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ABSTRACT: 
In this paper, the adaptive dynamic arbitration 

scheme is being implemented on the slave side 

arbitration based on AMBA AHB protocol. The 

multilayered advanced high-performance bus 

(ML-AHB) bus matrix is an interconnection 

between multiple masters and multiple slaves in a 

system. The design and implementation of a 

flexible arbiter for the ML-AHB bus matrix is to 

support three priority policies—fixed priority, 

round robin, and dynamic priority and three 

data multiplexing modes—transfer, transaction, 

and desired transfer length. The slave side 

arbiter dynamically selects one of the nine 

possible arbitration schemes based upon the 

priority-level notifications and the desired 

transfer length from the masters so that 

arbitration leads to the maximum performance. 

The area overhead of the adaptive dynamic 

arbitration scheme will be larger than those of 

the other arbitration schemes and improves the 

throughput when compared to other schemes. 

Among the nine arbitration schemes, the 

adaptive dynamic arbitration scheme is the 

efficient one and the master which has accessed 

the bandwidth less number of times will be given 

highest priority and will get the grant signals. 

 

Keywords: ML-AHB bus matrix, system-on-a-chip 

(SoC),Adaptive dynamic arbitration, slave side 

arbitration, high performance 

 

1. INTRODUCTION 
The on-chip bus plays a key role in the 

system-on-a-chip (SoC) design by enabling the 

efficient integration of heterogeneous system 

components such as CPUs, DSPs, application-

specific cores, memories, and custom logic. 

Recently, as the level of design complexity has 

become higher, SoC designs require a system bus 

with high bandwidth to perform multiple operations 

in parallel [1]. To solve the bandwidth problems, 

there have been several types of high-performance 

on-chip buses proposed, such as the multilayer AHB 

(ML-AHB) busmatrix from ARM, the PLB crossbar 

switch from IBM, and CONMAX from Silicore. 

Among them, the ML-AHB busmatrix has been 

widely used in many SoC designs. This is because  

 

 

 

of the simplicity of the AMBA bus of ARM, which 

attracts many IP designers, and the good 

architecture of the AMBA bus for applying 

embedded systems with low power. The 

multilayered advanced high-performance bus (ML-

AHB) bus matrix is an interconnection between 

multiple masters and multiple slaves in a system. 

The master and the slave communicate in terms of 

request and grant signals.  The master merely starts 

a burst transaction and waits for the 

 slave response to proceed to the next transfer. 

However, the ML-AHB busmatrix of ARM offers 

only transfer-based fixed-priority and round-robin 

arbitration schemes. In fixed priority arbitration 

scheme, each master is assigned a fixed priority 

value. It is simple in implementation and has small 

area cost. But in heavy communication traffic, 

master that has low priority value cannot get a grant 

signal. In round robin arbitration scheme, each 

master is allotted a fixed time slot. If the new master 

sends a request in between, then that master has to 

wait until all masters complete their tasks. This is 

achieved by using a more complex interconnection 

matrix and gives the benefit of both increased 

overall bus bandwidth and a more flexible system 

structure. In particular, the ML-AHB busmatrix uses 

slave-side arbitration. Slave-side arbitration is 

different from master-side arbitration in terms of 

request and grant signals since, in the former, the 

master merely starts a burst transaction and waits for 

the slave response to proceed to the next transfer. 

Therefore, the unit of arbitration can be a transaction 

or a transfer. The transaction-based arbiter 

multiplexes the data transfer based on the burst 

transaction, and the transfer-based arbiter switches 

the data transfer based on a single transfer. 

However, the ML-AHB busmatrix of ARM presents 

only transfer- based arbitration schemes, i.e., 

transfer based fixed-priority and round-robin 

arbitration schemes. This limitation on the 

arbitration scheme may lead to degradation of the 

system performance because the arbitration scheme 

is usually dependent on the application 

requirements; recent applications are likewise 

becoming more complex and diverse [2]. 

