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Abstract 
Mainly in the Computational Clusters, the 

most concern goes to communication. In order to 

decrease the communication cost and devise its 

performance researchers have been conducting 

research on placing of data in distribution system. 

Whatever may be, data correlates because of clients 

accesses which ultimately effects on data placement. 

In the early research, for the development of 

performance in mobile transactions, the duplication of 

placement matter on correlated data is mentioned. In 

the present paper, primarily model allocation 

decisions can be made locally for each model site in a 

tree network, with data access knowledge of its 

neighbors is discussed and secondly for correlated 

resources in internet environment a novel replication 

cost model is focused. With reference to the early 

research of cost model and algorithms, the present 

model, an inter cluster resource discovery and 

utilization algorithm (ICRDU) for correlated data in 

internet environment is created. Later an intra cluster 

resource replication and utilization algorithm 

(ICRRU) is devised to make model placement 

decisions effectively. The algorithm gets near optimal 

solutions for the correlated data model and produces 

performance improvement. The experimental studies 

explain the intra cluster resource replication and 

utilization allocation algorithm significantly 

outperforms the general frequency-based replication 

schemes. 

 

Introduction 
With the advances in network technologies, 

applications are all moving toward serving widely 

distributed users. However, today’s Internet still 

cannot guarantee quality of services and potential 

congestions can result in prolonged delays and leave 

unsatisfied customers. The problem can be more 

severe when the accesses involve a large amount of 

data. Replication techniques have been commonly 

used to minimize the communication latency by 

bringing the data close to the clients. Web caching is a 

successful example of the technique. However, when 

the data may be updated, the problem is more 

complicated. The more models in the system, the 

higher the update cost will be. Thus, data needs to be 

carefully placed to avoid unnecessary overhead.  

There have been a lot of research works 

addressing the data model placement issues in  

 

Computational Clusters [1, 4, 7, 14, 15]. Generally, 

the access pattern is used to guide the placement 

decision. Several considerations like static [1] and 

dynamic [2, 7, 15] placement decisions and full and 

partial replication schemes have also been 

investigated. Partial replication take into consideration 

reproduce subsets of resources and is generally 

required for environments showing strong access 

locality [8, 11]. Almost all the model placement 

algorithms do not specifically presume full or partial 

replication [5, 15]. In reality, most of the placement 

decision algorithms can be applied to both cases by 

managing the granularity of the resources that are 

considered. But, each of these algorithms presumes 

that resources are not dependent on each other. In 

several applications, each and every 

request/transaction may have access to multiple 

resources and, so, bringing correlation among the 

resources. Going by example, for a read transaction 

accessing multiple resources, all of these resources at 

a local site will be able to decline communication 

overhead. But, in the case of only a part of the data set 

that is being accessed is modeled at a local site, then 

the replication will not bring much advantage. This is 

because the read transaction still requires to be 

forwarded in order to recover the resources that are 

left out. The same is applied to an update transaction 

that is accessing multiple resources. In the case of 

only a part of the data set that is being updated is 

modeled, a message is required for sending the update 

request. So, for getting better model allocation, it is 

necessary to take into consideration the access 

correlation among resources. In [12], we have dealt 

about the model placement issues of correlated 

resources in mobile environments considering mobile 

networks that are having a star topology. Further, it 

presumes that every time the base station node holds 

the total data set (comprising all resources that may be 

required by the mobile nodes). This is required for 

minimizing the mobile unit connection time for the 

accesses. Whenever the general Internet environment 

is taken into consideration, several issues are to be 

considered. The first one is that there is no need of 

considering the connection time for Internet based 

clients and partial replication is needed. 

Moreover, a greater complex topology 

requires consideration for Internet accesses. So, a 

more sophisticated placement algorithm for correlated 

resources should be evolved. A crucial issue in model 

placement algorithms in such kind of environment is 
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that who executes the intensive placement 

computation. Some of the placement algorithms are 

centralized [6, 14] that makes the central decision-

making site to be overloaded severely. Distributed 

model placement algorithms, like [10, 15], grant each 

model site to make localized decisions. They will be 

able to react to changes in access patterns and 

naturally divide the computation. In this paper, we 

construct a dynamic model placement algorithm, 

which (1) takes into consideration a tree topology 

network, (2) considers the correlation among 

resources whenever accessed by the same requests, 

and (3) gives distributed algorithm that does localized 

analysis for declining the computation cost. 

