
P.R.RAJESH KUMAR, B.LALITHA / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1329-1336

1329 | P a g e

A CPU Resource Discovery Solution Using Cluster Computing

 P.R.RAJESH KUMAR B.LALITHA
(M.Tech) (CSE), Deptof CSE, JNTUACE Assistant Professor. Dept of CSE, JNTUACE

 JNTU, Anantapur JNTU, Anantapur,

Anantapur, Andhra Pradesh, India-515001 Anantapur, Andhra Pradesh, India-515001

Abstract
Mainly in the Computational Clusters, the

most concern goes to communication. In order to

decrease the communication cost and devise its

performance researchers have been conducting

research on placing of data in distribution system.

Whatever may be, data correlates because of clients

accesses which ultimately effects on data placement.

In the early research, for the development of

performance in mobile transactions, the duplication of

placement matter on correlated data is mentioned. In

the present paper, primarily model allocation

decisions can be made locally for each model site in a

tree network, with data access knowledge of its

neighbors is discussed and secondly for correlated

resources in internet environment a novel replication

cost model is focused. With reference to the early

research of cost model and algorithms, the present

model, an inter cluster resource discovery and

utilization algorithm (ICRDU) for correlated data in

internet environment is created. Later an intra cluster

resource replication and utilization algorithm

(ICRRU) is devised to make model placement

decisions effectively. The algorithm gets near optimal

solutions for the correlated data model and produces

performance improvement. The experimental studies

explain the intra cluster resource replication and

utilization allocation algorithm significantly

outperforms the general frequency-based replication

schemes.

Introduction
With the advances in network technologies,

applications are all moving toward serving widely

distributed users. However, today’s Internet still

cannot guarantee quality of services and potential

congestions can result in prolonged delays and leave

unsatisfied customers. The problem can be more

severe when the accesses involve a large amount of

data. Replication techniques have been commonly

used to minimize the communication latency by

bringing the data close to the clients. Web caching is a

successful example of the technique. However, when

the data may be updated, the problem is more

complicated. The more models in the system, the

higher the update cost will be. Thus, data needs to be

carefully placed to avoid unnecessary overhead.

There have been a lot of research works

addressing the data model placement issues in

Computational Clusters [1, 4, 7, 14, 15]. Generally,

the access pattern is used to guide the placement

decision. Several considerations like static [1] and

dynamic [2, 7, 15] placement decisions and full and

partial replication schemes have also been

investigated. Partial replication take into consideration

reproduce subsets of resources and is generally

required for environments showing strong access

locality [8, 11]. Almost all the model placement

algorithms do not specifically presume full or partial

replication [5, 15]. In reality, most of the placement

decision algorithms can be applied to both cases by

managing the granularity of the resources that are

considered. But, each of these algorithms presumes

that resources are not dependent on each other. In

several applications, each and every

request/transaction may have access to multiple

resources and, so, bringing correlation among the

resources. Going by example, for a read transaction

accessing multiple resources, all of these resources at

a local site will be able to decline communication

overhead. But, in the case of only a part of the data set

that is being accessed is modeled at a local site, then

the replication will not bring much advantage. This is

because the read transaction still requires to be

forwarded in order to recover the resources that are

left out. The same is applied to an update transaction

that is accessing multiple resources. In the case of

only a part of the data set that is being updated is

modeled, a message is required for sending the update

request. So, for getting better model allocation, it is

necessary to take into consideration the access

correlation among resources. In [12], we have dealt

about the model placement issues of correlated

resources in mobile environments considering mobile

networks that are having a star topology. Further, it

presumes that every time the base station node holds

the total data set (comprising all resources that may be

required by the mobile nodes). This is required for

minimizing the mobile unit connection time for the

accesses. Whenever the general Internet environment

is taken into consideration, several issues are to be

considered. The first one is that there is no need of

considering the connection time for Internet based

clients and partial replication is needed.

