
Dr. Fazal Noorbasha, B.Srinivas,Venkata Aravind Bezawada, V.Sai Praveen / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.825-831

825 | P a g e

Implementation Of An Adaptive-Dynamic Arbitration

Scheme For The Multilayer Ahb Busmatrix

Dr. Fazal Noorbasha*,B.Srinivas**,Venkata Aravind Bezawada***,

V.Sai Praveen ****
VLSI Research & Development Group, Department of ECE, KLUniversity, Guntur, AP-522502 INDIA

ABSTRACT:
In this paper, the adaptive dynamic arbitration

scheme is being implemented on the slave side

arbitration based on AMBA AHB protocol. The

multilayered advanced high-performance bus

(ML-AHB) bus matrix is an interconnection

between multiple masters and multiple slaves in a

system. The design and implementation of a

flexible arbiter for the ML-AHB bus matrix is to

support three priority policies—fixed priority,

round robin, and dynamic priority and three

data multiplexing modes—transfer, transaction,

and desired transfer length. The slave side

arbiter dynamically selects one of the nine

possible arbitration schemes based upon the

priority-level notifications and the desired

transfer length from the masters so that

arbitration leads to the maximum performance.

The area overhead of the adaptive dynamic

arbitration scheme will be larger than those of

the other arbitration schemes and improves the

throughput when compared to other schemes.

Among the nine arbitration schemes, the

adaptive dynamic arbitration scheme is the

efficient one and the master which has accessed

the bandwidth less number of times will be given

highest priority and will get the grant signals.

Keywords: ML-AHB bus matrix, system-on-a-chip

(SoC),Adaptive dynamic arbitration, slave side

arbitration, high performance

1. INTRODUCTION
The on-chip bus plays a key role in the

system-on-a-chip (SoC) design by enabling the

efficient integration of heterogeneous system

components such as CPUs, DSPs, application-

specific cores, memories, and custom logic.

Recently, as the level of design complexity has

become higher, SoC designs require a system bus

with high bandwidth to perform multiple operations

in parallel [1]. To solve the bandwidth problems,

there have been several types of high-performance

on-chip buses proposed, such as the multilayer AHB

(ML-AHB) busmatrix from ARM, the PLB crossbar

switch from IBM, and CONMAX from Silicore.

Among them, the ML-AHB busmatrix has been

widely used in many SoC designs. This is because

of the simplicity of the AMBA bus of ARM, which

attracts many IP designers, and the good

architecture of the AMBA bus for applying

embedded systems with low power. The

multilayered advanced high-performance bus (ML-

AHB) bus matrix is an interconnection between

multiple masters and multiple slaves in a system.

The master and the slave communicate in terms of

request and grant signals. The master merely starts

a burst transaction and waits for the

 slave response to proceed to the next transfer.

However, the ML-AHB busmatrix of ARM offers

only transfer-based fixed-priority and round-robin

arbitration schemes. In fixed priority arbitration

scheme, each master is assigned a fixed priority

value. It is simple in implementation and has small

area cost. But in heavy communication traffic,

master that has low priority value cannot get a grant

signal. In round robin arbitration scheme, each

master is allotted a fixed time slot. If the new master

sends a request in between, then that master has to

wait until all masters complete their tasks. This is

achieved by using a more complex interconnection

matrix and gives the benefit of both increased

overall bus bandwidth and a more flexible system

structure. In particular, the ML-AHB busmatrix uses

slave-side arbitration. Slave-side arbitration is

different from master-side arbitration in terms of

request and grant signals since, in the former, the

master merely starts a burst transaction and waits for

the slave response to proceed to the next transfer.

Therefore, the unit of arbitration can be a transaction

or a transfer. The transaction-based arbiter

multiplexes the data transfer based on the burst

transaction, and the transfer-based arbiter switches

the data transfer based on a single transfer.

However, the ML-AHB busmatrix of ARM presents

only transfer- based arbitration schemes, i.e.,

transfer based fixed-priority and round-robin

arbitration schemes. This limitation on the

arbitration scheme may lead to degradation of the

system performance because the arbitration scheme

is usually dependent on the application

requirements; recent applications are likewise

becoming more complex and diverse [2].