Moreover, our algorithm is adaptive. It takes into 

consideration 2 schemes. To get optimal solutions, a 

distributed branch and bound algorithm is utilized to 

calculate the optimal set of resources models to be 

designated on the computational clusters. Remember 

that in commercial applications, transaction access 

patterns follow the “80/20” rule [3], i.e., just 20% of 

the transaction types accounts for 80% of the total 

amount of the transactions. Whenever the transaction 

access pattern is stabled, the set of resources 

associated is considerably small. Lanier Watkins et 

al[] discussed a Passive Solution to the Memory 

Resource Discovery Problem in Computational 

Clusters. When compared to existing models this 

solution is more robust secure and scalable. The prime 

benefits of this model are low message complexity, 

scalability, load balancing, and low maintainability 

but limited their solution to deal with resource 

requirements of the clusters. 

So, the optimal algorithm is obtainable in 

this case. For dealing with the access patterns that are 

frequently changed, we suggest resource discovery, 

replication and utilization algorithms for getting near 

optimal solutions, which is motivated from the work 

carried out by Lanier Watkins et al[]. The remaining 

part of this paper is distributed as follows. Section 2 

explains our system model and problem definition, 

depending on the system model that is defined in [12]. 

Section 3 delves about the transaction based cost 

model in a distributed environment. Section 4 gives a 

distributed partial replication algorithm (ICRDU). 

Section 5 deals about a intra cluster resource 

replication and utilization partial replication algorithm 

(ICRRU). Section 6 is about the experimental study 

results and Section 7 concludes the paper 

 

2. Resource allocation System Format 
Studies reveal that the networks can be 

disintegrated into connected autonomous systems, 

which are under separate administrative control [9]. 

These autonomous systems are generally treated as 

clusters. By this way the underlying topology of the 

widely distributed system as a cluster based general 

graph is modeled by us. For scaling the system, we 

presume that there is a data server in each and every 

cluster. In this research, we take into consideration 

only the data model placement on the computational 

clusters, and the model assignment inside each cluster 

can be treated separately. We presume that the actual 

copy of the entire set of N resources that are to be 

accessed by users is put up at a primary data server 

that is indicated as O. Let OD  indicate the N 

resources on the data server O, then, 

1 2{ , ,..., }O ND d d d and | OD | = N. Whenever 

applications use data saved in this primary sever, they 

generally follow a shortest path tree routing to the 

data source that is positioned at the primary server O 

[9]. Study reveals that almost all routings are stable in 

days or weeks and so the routing paths can be looked 

upon as a tree topology that is rooted at the primary 

server O. So, we take into consideration replication 

the widely distributed system as a tree graph, 

indicated as T, rooted at the primary server O. To 

expedite efficient data accesses by users in the 

Internet, a subset of resources in OD  are modeled on 

computational clusters in T.  

Let xD  indicate the resources on a data 

server x, then xD  ⊆ OD , and | xD | is  the number of 

modeled resources in xD . Take a set of resources Ω, 

let R(Ω) indicate the resident set of Ω that is the set of 

computational clusters hold Ω or a superset of Ω, i.e. 

R(Ω) = {x∈T | Ω ⊆ xD }.The divided system bolsters 

both read and update requests and each request can 

have access to an random number of resources in 

OD . For each and every data server x in T, there are 

a number of clients that are connected to it. The 

requests that are given by these clients can be seen as 

requests from the data server x. Presuming that clients 

can give both read and update requests. Let t indicate 

a transaction, it can be a read transaction or an update 

transaction. Let D (t) indicate the set of resources read 

or updated by t, D (t) ⊆ OD , and D (t) is designated 

as a transaction-data set of t. For a transaction t 

accessing D (t) given by a data server v, if D (t) 

⊆ VD , then t is served locally. Contra wise, t is send 

to the closest data server, which can serve t.  

For an update transaction t, the data server 

that performs t requires to send the update to other 

computational clusters through the edges in a tree that 

only possess of all those computational clusters *x in 

T, where D (t) ∩ *xD  ≠ φ. Our aim is to optimally 

allocate the models resources in OD  to computational 

clusters in T in such a way that aggregate access cost 

is minimized for a given client access pattern. We 

define a model placement that is having the minimal 

cost as an optimal model placement of OD  (OptPl 

( OD )). Observe that optimal placement solutions 

may not be unique. Take a data set Ω, R (Ω) in an 
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OptPl ( OD ) is an optimal resident set of Ω. During 

this research, we don’t take into consideration node 

capacity constraint, message losses, node failures, and 

the consistency maintenance issues. The 

communication cost that is brought up by model 

placement and de-allocation is also not taken into 

consideration. 