Moreover, a greater complex topology

requires consideration for Internet accesses. So, a

more sophisticated placement algorithm for correlated

resources should be evolved. A crucial issue in model

placement algorithms in such kind of environment is

P.R.RAJESH KUMAR, B.LALITHA / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1329-1336

1330 | P a g e

that who executes the intensive placement

computation. Some of the placement algorithms are

centralized [6, 14] that makes the central decision-

making site to be overloaded severely. Distributed

model placement algorithms, like [10, 15], grant each

model site to make localized decisions. They will be

able to react to changes in access patterns and

naturally divide the computation. In this paper, we

construct a dynamic model placement algorithm,

which (1) takes into consideration a tree topology

network, (2) considers the correlation among

resources whenever accessed by the same requests,

and (3) gives distributed algorithm that does localized

analysis for declining the computation cost.

Moreover, our algorithm is adaptive. It takes into

consideration 2 schemes. To get optimal solutions, a

distributed branch and bound algorithm is utilized to

calculate the optimal set of resources models to be

designated on the computational clusters. Remember

that in commercial applications, transaction access

patterns follow the “80/20” rule [3], i.e., just 20% of

the transaction types accounts for 80% of the total

amount of the transactions. Whenever the transaction

access pattern is stabled, the set of resources

associated is considerably small. Lanier Watkins et

al[] discussed a Passive Solution to the Memory

Resource Discovery Problem in Computational

Clusters. When compared to existing models this

solution is more robust secure and scalable. The prime

benefits of this model are low message complexity,

scalability, load balancing, and low maintainability

but limited their solution to deal with resource

requirements of the clusters.

So, the optimal algorithm is obtainable in

this case. For dealing with the access patterns that are

frequently changed, we suggest resource discovery,

replication and utilization algorithms for getting near

optimal solutions, which is motivated from the work

carried out by Lanier Watkins et al[]. The remaining

part of this paper is distributed as follows. Section 2

explains our system model and problem definition,

depending on the system model that is defined in [12].

Section 3 delves about the transaction based cost

model in a distributed environment. Section 4 gives a

distributed partial replication algorithm (ICRDU).

Section 5 deals about a intra cluster resource

replication and utilization partial replication algorithm

(ICRRU). Section 6 is about the experimental study

results and Section 7 concludes the paper

2. Resource allocation System Format
Studies reveal that the networks can be

disintegrated into connected autonomous systems,

which are under separate administrative control [9].

These autonomous systems are generally treated as

clusters. By this way the underlying topology of the

widely distributed system as a cluster based general

graph is modeled by us. For scaling the system, we

presume that there is a data server in each and every

cluster. In this research, we take into consideration

only the data model placement on the computational

clusters, and the model assignment inside each cluster

can be treated separately. We presume that the actual

copy of the entire set of N resources that are to be

accessed by users is put up at a primary data server

that is indicated as O. Let OD indicate the N

resources on the data server O, then,

1 2{ , ,..., }O ND d d d and | OD | = N. Whenever

applications use data saved in this primary sever, they

generally follow a shortest path tree routing to the

data source that is positioned at the primary server O

[9]. Study reveals that almost all routings are stable in

days or weeks and so the routing paths can be looked

upon as a tree topology that is rooted at the primary

server O. So, we take into consideration replication

the widely distributed system as a tree graph,

indicated as T, rooted at the primary server O. To

expedite efficient data accesses by users in the

Internet, a subset of resources in OD are modeled on

computational clusters in T.

Let xD indicate the resources on a data

server x, then xD ⊆ OD , and | xD | is the number of

modeled resources in xD . Take a set of resources Ω,

let R(Ω) indicate the resident set of Ω that is the set of

computational clusters hold Ω or a superset of Ω, i.e.

R(Ω) = {x∈T | Ω ⊆ xD }.The divided system bolsters

both read and update requests and each request can

have access to an random number of resources in

OD . For each and every data server x in T, there are

a number of clients that are connected to it. The

requests that are given by these clients can be seen as

requests from the data server x. Presuming that clients

can give both read and update requests. Let t indicate

a transaction, it can be a read transaction or an update

transaction. Let D (t) indicate the set of resources read

or updated by t, D (t) ⊆ OD , and D (t) is designated

as a transaction-data set of t. For a transaction t

accessing D (t) given by a data server v, if D (t)

⊆ VD , then t is served locally. Contra wise, t is send

to the closest data server, which can serve t.