By implementing an efficient arbitration scheme, the

system performance can be tuned to better suit

Dr. Fazal Noorbasha, B.Srinivas,Venkata Aravind Bezawada, V.Sai Praveen / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.825-831

826 | P a g e

applications. For a high-performance on-chip bus,

several studies related to the arbitration scheme have

been proposed, such as table-lookup-based crossbar

arbitration, two-level time-division multiplexing

(TDM) scheduling, token-ring mechanism, dynamic

bus distribution algorithm, and LOTTERYBUS.

However, these approaches employ master-side

arbitration. Therefore, they can only control priority

policy and also present some limitations when

handling the transfer-based arbitration scheme since

master-side arbitration uses a centralized arbiter. In

contrast, it is possible to deal with the transfer-based

arbitration scheme as well as the transaction- based

arbitration scheme in slave-side arbitration. In this

paper, we propose a flexible arbiter based on the

adaptive-dynamic (AD) arbitration scheme for the

ML-AHB busmatrix [3].

Fig.1. Overall structure of the ML-AHB busmatrix

of ARM .

In Section II, we briefly explain the arbitration

schemes for the ML-AHB busmatrix of ARM, while

Section III describes an implementation method for

our flexible arbiter based upon the AD arbitration

scheme for the ML-AHB busmatrix. We then

present implementation results and performance

analysis in Section IV, simulation results in Section

V and concluding remarks in Section VI.

II. ARBITRATION SCHEMES FOR THE

ML- AHB BUSMATRIX OF ARM
The ML-AHB busmatrix of ARM consists

of the input stage, decoder, and output stage,

including an arbiter. Fig. 1 shows the overall

structure of the ML-AHB busmatrix of ARM. The

input stage is responsible for holding the address

and control information when transfer to a slave is

not able to commence immediately. The decoder

determines which slave that a transfer is destined

for. The output stage is used to select which of the

various master input ports is routed to the slave.

Each output stage has an arbiter. The arbiter

determines which input stage has to perform a

transfer to the slave and decides which the highest

priority is currently. The ML-AHB busmatrix

employs slave-side arbitration, in which the arbiters

are located in front of each slave port, as shown in

Fig. 1. The master simply starts a transaction and

waits for the slave response to proceed to the next

transfer. Therefore, the unit of arbitration can be a

transaction or a transfer. However, the ML-AHB

busmatrix of ARM furnishes only transfer-based

arbitration schemes, specifically transfer-based

fixed-priority and round-robin arbitration schemes.

The transfer-based fixed-priority (round-robin)

arbiter multiplexes the data transfer based on a

single transfer in a fixed-priority or round-robin

fashion [4-7].

III. AD ARBITRATION SCHEME FOR

THE ML- AHB BUSMATRI
An assumption is made that the masters can

change their priority level and can issue the desired

transfer length to the arbiters in order to implement

a AD arbitration scheme. This assumption should be

valid because the system developer generally

recognizes the features of the target applications.

For example, some masters in embedded systems

are required to complete their job for given timing

constraints, resulting in the satisfaction of system-

level timing constraints. The computation time of

each master is predictable, but it is not easy to

foresee the data transfer time since the on-chip bus

is usually shared by several masters [7-9].

Our AD arbitration scheme has the following

advantages:

1) It can adjust the processed data unit;

2) it changes the priority policies during runtime;

and

3) it is easy to tune the arbitration scheme according

to the characteristics of the target application.

Hence, our arbiter is able to not only deal with the

transfer-based fixed-priority, round-robin, and

dynamic-priority arbitration schemes but also

manage the transaction-based fixed-priority, round-

robin, and dynamic-priority arbitration schemes.

Furthermore, our arbiter provides the desired-

transfer-length-based fixed-priority, round-robin,

and dynamic-priority arbitration schemes. In

addition, the proposed AD arbiter selects one of the

nine possible arbitration schemes based on the

priority-level notifications and the desired transfer

length from the masters to ensure that the arbitration

leads to the maximum performance [10].

Dr. Fazal Noorbasha, B.Srinivas,Venkata Aravind Bezawada, V.Sai Praveen / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.825-831

827 | P a g e

Fig.2.Internal structure of our arbiter.