 

3. Operation Based limited Replication rate 

format 
During this section, we make definition of 

operation based limited replication rate formats for 

correlated resources in a tree graph, depending on the 

cost models that are defined in [Tum06a]. Take 2 

computational clusters x and y, where data server y is 

the parent data server of x. Here, we only emphasize 

model allocation decisions at y and model de-

allocation decision at x. This is because model 

allocation and de-allocation models and approaches 

can be applied in a similar fashion to other 

computational clusters in tree T. Take a set of 

resources Ω, Ω ⊆ OD . If Ω is modeled to x, a read 

transaction t, D (t) ⊆ Ω, can be served locally and one 

message can be saved. We take into consideration this 

as one unit of advantage for modeling Ω on x. But, 

because of the replication of Ω on x an update 

transaction t, D (t) ∩ Ω ≠ φ, requires to be send to x. 

We regard this as one unit of cost put up by modeling 

Ω on x.  

We define update_a (Ω, x) as the cost if Ω is 

modeled from x’s parent data server (y) to x, where 

update_a(Ω, x) = Σ|W(S)|, where (S ∩ Ω ≠ φ) ∧ (S ∩ 

xD  = φ)  

We define read_a(Ω,x) as the additional 

advantage if R is modeled to x, where  

                Read_a(Ω, x) = Σ|Q(S)|, where (S ⊆ Ω ∪ 

xD ) ∧ (S ∩ Ω ≠ φ) 

Now, we define cost_a(Ω, x) as the data 

object access cost for modeling Ω at x from y, where  

            cost_a(Ω, x) = update_a(Ω, x) – read_a(Ω, x) 

Let 
a

optS  indicates the set which 

minimizes cost_a(Ω, x),  

i.e. 
a

optS  = arg min (cost_a(Ω, x)). The transaction 

based partial replication models  
a

optS  to x if cost_a 

(
a

optS , x) < 0. 

In ICRDU, a node x can only de-allocate a 

data set Ω if and only if x is the leaf node of R(Ω) 

depending on the knowledge of the model on its child 

nodes, and x has held the model of Ω for since the end 

of last time period. We indicate xDd  as the data set 

on x in such a way that x is the leaf node of R( xDd ) 

and x has held the model of xDd  since the end of last 

time period. A set of resources, Ω ⊆ Ddx, may require 

de-allocation from x if modeling Ω is not going to 

benefit in terms of communication cost. Let 

update_d(Ω, x) indicate the de-allocation advantage 

for de-allocating Ω. In essence, the de-allocation 

advantage of Ω comprises all update transactions from 

y, accessing a subset of resources in Ω. update_d(Ω, 

x) = Σ|W(S)|, where (S ⊆ Ω) ∧ (Ω ⊆ xDd ) ∧ (S ≠ 

φ)Let read_d(Ω, x) indicate the de-allocation cost. In 

essence, the de-allocation cost of Ω comprises all read 

transactions that are issued by x, accessing a subset of 

xDd  and some resources in Ω. read_d(Ω, x) = 

Σ|Q(S)|, where (S ∩ Ω ≠ φ) ∧ (S ⊆ xD ) ∧ (Ω ⊆ 

xDd ). The model de-allocation access cost_d(Ω, x), 

is the dissimilarity between read cost and update 

advantage for de-allocating Ω from x.cost_d(Ω, x) = 

read _d(Ω, x) – update_d(Ω, x)Let 
d

optS  indicate the 

set taht minimizes cost_d(Ω, x), i.e. 
d

optS  = arg 

min(cost_d(Ω, x)). The transaction based partial 

replication de-allocates 
d

optS  from x if cost_d 

(
a

optS , x) < 0. 

 

4. ICRDU Algorithm 

                From [13], the model placement problem in 

T can be resolved by designating models in each 

subtree respectively, and the placement of models on 

each data server in T can also be done independently 

to its neighboring computational clusters in T. 

Moreover, the set of resources on v, VD , is a subset 

of wD , where w is the parent data server of v in T. 