For an update transaction t, the data server

that performs t requires to send the update to other

computational clusters through the edges in a tree that

only possess of all those computational clusters *x in

T, where D (t) ∩ *xD ≠ φ. Our aim is to optimally

allocate the models resources in OD to computational

clusters in T in such a way that aggregate access cost

is minimized for a given client access pattern. We

define a model placement that is having the minimal

cost as an optimal model placement of OD (OptPl

(OD)). Observe that optimal placement solutions

may not be unique. Take a data set Ω, R (Ω) in an

P.R.RAJESH KUMAR, B.LALITHA / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1329-1336

1331 | P a g e

OptPl (OD) is an optimal resident set of Ω. During

this research, we don’t take into consideration node

capacity constraint, message losses, node failures, and

the consistency maintenance issues. The

communication cost that is brought up by model

placement and de-allocation is also not taken into

consideration.

3. Operation Based limited Replication rate

format
During this section, we make definition of

operation based limited replication rate formats for

correlated resources in a tree graph, depending on the

cost models that are defined in [Tum06a]. Take 2

computational clusters x and y, where data server y is

the parent data server of x. Here, we only emphasize

model allocation decisions at y and model de-

allocation decision at x. This is because model

allocation and de-allocation models and approaches

can be applied in a similar fashion to other

computational clusters in tree T. Take a set of

resources Ω, Ω ⊆ OD . If Ω is modeled to x, a read

transaction t, D (t) ⊆ Ω, can be served locally and one

message can be saved. We take into consideration this

as one unit of advantage for modeling Ω on x. But,

because of the replication of Ω on x an update

transaction t, D (t) ∩ Ω ≠ φ, requires to be send to x.

We regard this as one unit of cost put up by modeling

Ω on x.

We define update_a (Ω, x) as the cost if Ω is

modeled from x’s parent data server (y) to x, where

update_a(Ω, x) = Σ|W(S)|, where (S ∩ Ω ≠ φ) ∧ (S ∩

xD = φ)

We define read_a(Ω,x) as the additional

advantage if R is modeled to x, where

 Read_a(Ω, x) = Σ|Q(S)|, where (S ⊆ Ω ∪

xD) ∧ (S ∩ Ω ≠ φ)

Now, we define cost_a(Ω, x) as the data

object access cost for modeling Ω at x from y, where

 cost_a(Ω, x) = update_a(Ω, x) – read_a(Ω, x)

Let
a

optS indicates the set which

minimizes cost_a(Ω, x),

i.e.
a

optS = arg min (cost_a(Ω, x)). The transaction

based partial replication models
a

optS to x if cost_a

(
a

optS , x) < 0.

In ICRDU, a node x can only de-allocate a

data set Ω if and only if x is the leaf node of R(Ω)

depending on the knowledge of the model on its child

nodes, and x has held the model of Ω for since the end

of last time period. We indicate xDd as the data set

on x in such a way that x is the leaf node of R(xDd)

and x has held the model of xDd since the end of last

time period. A set of resources, Ω ⊆ Ddx, may require

de-allocation from x if modeling Ω is not going to

benefit in terms of communication cost. Let

update_d(Ω, x) indicate the de-allocation advantage

for de-allocating Ω. In essence, the de-allocation

advantage of Ω comprises all update transactions from

y, accessing a subset of resources in Ω. update_d(Ω,

x) = Σ|W(S)|, where (S ⊆ Ω) ∧ (Ω ⊆ xDd) ∧ (S ≠

φ)Let read_d(Ω, x) indicate the de-allocation cost. In

essence, the de-allocation cost of Ω comprises all read

transactions that are issued by x, accessing a subset of

xDd and some resources in Ω. read_d(Ω, x) =

Σ|Q(S)|, where (S ∩ Ω ≠ φ) ∧ (S ⊆ xD) ∧ (Ω ⊆

xDd). The model de-allocation access cost_d(Ω, x),

is the dissimilarity between read cost and update

advantage for de-allocating Ω from x.cost_d(Ω, x) =

read _d(Ω, x) – update_d(Ω, x)Let
d

optS indicate the

set taht minimizes cost_d(Ω, x), i.e.
d

optS = arg

min(cost_d(Ω, x)). The transaction based partial

replication de-allocates
d

optS from x if cost_d

(
a

optS , x) < 0.