Fig.2 shows the internal structure of our arbiter

based upon the AD arbitration scheme. the NoPort

signal means that none of the masters must be

selected and that the address and control signals to

the shared slave must be driven to an inactive state,

while Master No. indicates the currently selected

master number generated by the controller for the

AD arbitration scheme. In general, our arbiter

consists of an RR block, a P block, two

multiplexers, a counter, a controller, and two flip-

flops. MUX_1 and MUX_2 are used to select the

arbitration scheme and the desired transfer length of

a master, respectively. A counter calculates the

transfer length, with two flip-flops being inserted to

avoid the attempts by the critical path to arbitrate.

An RR block (P block) performs the round-robin- or

priority-based arbitration scheme. Fig. 5 shows the

internal process of an RR block.

Fig.3. Internal process of the RR block.

Initially, we create the up- and down-mask vectors

(Up_Mask and Dn_Mask) based on the number of

currently selected masters, as shown in Fig.3. We

then generate the up- or down-masked vector

created through bitwise AND-ing operation between

the mask vector and the requested master vector.

After generating the up- and down-masked vectors,

we examine each masked vector as to whether they

are zero or not. If the up-masked vector is zero, the

down-masked vector is inserted to the input

parameter of the round-robin function; if it is not

zero, the up-masked vector is the one inserted. A

master for the next transfer is chosen by the round-

robin function, and the current master is updated

after 1 clock cycle. The RR block is then performed

by repeating the arbitration procedure shown in

Fig.3.

 A master for the next transfer is selected,

with the priority level of the least significant bit in

Masked_Vector being the highest. If we modify the

range of Masked_Vector to “0 to

Masked_Vector’left,” then the priority level of the

most significant bit in Masked_Vector becomes the

highest.

Fig.4. Internal procedure of the P block.

Fig.4 shows the internal procedure of the P block.

First of all, we create the highest priority vector (V)

through the round-robin function. After generating

the highest priority vector (V), the priority-level

vectors and the highest priority vector (V) are

inserted to the input parameters of the priority

function. The master with the highest priority is

chosen by the priority function, while the current

master is updated after 1 clock cycle. The master

with the highest priority is selected in Fig4 [11].

A controller compares the priority levels of the

requesting masters. If the masters have equal

priorities, the controller selects the round-robin

arbitration scheme (RR block); in other cases, it

chooses the priority arbitration scheme (P block).

The controller also makes the final decision on the

master for the next transfer based on the transfer

length of the selected master. The control process

follows the following three steps.

1) If HMASTLOCK is asserted, the same master

remains selected.

Dr. Fazal Noorbasha, B.Srinivas,Venkata Aravind Bezawada, V.Sai Praveen / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.825-831

828 | P a g e

2) If HMASTLOCK is not asserted and the

currently selected master does not exist, the

following hold.

a) If no master is requesting access, the NoPort

signal is asserted.

b) Otherwise, a new master for the next transfer is

initially selected. If the masters have equal

priorities, the round-robin arbitration scheme is

selected; otherwise, the priority arbitration scheme

is chosen. In addition, the counter is updated based

on the transfer length of the selected master.

3) If none of the previous statements applies, the

following hold.

 a) If the counter is expired, the following hold.

i) If the requesting masters do not exist, the No- Port

signal is updated based on the HSEL signal of the

currently selected master. If the HSEL signal is “1,”

the same master remains selected, and the NoPort

signal is deasserted. Otherwise, the NoPort signal is

asserted.

ii) Otherwise, a master for the next transfer is

selected based on the priority levels of the

requesting masters. Also, the counter is updated.

b) If the counter is not expired, and the HSEL signal

of the current master is “1,” the same master

remains selected, and the counter is decreased.

c) If the currently selected master completes a

transaction before the counter is expired, the

following hold.

i) If the requesting masters do not exist, the No- Port

signal is asserted.

ii) Otherwise, a master for the next transfer is

chosen based on the priority levels of the requesting

masters, and the counter is updated [12].