By implementing an efficient arbitration scheme, the 

system performance can be tuned to better suit 
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applications. For a high-performance on-chip bus, 

several studies related to the arbitration scheme have 

been proposed, such as table-lookup-based crossbar 

arbitration, two-level time-division  multiplexing 

(TDM) scheduling, token-ring mechanism, dynamic 

bus distribution algorithm, and LOTTERYBUS. 

However, these approaches employ master-side 

arbitration. Therefore, they can only control priority 

policy and also present some limitations when 

handling the transfer-based arbitration scheme since 

master-side arbitration uses a centralized arbiter. In 

contrast, it is possible to deal with the transfer-based 

arbitration scheme as well as the transaction- based 

arbitration scheme in slave-side arbitration. In this 

paper, we propose a flexible arbiter based on the 

adaptive-dynamic (AD) arbitration scheme for the 

ML-AHB busmatrix [3]. 

 

 
 

Fig.1. Overall structure of the ML-AHB busmatrix 

of ARM . 

In Section II, we briefly explain the arbitration 

schemes for the ML-AHB busmatrix of ARM, while 

Section III describes an implementation method for 

our flexible arbiter based upon the AD arbitration 

scheme for the ML-AHB busmatrix. We then 

present implementation results and performance 

analysis in Section IV, simulation results in Section 

V and concluding remarks in Section VI. 

 

II. ARBITRATION SCHEMES FOR THE 

ML- AHB BUSMATRIX OF ARM 
The ML-AHB busmatrix of ARM consists 

of the input stage, decoder, and output stage, 

including an arbiter. Fig. 1 shows the overall 

structure of the ML-AHB busmatrix of ARM. The 

input stage is responsible for holding the address 

and control information when transfer to a slave is 

not able to commence immediately. The decoder 

determines which slave that a transfer is destined 

for. The output stage is used to select which of the 

various master input ports is routed to the slave. 

Each output stage has an arbiter. The arbiter 

determines which input stage has to perform a 

transfer to the slave and decides which the highest 

priority is currently. The ML-AHB busmatrix 

employs slave-side arbitration, in which the arbiters 

are located in front of each slave port, as shown in 

Fig. 1. The master simply starts a transaction and 

waits for the slave response to proceed to the next 

transfer. Therefore, the unit of arbitration can be a 

transaction or a transfer. However, the ML-AHB 

busmatrix of ARM furnishes only transfer-based 

arbitration schemes, specifically transfer-based 

fixed-priority and round-robin arbitration schemes. 

The transfer-based fixed-priority (round-robin) 

arbiter multiplexes the data transfer based on a 

single transfer in a fixed-priority or round-robin 

fashion [4-7]. 

 

III. AD ARBITRATION SCHEME FOR 

THE ML- AHB BUSMATRI 
An assumption is made that the masters can 

change their priority level and can issue the desired 

transfer length to the arbiters in order to implement 

a AD arbitration scheme. This assumption should be 

valid because the system developer generally 

recognizes the features of the target applications. 

For example, some masters in embedded systems 

are required to complete their job for given timing 

constraints, resulting in the satisfaction of system-

level timing constraints. The computation time of 

each master is predictable, but it is not easy to 

foresee the data transfer time since the on-chip bus 

is usually shared by several masters [7-9]. 

Our AD arbitration scheme has the following 

advantages:  

1) It can adjust the processed data unit;  

2) it changes the priority policies during runtime; 

and  

3) it is easy to tune the arbitration scheme according 

to the characteristics of the target application.  

 

Hence, our arbiter is able to not only deal with the 

transfer-based fixed-priority, round-robin, and 

dynamic-priority arbitration schemes but also 

manage the transaction-based fixed-priority, round-

robin, and dynamic-priority arbitration schemes. 

Furthermore, our arbiter provides the desired-

transfer-length-based fixed-priority, round-robin, 

and dynamic-priority arbitration schemes. In 

addition, the proposed AD arbiter selects one of the 

nine possible arbitration schemes based on the 

priority-level notifications and the desired transfer 

length from the masters to ensure that the arbitration 

leads to the maximum performance [10]. 
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Fig.2.Internal structure of our arbiter. 