4. ICRDU Algorithm

 From [13], the model placement problem in

T can be resolved by designating models in each

subtree respectively, and the placement of models on

each data server in T can also be done independently

to its neighboring computational clusters in T.

Moreover, the set of resources on v, VD , is a subset

of wD , where w is the parent data server of v in T.

The model placement on v can be treated only

dependent on w and they are not dependent on other

computational clusters. By this way, the model

placement problem can be resolved by a distributed

optimal partial replication (ICRDU) algorithm

(including ICRDUA and ICRDUD, in Fig. 1). At the

end of time period,τi, parent data server y creates

model allocation decision for its child data server x by

utilizing ICRDUA, depending on its knowledge of

the models on its child data server x that is got from

the end of last time period i -1.At the time of getting

the models that are allocated by y, data server x

creates model de-allocation decision for itself by

utilizing ICRDUD. In ICRDUD, data server x can

only de-allocate a set of resources Ω from x only if x

is a leaf data server of R(Ω), and it has hold the model

of resources in Ω since the end of time periodτi-1. Let
a

optS (y, x, i) indicate the data set calculated by

ICRDUA by data server y for its child x at the end of

i . Let
d

optS (x, i) indicate the data set calculated

by ICRDUD by data server x for itself at the end of

P.R.RAJESH KUMAR, B.LALITHA / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1329-1336

1332 | P a g e

i . See that in for averting replication oscillation,

ICRDU need that model de-allocation decision must

be made for x after x has obtained model from its

parent data server y in the same time period i .

Moreover, in ICRDUA and ICRDUD, we require

calculating the lower bound cost for each new

transaction-data union TranListIndexS S . One easy

way to calculate the lower bound cost is read_a

(
superS , x) – update_a ((TranListIndexS S), x),

where
. 1

sup

TranList Length

er i TranListIndex iS S S

  , and Si is the

data set accessed by TranList[i], TranListIndex ≤ i ≤

n.

 Min Cost: cost_a(
a

oprS (, ,),),iy x x initialized to

;

Min Cost_d: cost_d(
a

oprS (, ,),),iy x x initialized to

;

S: the contained set during the search, initialized to

;

Lower Bound Cost(newS)& Lower Bound

Cost_d(newS):

Defined following the algorithm

Tran List: the set of distinct transactions that access

data;

Tran List Index: initialized to 0;

If(TranListIndex<TranList.Length){

TranListIndexS =TranList;

[TranlistInded].getDataObjectSet()

newS S  ;TranListIndexS

 If(LowerBoundCost(newS)<MinCost)

 ICRRU-A(,newS TransListIndex+1);}

 ICRRU-A (S, TranListIndex+1);}

else if(cost a(S, x)<Min Cost) {

 MinCost=cost a(S, x);

 aopt
S (, ,)iy x  = S - ;McD }

if (TranListIndex<TranList.Length) {

 TranListIndexS = TranList;

 [TranListIndex].getDataObjectSet();

 newS S  ;TranListIndexS

 If(LowerBoundCost_d(newS)MinCost_d){

 ICRRU-A (,newS TransListIndex+1);}

 ICRRU-A (S, TranListIndex+1);}

Else if(cost_d(S,x) MinCost_d) {

 MinCost_d=cost_d(S,x);

 aopt
S (,)ix  = S; }

Fig 1: ICRDU Algorithm

Theorem 1 Let L indicate the tree level.

ICRDU stabilizes and converges to optimal in 2L time

periods. Proof: The proof is removed because of space

limitation. Kindly refer [13] for the full proof.

5. ICRRU Algorithm
ICRRU since the run time of OPR algorithms

develops exponentially with the number of

transactions; we construct a intra cluster resource

replication and utilization replication algorithms

ICRRU, in which the heuristic Expansion-Shrinking

algorithms (discussed in [12]) is utilized.