The model placement on v can be treated only 

dependent on w and they are not dependent on other 

computational clusters. By this way, the model 

placement problem can be resolved by a distributed 

optimal partial replication (ICRDU) algorithm 

(including ICRDUA and ICRDUD, in Fig. 1). At the 

end of time period,τi, parent data server y creates 

model allocation decision for its child data server x by 

utilizing ICRDUA, depending  on its knowledge of 

the models on its child data server x that is got from 

the end of last time period i -1.At the time of getting 

the models that are allocated by y, data server x 

creates model de-allocation decision for itself by 

utilizing ICRDUD. In ICRDUD, data server x can 

only de-allocate a set of resources Ω from x only if x 

is a leaf data server of R(Ω), and it has hold the model 

of resources in Ω since the end of time periodτi-1. Let 
a

optS  (y, x, i ) indicate the data set calculated by 

ICRDUA by data server y for its child x at the end of 

i . Let 
d

optS  (x, i ) indicate the data set calculated 

by ICRDUD by data server x for itself at the end of 
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i . See that in for averting replication oscillation, 

ICRDU need that model de-allocation decision must 

be made for x after x has obtained model from its 

parent data server y in the same time period i . 

Moreover, in ICRDUA and ICRDUD, we  require 

calculating the lower bound cost for each new 

transaction-data union TranListIndexS S . One easy 

way to calculate the lower bound cost is read_a 

(
superS , x) – update_a (( TranListIndexS S ), x), 

where
. 1

sup

TranList Length

er i TranListIndex iS S S

  , and Si is the 

data set accessed by TranList[i], TranListIndex ≤ i ≤ 

n. 

 Min Cost: cost_a(
a

oprS ( , , ), ),iy x x initialized to 

;  

Min Cost_d: cost_d(
a

oprS ( , , ), ),iy x x initialized to 

;  

S: the contained set during the search, initialized to 

;  

Lower Bound Cost( newS )& Lower Bound 

Cost_d( newS ): 

Defined following the algorithm 

Tran List: the set of distinct transactions that access 

data; 

Tran List Index: initialized to 0; 

If(TranListIndex<TranList.Length){ 

TranListIndexS =TranList; 

[TranlistInded].getDataObjectSet() 

newS S  ;TranListIndexS  

 If(LowerBoundCost( newS )<MinCost) 

                 ICRRU-A( ,newS TransListIndex+1);} 

 ICRRU-A (S, TranListIndex+1);} 

else if(cost a(S, x)<Min Cost) { 

        MinCost=cost a(S, x); 

       aopt
S ( , , )iy x  = S - ;McD } 

if (TranListIndex<TranList.Length) { 

        TranListIndexS = TranList; 

 [TranListIndex].getDataObjectSet(); 

        newS S  ;TranListIndexS  

 If(LowerBoundCost_d( newS )MinCost_d){ 

          ICRRU-A ( ,newS TransListIndex+1);} 

          ICRRU-A (S, TranListIndex+1);} 

Else if(cost_d(S,x) MinCost_d) { 

          MinCost_d=cost_d(S,x); 

          aopt
S ( , )ix  = S; } 

Fig 1: ICRDU Algorithm 

Theorem 1 Let L indicate the tree level. 

ICRDU stabilizes and converges to optimal in 2L time 

periods. Proof: The proof is removed because of space 

limitation. Kindly refer [13] for the full proof.  

 

5. ICRRU Algorithm  
ICRRU since the run time of OPR algorithms 

develops exponentially with the number of 

transactions; we construct a intra cluster resource 

replication and utilization replication algorithms 

ICRRU, in which the heuristic Expansion-Shrinking 

algorithms (discussed in [12]) is utilized. 

                ,a

heuS * 
a

heuS ** 
a

heuS .S: data sets and 

initialized to ;  

 * * YL ; a record log vector and initialized to ;   

Make a copy of YL for cost computing; 

 While* YL      

for all data set recorded in * YL  choose the 

data set S such that
a

heuS S is minimal: 

if ( ** )a

heuS S   delete the record with S 

from* YL . 

else if cost a(S, x) < 0 && ** a

heuS S    

then ;a a

heu heuS S S   

else if (cost a(S, x) >= 0 

&& ) ( )a a

heu heuS S S S    

then S
a
htU = S";w S; 

else if ( cost_a(S, x) >= 0 && S n = (S c 

         then
a

heuS remains unchanged; 

 

 

if the size of
a

heuS  has been increased, 

       then delete the record with S from * YL , and 

                     move all records from** YL  to* YL .  