The AD arbitration scheme is achieved through

iteration of the aforementioned steps. Combining the

priority level and the desired transfer length of the

masters allows our arbiter to handle the transfer-

based fixed-priority, round-robin, and dynamic-

priority arbitration schemes (abbreviated as the FT,

RT, and DT arbitration schemes, respectively), as

well as the transaction-based fixed-priority, round-

robin, and dynamic-priority arbitration schemes

(abbreviated as the FR, RR, and DR arbitration

schemes, respectively). Moreover, our arbiter can

also deal with the desired-transfer-length-based

fixed-priority, round-robin, and dynamic-priority

arbitration schemes (abbreviated as the FL, RL, and

DL arbitration schemes, respectively). The transfer-

or transaction-based arbiter switches the data

transfer based upon a single transfer (burst

transaction), and the desired-transfer-length-based

arbiter multiplexes the data transfer based on the

transfer length assigned by the masters [13-15].

IV.IMPLEMENTATION RESULTS AND

PERFORMANCE ANALYSIS
We implemented different slave-side

arbitration schemes for the ML-AHB busmatrix.

Each arbitration-scheme-based busmatrix was

implemented with synthesizable RTL Verilog

targeting XILINX FPGA (XC3S200). The XILINX

design tool (ISE 12.1i) was used to measure the total

area. The implemented arbitration schemes are as

follows:

• FT, FR, RT, RR, DT, DR, and AD arbitration

schemes.

The total area of the AD-based busmatrix is

9%–25% larger than those of the other busmatrixes.

This may be due to our AD-based busmatrix also

requiring the comparator to compare the priority of

the masters and the counters to calculate the transfer

length. Although our AD-based busmatrix occupies

more area than the other busmatrixes, our arbiter is

able to deal with varied arbitration schemes such as

the FT, FR, RT, RR, DT, and DR arbitration

schemes.

Fig.5.Simulation environment for performance

analysis

Fig.5 shows our simulation environment.

In our simulation environment, the clock

frequencies of all components are 100 MHz (10 ns).

The implemented ML-AHB busmatrix has a 32-b

address bus, a 32-b write data bus, a 32-b read data

bus, a 15-b control bus, and a 3-b response bus.

Meanwhile, the simulation environment consists of

both an implemented and a virtual part. The former

corresponds to the ML-AHB busmatrixes with

different arbitration schemes and consists of four

masters and two slaves. Specifically, we only

considered two target slaves, which is when conflict

frequently happens. The masters then access these in

order to focus on the performance analysis based on

the arbitration schemes of each busmatrix. The

virtual part, however, is composed of AHB masters

and AHB slaves. The AHB master generates the

transactions, with the transactions of the masters

Dr. Fazal Noorbasha, B.Srinivas,Venkata Aravind Bezawada, V.Sai Praveen / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.825-831

829 | P a g e

having the same length as an 8-beat incrementing

burst type. The AHB slave responds to the transfers

of the masters. Both the AHB masters and slaves are

fully compatible with the AMBA AHB protocol.

For a more realistic model of a SoC design, we

modeled the AHB masters after the features of the

processor and DMA with verilog at the behavioral

level. For the AHB slaves, we used the real SRAM,

SDRAM, and SDRAM controller RTL models used

in many applications. We also constructed the

protocol checker and performance monitor modules

with the verilog and foreign language interface (FLI

C module) to ensure the reliability of our

performance simulations. Prior to the simulation, the

workloads should be determined as they affect the

simulation results. However, determining the

appropriate workloads of real applications is

difficult because these can only be obtained when

all applications with real input data are specifically

modeled. Instead, the workloads for performance

simulation are obtained through synthetic workload

generation with the following parameters.

1) The distribution of transactions. This indicates

what proportion of the total transactions that each

master is responsible

for.

2) The ratio of the nonbus transaction time to the

total transaction time per AHB master, where the

total transaction time consists of a nonbus

transaction (internal transaction of the master) time

and a bus transaction (external transaction of the

master through the busmatrix) time.

3) The latency time of the accessed slave by each

master. These parameters determine the delay of

components in the virtual part. Through synthetic

workload generation, various possible situations are

investigated, where the ML-AHB busmatrixes with

each arbitration scheme can be utilized well. In this

regard, we found three useful categories of

experiments to identify the effects of the following

factors:

1) job length of the masters;

2) latency time of the slaves;

3) both the job length of the masters and the latency

time of

the slaves.