 ,a

heuS *
a

heuS **
a

heuS .S: data sets and

initialized to ;

 * * YL ; a record log vector and initialized to ;

Make a copy of YL for cost computing;

 While* YL  

for all data set recorded in * YL choose the

data set S such that
a

heuS S is minimal:

if (**)a

heuS S   delete the record with S

from* YL .

else if cost a(S, x) < 0 && ** a

heuS S  

then ;a a

heu heuS S S 

else if (cost a(S, x) >= 0

&&) ()a a

heu heuS S S S  

then S
a
htU = S";w S;

else if (cost_a(S, x) >= 0 && S n = (S c

 then
a

heuS remains unchanged;

if the size of
a

heuS has been increased,

 then delete the record with S from * YL , and

 move all records from** YL to* YL .

else move the record with S from * YL to

** YL .

*
a

heuS =
a

heuS ;

move all records from** YL to * YL , and
a

heuS  ;

Assume that*
a

heuS has been allocated

to (* *)a

x x heuD D S  , and re-do log reduction

in* YL .

while* YL 

 for all data set recorded in* YL

 choose the data set S with
a

heuS S is minimal;

if cost_a (*) cos _ (*)a a

y x heu y x heuD D S S x t a D D S S x      

P.R.RAJESH KUMAR, B.LALITHA / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1329-1336

1333 | P a g e

 ;a a

heu heuS S S 

if the size of has been increased,

 then delete the record with S from* YL

 and move all records from* YL to* YL .

else move the record with S from* YL to** YL .

** * ;a a

heu y x heuS D D S  

If (cost(**
a

heuS , x)<0) **
a

heuS = ; ;

a

heuS =**
a

heuS * :a

heuS

Fig 2: ICRRU algorithm for Model allotment(ICRRU-

A)

The heuristic Expansion-Shrinking

algorithms now utilize the cost functions that are

defined in Section 3. Moreover, in order to make

ICRRU stabilize, we combine the Set-Expansion and

Set-Shrinking algorithms. In both algorithms, the data

server first performs the Set-Expansion algorithm and

calculates a data set, which is a subset of the optimal

data set that is calculated by the optimal algorithms.

Now, it performs the Set-Shrinking algorithm

presuming that the data set calculated by the Set-

Expansion algorithm is already designated to the child

data server or de-allocated from itself. Finally, we

merge the data sets calculated by the two algorithms

as the final data set to be designated from y to x or de-

allocated from x. The model allotment process of

ICRRU algorithm (ICRRU-A) and the model

withhold for ICRRU algorithm (ICRRU-W) are

indicated in Fig. 2 and 3, respectively. ICRRU is

defined as given below. At the end of time period, τi,

parent data server y creates model allocation decision

for its child data server x by performing ESRA,

depending on its knowledge of the models on its child

data server x got from the end of last time period 1i  .

After getting the models from y, data server x

performs ESRD and makes model de-allocation

decision for itself. At this point, data server x can only

de-allocate a set of resources Ω from x only if x is a

leaf data server of R(Ω), and it has held the model of

resources in Ω since the end of time period 1i  .

Observe that for averting replication oscillation,

ICRRU needs that model de-allocation decision must

be made for x after x has obtained model from its

parent data server y during same time period i .

Theorem 2 Let L indicates the tree level. ICRRU

stabilizes in at most 2L time periods.

Proof: The proof is removed because of space

confinement. Kindly refer [13] for the full proof.

.d

heuS * ,d

heuS ** .d

heuS S: data sets and initialized to

; ** xL temporary record log vector and initialized

to ;

Make a copy of Lx for cost computing:

while (*)xL 

for all data set recorded in* xL choose

 the data set S such that
d

heuS S is minimal;

if (**)d

heuS S   delete the record with S

from* xL

else if cost_d (,) 0&& d

heuS x S S   

 then ;d d

heu heuS S S 

else if (COST d (,) cos _ (,)d d

heu heuS S x t a S x 

 then ;d d

heu heuS S S 

else if (

cost_d (,) 0&&) ()d d

heu heuS x S S S S   

then
d

heuS remains unchanged,

if the size of has been increased

 then delete the record with S from* xL and

move all records from** xL to* xL

else move the record with S from* xL to** xL

* ;d d

heu heuS S

move all records from** xL to* xL and = ;d

heuS 

Assume* d

heuS has been de-allocated from x

(* *)d

x x heuD D S  and re-do log reduction

in** xL

while* xL 

 for all data set recorded in* BCL ,

 choose the data set S with
d

heuS S minimal:

if cost_d (* ,) cos _ (* ,)d d

x heu x heuD S S x t d D S x   

;d d

heu heuS S S 

If the size of
d

heuS has been increased, then

delete the record with S from* xL

and move all records from** xL to* xL

else move the record with S from* xL to** xL .