else               move the record with S from * YL to 

** YL . 

*
a

heuS =
a

heuS ; 

move all records from** YL  to * YL , and 
a

heuS  ; 

Assume that*
a

heuS has been allocated 

to (* * )a

x x heuD D S  , and re-do log reduction 

in* YL . 

while* YL    

     for all data set recorded in* YL  

  choose the data set S with
a

heuS S is minimal; 

if cost_a ( * ) cos _ ( * )a a

y x heu y x heuD D S S x t a D D S S x        
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     ;a a

heu heuS S S   

if the size of has been increased,  

    then delete the record with S from* YL   

              and move all records from* YL  to* YL .  

else move the record with S from* YL  to** YL . 

** * ;a a

heu y x heuS D D S    

If (cost(**
a

heuS , x)<0) **
a

heuS = ; ; 

a

heuS =**
a

heuS * :a

heuS  

Fig 2: ICRRU algorithm for Model allotment(ICRRU-

A) 

The heuristic Expansion-Shrinking 

algorithms now utilize the cost functions that are 

defined in Section 3. Moreover, in order to make 

ICRRU stabilize, we combine the Set-Expansion and 

Set-Shrinking algorithms. In both algorithms, the data 

server first performs the Set-Expansion algorithm and 

calculates a data set, which is a subset of the optimal 

data set that is calculated by the optimal algorithms. 

Now, it performs the Set-Shrinking algorithm 

presuming that the data set calculated by the Set-

Expansion algorithm is already designated to the child 

data server or de-allocated from itself. Finally, we 

merge the data sets calculated by the two algorithms 

as the final data set to be designated from y to x or de-

allocated from x. The model allotment process of 

ICRRU algorithm (ICRRU-A) and the model 

withhold for ICRRU algorithm (ICRRU-W) are 

indicated in Fig. 2 and 3, respectively. ICRRU is 

defined as given below. At the end of time period, τi, 

parent data server y creates model allocation decision 

for its child data server x by performing ESRA, 

depending on its knowledge of the models on its child 

data server x got from the end of last time period 1i  . 

After getting the models from y, data server x 

performs ESRD and makes model de-allocation 

decision for itself. At this point, data server x can only 

de-allocate a set of resources Ω from x only if x is a 

leaf data server of R(Ω), and it has held the model of 

resources in Ω since the end of time period 1i  . 

Observe that for averting replication oscillation, 

ICRRU needs that model de-allocation decision must 

be made for x after x has obtained model from its 

parent data server y during same time period i .  

Theorem 2 Let L indicates the tree level. ICRRU 

stabilizes in at most 2L time periods.  

Proof: The proof is removed because of space 

confinement. Kindly refer [13] for the full proof. 

.d

heuS * ,d

heuS  ** .d

heuS S: data sets and initialized to 

; ** xL temporary record log vector and initialized 

to ;  

Make a copy of Lx for cost computing: 

while (* )xL    

for all data set recorded in* xL  choose 

    the data set S such that
d

heuS S is minimal; 

if ( ** )d

heuS S   delete the record with S 

from* xL  

else if cost_d ( , ) 0&& d

heuS x S S      

       then ;d d

heu heuS S S   

else if (COST d ( , ) cos _ ( , )d d

heu heuS S x t a S x   

       then ;d d

heu heuS S S   

else if ( 

cost_d ( , ) 0&& ) ( )d d

heu heuS x S S S S     

then
d

heuS  remains unchanged, 

if the size of has been increased 

      then delete the record with S from* xL and 

move all records from** xL to* xL  

else          move the record with S from* xL to** xL  

* ;d d

heu heuS S  

move all records from** xL to* xL and = ;d

heuS   

Assume* d

heuS  has been de-allocated from x 

(* * )d

x x heuD D S  and re-do log reduction 

in** xL  

while* xL   

    for all data set recorded in* BCL , 

        choose the data set S with
d

heuS S minimal: 

if cost_d (* , ) cos _ (* , )d d

x heu x heuD S S x t d D S x     

;d d

heu heuS S S    

If the size of 
d

heuS has been increased, then 

delete the record with S from* xL  

and move all records from** xL to* xL  

else          move the record with S from* xL to** xL . 