The dynamic-priority-based arbitration

scheme has the advantage for throughput when there

are few masters with long job lengths in a system; in

other cases, the round-robin-based arbitration

scheme can get higher throughput than other

arbitration schemes. In addition, the arbitration

scheme with transaction-based multiplexing

performs better than the same arbitration scheme

with single-transfer-based switching in applications

with frequent access to long-latency slaves such as

SDRAM. The slave for the first category is the

SRAM-type AHB slave (AHB slave0 in Fig. 10)

without latency for access, while the slave for the

second category is the SDRAM-type AHB slave

with a long latency time for access. The slave for the

third category can be an AHB slave0 or an AHB

slave1. In particular, the target addresses are

generated based on the uniform distribution random

number function between AHB slave0 and AHB

slave1. Therefore, each master communicates with

the slaves with the same probability in the third

category. We performed a number of performance

simulations at various job lengths and observed no

difference in the results of the performance

simulation at specific job lengths. The specific job

length was 4800, and we decided the job length for

performance analysis to be the same at 4800. In

addition, this job length explicitly exhibits the

features of each arbitration scheme very well.

Fig 6: RTL Schematic of AD Arbiter

Fig 6 represents the RTL Schematic of AD Arbiter.

In this block the implemented ML-AHB busmatrix

has a 32-b address bus, a 32-b write data bus, a 32-b

read data bus, a 15-b control bus, and a 3-b response

bus.

Dr. Fazal Noorbasha, B.Srinivas,Venkata Aravind Bezawada, V.Sai Praveen / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.825-831

830 | P a g e

Fig 7: RTL Schematic of AHB Master

Fig 7 represents RTL Schematic of AHB Master

Fig 8: RTL Schematic of AHB Slave

V.SIMULATION RESULTS

VI.CONCLUSION
In this paper, we proposed a flexible arbiter

based on the AD arbitration scheme for the ML-

AHB busmatrix. Our arbiter supports three priority

policies-fixed priority, round-robin, and dynamic

priority-and three approaches to data multiplexing-

transfer, transaction, and desired transfer length; in

other words, there are nine possible arbitration

schemes. In addition, the proposed AD arbiter

selects one of the nine possible arbitration schemes

based on the priority-level notifications and the

desired transfer length from the masters to allow the

arbitration to lead to the maximum performance.

Experimental results show that, although the area of

the proposed AD arbitration scheme is 9%–25%

larger than those of other arbitration schemes, our

arbiter improves the throughput by 14%–62%

compared with other schemes. We therefore expect

that it would be better to apply our AD arbitration

scheme to an application- specific system because it

is easy to tune the arbitration scheme according to

the features of the target system.

REFERENCES
[1] M. Drinic, D. Kirovski, S. Megerian, and

M. Potkonjak, “Latencyguided on-chip

bus-network design,” IEEE Trans.

Comput.-Aided Design Integr. Circuits

Syst., vol. 25, no. 12, pp. 2663–2673, Dec.

2006.

[2] S. Y. Hwang, K. S. Jhang, H. J. Park, Y. H.

Bae, and H. J. Cho, “An ameliorated design

method of ML-AHB busmatrix,” ETRI J.,

vol. 28, no. 3, pp. 397–400, Jun. 2006.

[3] ARM, “AHB Example AMBA System,”

2001 [Online]. Available:

http://www.arm.com/products/solutions/A

MBA_Spec.html

[4] IBM, New York, “32-bit Processor Local

Bus Architecture Specification,” 2001.

[5] R. Usselmann, “WISHBONE interconnect

matrix IP core,” Open-Cores, 2002.

[Online].Available:

http://www.opencores.org/?do=project=wb

_conmax

[6] N.-J. Kim and H.-J. Lee, “Design of

AMBA wrappers for multipleclock

operations,” in Proc. Int. Conf. ICCCAS,

Jun. 2004, vol. 2, pp. 1438–1442.

[7] D. Flynn, “AMBA: Enabling reusable on-

chip designs,” IEEE Micro, vol. 17, no. 4,

pp. 20–27, Jul./Aug. 1997.

[8] S. Y. Hwang, H.-J. Park, and K.-S. Jhang,

“Performance analysis of slave-side

arbitration schemes for the multi-layer

AHB busmatrix,” J. KISS, Comput. Syst.

Theory, vol. 34, no. 5, pp. 257–266, Jun.