** * ;d d

heu x heuS D S 

If(cost_d((** ,) 0)** ;d d

heu heuS x S  

** ;d d d

heu heu heuS S S 

Fig 3: ICRRU algorithm for model withhold (ICRRU-

W)

6. Simulation Results
 In the simulation, comparison of the ICRRU

algorithm with the commonly utilized distributed

frequency-based partial replication (DFPR) scheme is

done for studying its performance and effectiveness

P.R.RAJESH KUMAR, B.LALITHA / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1329-1336

1334 | P a g e

on message saving. Observe that the frequency based

algorithm defined in [12] can easily be acclimatized to

the distributed solution, DFPR that is fairly direct that

each and every node makes local decision depending

on the access frequency. The tree network that we

chose comprises 20 nodes with height of 6. Initially,

the root node O (that indicates cluster HMSC) hosts

all the resources in data set OD . Each and every node

x in the tree is haphazardly allocated a partial set of

the resources xD ⊆ OD . The requirement is that xD

⊆
yD if y is an ancestor of node x in the tree

network. The metric that we take into consideration is

the product of the number of messages and the

numbers of hops these messages are send in order to

process the requests in the tree network. Going by

example, if a request that is issued locally can be

served locally, then the number of message is counted

as 0. In the case of the request being served at its

parent, then one message is taken into count.

In this simulation, we utilize one PC

platform for simulating 20 server clusters and the

period of execution for each and every experiment

spans 10 time periods. The simulated distributed

algorithm requires retaining the history logs for every

request (most of the information is not required in a

real system). Because of the excessive I/O, the

simulation process becomes very time-consuming

(observe that the time is not because of the algorithm

itself). Helping to avert prejudiced access patterns,

multiple access patterns are produced haphazardly and

the data collection process is redone for each and

every pattern. In order to balance between the

confidence level of the experimental results and the

time for the simulation study, we select repeating the

procedure 100 times (i.e., producing 100 distinct

access patterns). Whenever the number of resources

and the number of transactions increase, the system is

likely to overload and we have to further decline the

repetition to 10 times (i.e., utilizing only 10 distinct

access patterns). The final data given in the following

subsections are the average of these trials.

6.1 Transaction Generation

We presume that the resources accessed by

most of the transactions follow various patterns.

Moreover, because of access locality, we presume that

the patterns will be stable for some time periods. In

this experimental study, we first produce a series of

transactions and scrutinize the resources they access.

The set of resources accessed by a transaction is

defined as a resource bundle. We produce transactions

till M distinct resource bundles are identified. Observe

that the resource bundles may have overlapping

resources but no two resource bundles are identically

same. For producing a transaction, the number of

resources to be accessed by the transaction, indicated

as μ, is first ascertained. μ is surrounded by TS and

follows a Zipf distribution. More specially, the chance

of a transaction having data set size μ is proportional

to 1/ SZ
,
 where SZ is the skew parameter of the

Zipf distribution [13]. Now, the μ resources are

ascertained. Let NS indicate the total number of

resources we have taken into consideration in the

experimental study.

Each and every data object is ranked. The

chance that a data object is accessed by a transaction

is proportional to1/ DZ
r (also a Zipf distribution),

where DZ is the skew parameter. Lastly, if a

transaction is read only or update is ascertained by the

ratio, R/W, in a uniform distribution. Here R is the

total number of read transactions given by MCP and

W is the aggregate number of update transactions

given by nodes other than MCP . From the first batch

of transactions produced, we get M resource bundles

and utilize them as the basis in order to formulate an

access distribution. The M resource bundles are

separated into 2 clusters, comprising the read cluster

having 1M resource bundles for the read transactions

and the write cluster having 2M resource bundles for

the update transactions, where 1M + 2M = M and

1M / 2M = R/W. For each and every cluster, 0.5 1M

(or 0.5 2M) virtual resource bundles are appended

and the pre-generated 1M (or 2M) resource bundles

along with the virtual resource bundles are ranked.