** * ;d d

heu x heuS D S   

If(cost_d( (** , ) 0)** ;d d

heu heuS x S    

** ;d d d

heu heu heuS S S                          

Fig 3: ICRRU algorithm for model withhold (ICRRU-

W) 

 

6. Simulation Results 
  In the simulation, comparison of the ICRRU 

algorithm  with the commonly utilized distributed 

frequency-based partial replication (DFPR) scheme is 

done for studying its performance and effectiveness 
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on message saving. Observe that the frequency based 

algorithm defined in [12] can easily be acclimatized to 

the distributed solution, DFPR that is fairly direct that 

each and every node makes local decision depending 

on the access frequency. The tree network that we 

chose comprises 20 nodes with height of 6. Initially, 

the root node O (that indicates cluster HMSC) hosts 

all the resources in data set OD . Each and every node 

x in the tree is haphazardly allocated a partial set of 

the resources xD  ⊆ OD . The requirement is that xD  

⊆ 
yD  if y is an ancestor of node x in the tree 

network. The metric that we take into consideration is 

the product of the number of messages and the 

numbers of hops these messages are send in order to 

process the requests in the tree network. Going by 

example, if a request that is issued locally can be 

served locally, then the number of message is counted 

as 0. In the case of the request being served at its 

parent, then one message is taken into count.  

In this simulation, we utilize one PC 

platform for simulating 20 server clusters and the 

period of execution for each and every experiment 

spans 10 time periods. The simulated distributed 

algorithm requires retaining the history logs for every 

request (most of the information is not required in a 

real system). Because of the excessive I/O, the 

simulation process becomes very time-consuming 

(observe that the time is not because of the algorithm 

itself). Helping to avert prejudiced access patterns, 

multiple access patterns are produced haphazardly and 

the data collection process is redone for each and 

every pattern. In order to balance between the 

confidence level of the experimental results and the 

time for the simulation study, we select repeating the 

procedure 100 times (i.e., producing 100 distinct 

access patterns). Whenever the number of resources 

and the number of transactions increase, the system is 

likely to overload and we have to further decline the 

repetition to 10 times (i.e., utilizing only 10 distinct 

access patterns). The final data given in the following 

subsections are the average of these trials. 

 

6.1 Transaction Generation   

We presume that the resources accessed by 

most of the transactions follow various patterns. 

Moreover, because of access locality, we presume that 

the patterns will be stable for some time periods. In 

this experimental study, we first produce a series of 

transactions and scrutinize the resources they access. 

The set of resources accessed by a transaction is 

defined as a resource bundle. We produce transactions 

till M distinct resource bundles are identified. Observe 

that the resource bundles may have overlapping 

resources but no two resource bundles are identically 

same. For producing a transaction, the number of 

resources to be accessed by the transaction, indicated 

as μ, is first ascertained. μ is surrounded by TS and 

follows a Zipf distribution. More specially, the chance 

of a transaction having data set size μ is proportional 

to 1/ SZ
,
 where SZ  is the skew parameter of the 

Zipf distribution [13]. Now, the μ resources are 

ascertained. Let NS indicate the total number of 

resources we have taken into consideration in the 

experimental study. 

Each and every data object is ranked. The 

chance that a data object is accessed by a transaction 

is proportional to1/ DZ
r  (also a Zipf distribution), 

where DZ  is the skew parameter. Lastly, if a 

transaction is read only or update is ascertained by the 

ratio, R/W, in a uniform distribution. Here R is the 

total number of read transactions given by MCP  and 

W is the aggregate number of update transactions 

given by nodes other than MCP . From the first batch 

of transactions produced, we get M resource bundles 

and utilize them as the basis in order to formulate an 

access distribution. The M resource bundles are 

separated into 2 clusters, comprising the read cluster 

having 1M  resource bundles for the read transactions 

and the write cluster having 2M  resource bundles for 

the update transactions, where 1M  + 2M  = M and 

1M / 2M  = R/W. For each and every cluster, 0.5 1M  

(or 0.5 2M ) virtual resource bundles are appended 

and the pre-generated 1M  (or 2M ) resource bundles  

along with the virtual resource bundles are ranked. 

The transactions are produced in the similar way as 

talked about in [12]. Regarding simulation, we 

presume that in a time limit T, NT  transactions are 

given from each data server in the tree.  

