Both methods are tested and 

compared by simulations. 

 

IV. PERFORMANCE EVALUATION OF 

PROPOSED CONCEPT AND AND DISCUSSION 

 
 

Figure 4  BER Performance in AWGN Channel 

 

We will evaluate the performance of our 

proposed demodulator by simulations in terms of 

BER versus 𝐸𝑏/𝑁0, where 𝐸𝑏is the signal energy per 

information bit and 𝑁0 is the power spectral density 

of the additive noise. In all simulations, we set 𝐵𝑇= 
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0.5, 𝐵𝑛𝑇= 1 and take 8 samples per symbol. Show 

the BER performance of our optimized differential 

demodulator together with that of the conventional 

one and the LDI demodulator with different 

modulation indices ℎ in AWGN and flat fading 

channels, respectively. In particular, for the 

conventional differential demodulator, we simulated 

both the system in which avoids phase wrapping as 

well as our direct unwrapping approach. We observe 

that, the optimized demodulator shows about 1∼2 dB 

improvement over the conventional differential 

receivers and the LDI especially at high SNR. Note 

that, for small ℎ(ℎ= 0.33 or 0.5), phase unwrapping 

does not lead to any performance improvement in the 

conventional receiver. This confirms that the 

performance gain is entirely due to our optimized 

demodulation algorithm. This result is also consistent 

with the theoretical result obtained in with 𝐾= 4. Note 

that the complexity of LDI is similar to the optimized 

demodulator since LDI also needs oversampling. In 

addition, in both cases, as ℎ increases. 

 

 
 

Figure 5: BER Performance in Flat fading Channel 

Performances of all demodulators except the 

conventional scheme without phase unwrapping in 

improve accordingly. We note that when ℎ= 1, the 

conventional differential demodulator in suffers from 

significant performance loss. This is because the 

phase change during one symbol interval may exceed 

𝜋for large ℎ(ℎ= 1) such that the sin operator cannot 

preserve the sign of Δ(𝑛𝑇) anymore. In addition, the 

gain of the optimized demodulator over the 

conventional one for large ℎ is not as significant as 

that for small ℎ. This is due to the phase unwrapping 

operation. As ℎ increases, the phase change over one 

symbol interval will increase. However, the error 

introduced to the recovered phase by phase un 

wrapping operation will also increase. Therefore the 

BER performance improvement is not a strictly 

increasing function of the modulation index ℎ. 

 

V. CONCLUSION 
In this project the operation of GFSK 

demodulator in Bluetooth radio signals is explained. 

Simulation results coincides with the concept of 

GFSk distribution (PDF) employed in Bluetooth 

which is simply the gaussin distribution with zero 

mean and variance (𝜍/𝜌)
2. 

 The simulation results of 

BER (Bit Error Rate) performance of a simply binary 

system using DPSK are compared where the additive 

noise follows the true noise PDF as this basic 

demodulator designed is intended to optimize the 

ultimate BER performance of the system. 
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