The transactions are produced in the similar way as

talked about in [12]. Regarding simulation, we

presume that in a time limit T, NT transactions are

given from each data server in the tree.

In this manner, in each time period, all

computational clusters issue NT transactions that are

haphazardly produced depending on the same access

pattern. For making the model allocation decision for

a child data server, each and every data server records

the number of read transactions that are sent from the

child data server and the number of update

transactions received to the child data server. In a

similar fashion recording is also done in order to

make the model de-allocation decision for a child data

server. In case of a read transaction being issued

locally or sent from its children can be served locally,

then the transaction is recorded by the data server

records in its local log. Apart from that it also records

the update transactions spread from its parent in the

local transaction log. After the time period, a model

allocation decision is done for each and every child

data server depending on the transaction log that is

recorded for that child data server and resources are

reproduced and assigned to the child data server if

required. Now, All computational clusters make the

P.R.RAJESH KUMAR, B.LALITHA / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1329-1336

1335 | P a g e

de-allocation decision depending on its local

transaction log. Performance data are calculated

depending on the allocated transactions and the model

set at each data server in each time period, just before

it gets another model set from its parent. Observe that

in this simulation, the number of resources selected is

small as the amount of memory needed for recording

logs for each data server in each time period. A much

larger number of resources can be selected in case the

ICRRU is operated in a real system, as indicated in

[12].

6.2 The Stabilization

Comparison of the intra cluster resource

replication and utilization algorithm with the

distributed frequency-based algorithm is done for

observing the stability of the two algorithms. Fig. 4

gives the number of message necessary for processing

every transaction that is issued in the system for the 2

algorithms. The number of messages needed in the

system drops very speedily in the first 4 time periods

for both algorithms. The percentage of the number of

messages declined at the 1st time period is much

greater compared to that of the 2nd time period, which

is instead greater than that of the 3rd time period, so

on and so forth. After the completion 4th time period,

the number of messages that are required in the

system remains stable for both algorithms, less than

40% messages are required. At any time period, the

ICRRU requires less number of messages than the

ICRDU algorithm but the difference is negligible.

Fig 4: The performance of the cost stabilization by

ICRDU and ICRRU

6.3 Scalability in terms of Resources and

Transactions proportionality

Comparison of the intra cluster resource

replication and utilization algorithm ICRRU with the

distributed frequency-based algorithm DFPR is done

and calculate the effect of NS (the number of

resources in OD) on their performance. The

parameters in this experiment are set as given here:

DZ = 0.2, SZ = 0.5, R/W = 0.9, ST = 3, NT = 50 *

SN . M and NS changes from 10 to 100 (M is

adjusted in order to make sure that we have access to

almost all resources). Fig. 5 indicates the number of

messages necessary for processing all the transactions

given by the system for the two algorithms. If SN

increases, the number of messages necessary for the

two algorithms increases as the number of transaction

also increases. But, the difference of the message

necessary for the 2 algorithms will be remained in a

stable way (the number of message necessary for

resource discovery and replication with

ICRRU&ICRDU is 17% of that needed for only

resource discovery[16]), even though the variation in

the number of messages increases.

Fig 5: Scalability of resource discovery and usage[16]

and ICRRU&ICRDU

7. Summary

In this paper, we scrutinize the dynamic

designation of correlated resources in computational

clusters. We model the topology of the network that is

formed by the computational clusters in the

distributed system as a tree. Initially we show that

model designation decisions can be done locally for

each and every model site in a tree network, using

data access knowledge of its neighbors. Now, we

develop a new replication cost model for correlated

resources in Internet environment. Depending on the

cost model and the algorithms that are used in

previous research, we have put in effort to develop a

inter cluster resource discovery and utilization

algorithm (ICRDU) for correlated data in internet

environment. ICRDU has 2 sub algorithms, ICRDUA

and ICRDUD, and it is indicated that ICRDU

stabilizes and converges in 2L time periods. Here, L is

the height of the tree.