 

In this manner, in each time period, all 

computational clusters issue NT  transactions that are 

haphazardly produced depending on the same access 

pattern. For making the model allocation decision for 

a child data server, each and every data server records 

the number of read transactions that are sent from the 

child data server and the number of update 

transactions received to the child data server. In a 

similar fashion recording is also done in order to 

make the model de-allocation decision for a child data 

server. In case of a read transaction being issued 

locally or sent from its children can be served locally, 

then the transaction is recorded by the data server 

records in its local log. Apart from that it also records 

the update transactions spread from its parent in the 

local transaction log. After the time period, a model 

allocation decision is done for each and every child 

data server depending on the transaction log that is 

recorded for that child data server and resources are 

reproduced and assigned to the child data server if 

required. Now, All computational clusters make the 
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de-allocation decision depending on its local 

transaction log. Performance data are calculated 

depending on the allocated transactions and the model 

set at each data server in each time period, just before 

it gets another model set from its parent. Observe that 

in this simulation, the number of resources selected is 

small as the amount of memory needed for recording 

logs for each data server in each time period. A much 

larger number of resources can be selected in case the 

ICRRU is operated in a real system, as indicated in 

[12]. 

 

6.2 The Stabilization 

Comparison of the intra cluster resource 

replication and utilization algorithm with the 

distributed frequency-based algorithm is done for 

observing the stability of the two algorithms. Fig. 4 

gives the number of message necessary for processing 

every transaction that is issued in the system for the 2 

algorithms. The number of messages needed in the 

system drops very speedily in the first 4 time periods 

for both algorithms. The percentage of the number of 

messages declined at the 1st time period is much 

greater compared to that of the 2nd time period, which 

is instead greater than that of the 3rd time period, so 

on and so forth. After the completion 4th time period, 

the number of messages that are required in the 

system remains stable for both algorithms, less than 

40% messages are required. At any time period, the 

ICRRU requires less number of messages than the 

ICRDU algorithm but the difference is negligible. 

                  

 
 

Fig 4: The performance of the cost stabilization by 

ICRDU and ICRRU 

 

6.3 Scalability in terms of Resources and 

Transactions proportionality 

Comparison of the intra cluster resource 

replication and utilization algorithm ICRRU with the 

distributed frequency-based algorithm DFPR is done 

and calculate the effect of NS (the number of 

resources in OD ) on their performance. The 

parameters in this experiment are set as given here: 

DZ  = 0.2, SZ  = 0.5, R/W = 0.9, ST  = 3, NT  = 50 * 

SN . M and NS changes from 10 to 100 (M is 

adjusted in order to make sure that we have access to 

almost all resources). Fig. 5 indicates the number of 

messages necessary for processing all the transactions 

given by the system for the two algorithms. If SN  

increases, the number of messages necessary for the 

two algorithms increases as the number of transaction 

also increases. But, the difference of the message 

necessary for the 2 algorithms will be remained in a 

stable way (the number of message necessary for 

resource discovery and replication with 

ICRRU&ICRDU is 17% of that needed for only 

resource discovery[16]), even though the variation in 

the number of messages increases. 

                

 
 

Fig 5: Scalability of resource discovery and usage[16] 

and ICRRU&ICRDU 

 

7. Summary 

In this paper, we scrutinize the dynamic 

designation of correlated resources in computational 

clusters. We model the topology of the network that is 

formed by the computational clusters in the 

distributed system as a tree. Initially we show that 

model designation decisions can be done locally for 

each and every model site in a tree network, using 

data access knowledge of its neighbors. Now, we 

develop a new replication cost model for correlated 

resources in Internet environment. Depending on the 

cost model and the algorithms that are used in 

previous research, we have put in effort to develop a 

inter cluster resource discovery and utilization 

algorithm (ICRDU) for correlated data in internet 

environment. ICRDU has 2 sub algorithms, ICRDUA 

and ICRDUD, and it is indicated that ICRDU 

stabilizes and converges in 2L time periods. Here, L is 

the height of the tree.  

Now, an intra cluster resource replication and 

utilization algorithm (ICRRU) is now developed for 

making model placement decisions in an efficient 

manner. The ICRRU has 2 sub algorithms, namely, 
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ICRRU for model allotment and ICRRU for model 

withhold, and it is indicated that ICRRU stabilize in 

2L time periods. The algorithm gets near optimal 

solutions for the correlated data model and produces 

significant performance gains. The simulation results 

indicate that the intra cluster resource replication and 

utilization allocation algorithm outperforms the 

general resource discovery and utilization schemes in 

a significant way. 
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