2007.

http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.opencores.org/?do=project=wb_conmax
http://www.opencores.org/?do=project=wb_conmax

Dr. Fazal Noorbasha, B.Srinivas,Venkata Aravind Bezawada, V.Sai Praveen / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.825-831

831 | P a g e

 [9] S. S. Kallakuri and A. Doboli,

“Customization of arbitration policies and

buffer space distribution using continuous-

time Markov decision processes,” IEEE

Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 15, no. 2, pp. 240–245, Feb.

2007.

 [10] D. Seo and M. Thottethodi, “Table-lookup

based crossbar arbitration for minimal-

routed, 2D mesh and torus networks,” in

Proc. Int. Conf. IPDPS, Mar. 2007, pp. 1–

10.

 [11] K. Lahiri, A. Raghunathan, and S. Dey,

“Performance analysis of systems with

multi-channel communication

architectures,” in Proc. Int. Conf. VLSI

Design, Jan. 2000, pp. 530–537.

 [12] J. Turner and N. Yamanaka, “Architectural

choices in large scale ATM switches,”

IEICE Trans. Commun., vol. E-81B, no. 2,

pp. 120–137, Feb. 1998.

 [13] C. H. Pyoun, C. H. Lin, H. S. Kim, and J.

W. Chong, “The efficient bus arbitration

scheme in SoC environment,” in Proc. Int.

Conf. SoC Real-Time Appl., Jul. 2003, pp.

311–315.

 [14] K. Lahiri, A. Raghunathan, and G.

Lakshminarayana, “The LOTTERYBUS

on-chip communication architecture,”

IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 14, no. 6, pp. 596–608,

Jun. 2006.

[15] S. Y. Hwang, H. J. Park, and K. S. Jhang,

An Efficient Implementation Method of

Arbiter for the ML-AHB Busmatrix.

Berlin, Germany: Springer-Verlag, May

2007, vol. 4523, LNCS, pp. 229–240.

Dr. Fazal Noorbasha was born on

29th April 1982. He received his,

B.Sc. Degree in Electronics

Sciences from BCAS College,

Bapatla, Guntur, A.P., Affiliated to

the Acharya Nagarjuna University,

Guntur, Andhra Pradesh, India, in

2003, M.Sc. Degree in Electronics Sciences from

the Dr. HariSingh Gour University, Sagar, Madhya

Pradesh, India, in 2006, M.Tech. Degree in VLSI

Technology, from the North Maharashtra

University, Jalgaon, Maharashtra, INDIA in 2008,

and Ph.D. Degree in VLSI from Department Of

Physics and Electronics, Dr. HariSingh Gour

Central University, Sagar, Madhya Pradesh, India,

in 2011. Presently he is working as a Assistant

Professor, Department of Electronics and

Communication Engineering, KL University,

Guntur, Andhra Pradesh, India, where he has been

engaged in teaching, research and development of

Low-power, High-speed CMOS VLSI SoC,

Memory Processors LSI’s, Fault Testing in VLSI,

Embedded Systems and Nanotechnology. He is a

Scientific and Technical Committee & Editorial

Review Board Member in Engineering and Applied

Sciences of World Academy of Science Engineering

and Technology (WASET), Advisory Board

Member of International Journal of Advances

Engineering & Technology (IJAET), Member of

International Association of Engineers (IAENG) and

Senior Member of International Association of

Computer Science and Information Technology

(IACSIT). He has published over 20 Science and

Technical papers in various International and

National reputed journals and conferences.

Srinivas Boddu was born in

A.P,India. He received the B.Tech

degree in

Electronics&communications

engineering from Jawaharlal

Nehru Technological University

in 2009. Presently he is pursuing

M.Tech VLSI Design in KL University. His

research interests include FPGA Implementation,

Low Power Design.

Venkata Aravind Bezawada was born in

A.P,India. He received the B.Tech degree in

Electronics& communications Engineering from

Jawaharlal Nehru Technological University in

2009. Presently he is pursuing

M.Tech VLSI Design in KL

University. His research interests

include Physical Design, Low

Power Design.

Sai Praveen Venigalla was

born in A.P, India. He

received the B.Tech degree

in

Electronics&communicatio

n Engineering from

Jawaharlal Nehru

Technological University in 2009. Presently he is

pursuing M.Tech VLSI Design in KL University.

His research interests include FPGA

Implementation, Low Power Design.