Now, an intra cluster resource replication and

utilization algorithm (ICRRU) is now developed for

making model placement decisions in an efficient

manner. The ICRRU has 2 sub algorithms, namely,

P.R.RAJESH KUMAR, B.LALITHA / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1329-1336

1336 | P a g e

ICRRU for model allotment and ICRRU for model

withhold, and it is indicated that ICRRU stabilize in

2L time periods. The algorithm gets near optimal

solutions for the correlated data model and produces

significant performance gains. The simulation results

indicate that the intra cluster resource replication and

utilization allocation algorithm outperforms the

general resource discovery and utilization schemes in

a significant way.

Reference

[1] P. Apers. Data allocation in distributed

database systems. ACM Transactions on

Database Systems Vol. 13, No. 3

(Sept.).1988.

[2] A. Bestavros and C. Cunha. Server-initiated

document dissemination for the WWW. IEEE

Data Engeneering Bulletin 19, 3 (Sept.), 3–

11. 1996.

[3] S. Ceri, S. B. Navathe, and G. Wiederhold.

Distribution design of logical database

schemas. IEEE Transactions on Software

Engineering, Vol. SE-9, No. 4. 1983.

[4] D. Dowdy and D. Foster. Comparative

models of the file assignment problem.

Computing Surveys, 14(2), 1982.

[5] Y. Huang, P. Sistla, and O. Wolfson. Data

replication for mobile computers. In

Proceeding of 1994 ACM SIGMOD, May

1994.

[6] K. Kalpakis, K. Dasgupta, and O. Wolfson.

Optimal placement of models in trees with

read, write, and storage costs. IEEE

Transactions on Parallel and Computational

Clusters. Vol 12, No. 6. 2001.

[7] D. Kossmann. The state of the art in

distributed query processing. ACM

Computing Surveys (CSUR). Volume 32,

Issue 4. December 2000.

[8] Z. Lu and K. S. McKinley. Partial collection

replication versus cache for information

retrieval systems. In Proceedings of the ACM

International Conference on Research and

Development in Information Retrieval,

Athens, Greece, July 2000.

[9] V. Paxson, End-to-End Routing Behavior in

the Internet, IEEE/ACM Transactions

Networking, 5(5) (1997) 601-615.

[10] J. Sidell, P. Aoki, A. Sah, C. Staelin, M.

Stonebrakeer, and A. Yu. Data replication in

Mariposa. In Proceedings IEEE Conference

on Data Engineering (New Orleans, LA,

Feb.), 485–494. 1996.

[11] A. Sousa, F Pedone, R Oliveira, and F

Moura. Partial replication in the database

state machine. In Proceedings of the IEEE

International Symposium on Network

computing and Applications. 2001.

[12] M. Tu, P. Li, L. Xiao I. Yen, and F. Bastani.

Model placement algorithms for mobile

transaction systems. IEEE Transactions on

Knowledge and Data Engineering. Vol. 18,

No. 7. 2006.

[13] M. Tu. A data management framework for

secure and dependable data grid.

Ph.DDissertation, UT Dallas.

http://www.utdallas.edu/~tumh2000/ref/Thes

is-Tu.pdf. July 2006.

[14] O. Wolfson and A. Milo. The multicast policy

and its relationship to modeled data

placement. ACM Trans. Database Systems.

Vol.16, No.1. 1991

[15] O. Wolfson, S. Jajodia and Y. Huang. An

adaptive data replication algorithm. ACM

Transactions on database systems. Vol22.

No.2 pages 255-314. 1997.

[16] Lanier Watkins, William H. Robinson, Raheem

A. Beyah: A Passive Solution to the Memory

Resource Discovery Problem in

Computational Clusters. IEEE Transactions

on Network and Service Management 7(4):

218-230(2012)

http://www.utdallas.edu/~tumh2000/ref/Thesis-Tu.pdf.%20July%202006
http://www.utdallas.edu/~tumh2000/ref/Thesis-Tu.pdf.%20July%202006