 

Fig.2 shows the internal structure of our arbiter 

based upon the AD arbitration scheme. the NoPort 

signal means that none of the masters must be 

selected and that the address and control signals to 

the shared slave must be driven to an inactive state, 

while Master No. indicates the currently selected 

master number generated by the controller for the 

AD arbitration scheme. In general, our arbiter 

consists of an RR block, a P block, two 

multiplexers, a counter, a controller, and two flip-

flops. MUX_1 and MUX_2 are used to select the 

arbitration scheme and the desired transfer length of 

a master, respectively. A counter calculates the 

transfer length, with two flip-flops being inserted to 

avoid the attempts by the critical path to arbitrate. 

An RR block (P block) performs the round-robin- or 

priority-based arbitration scheme. Fig. 5 shows the 

internal process of an RR block.  

 

 
 

Fig.3. Internal process of the RR block. 

 

Initially, we create the up- and down-mask vectors 

(Up_Mask and Dn_Mask) based on the number of 

currently selected masters, as shown in Fig.3. We 

then generate the up- or down-masked vector 

created through bitwise AND-ing operation between 

the mask vector and the requested master vector. 

After generating the up- and down-masked vectors, 

we examine each masked vector as to whether they 

are zero or not. If the up-masked vector is zero, the 

down-masked vector is inserted to the input 

parameter of the round-robin function; if it is not 

zero, the up-masked vector is the one inserted. A 

master for the next transfer is chosen by the round-

robin function, and the current master is updated 

after 1 clock cycle. The RR block is then performed 

by repeating the arbitration procedure shown in 

Fig.3. 

 A master for the next transfer is selected, 

with the priority level of the least significant bit in 

Masked_Vector being the highest. If we modify the 

range of Masked_Vector to “0 to 

Masked_Vector’left,” then the priority level of the 

most significant bit in Masked_Vector becomes the 

highest. 

 

 
Fig.4. Internal procedure of the P block. 

 

Fig.4 shows the internal procedure of the P block. 

First of all, we create the highest priority vector (V) 

through the round-robin function. After generating 

the highest priority vector (V), the priority-level 

vectors and the highest priority vector (V) are 

inserted to the input parameters of the priority 

function. The master with the highest priority is 

chosen by the priority function, while the current 

master is updated after 1 clock cycle. The master 

with the highest priority is selected in Fig4 [11]. 

 

A controller compares the priority levels of the 

requesting masters. If the masters have equal 

priorities, the controller selects the round-robin 

arbitration scheme (RR block); in other cases, it 

chooses the priority arbitration scheme (P block). 

The controller also makes the final decision on the 

master for the next transfer based on the transfer 

length of the selected master. The control process 

follows the following three steps.  

1) If HMASTLOCK is asserted, the same master 

remains selected. 
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2) If HMASTLOCK is not asserted and the 

currently selected master does not exist, the 

following hold. 

a) If no master is requesting access, the NoPort 

signal is                        asserted. 

b) Otherwise, a new master for the next transfer is 

initially selected. If the masters have equal 

priorities, the round-robin arbitration scheme is 

selected; otherwise, the priority arbitration scheme 

is chosen. In addition, the counter is updated based 

on the transfer length of the selected master. 

3) If none of the previous statements applies, the 

following hold. 

    a) If the counter is expired, the following hold. 

i) If the requesting masters do not exist, the No- Port 

signal is updated based on the HSEL signal of the 

currently selected master. If the HSEL signal is “1,” 

the same master remains selected, and the NoPort 

signal is deasserted. Otherwise, the NoPort signal is 

asserted. 

ii) Otherwise, a master for the next transfer is 

selected based on the priority levels of the 

requesting masters. Also, the counter is updated. 

b) If the counter is not expired, and the HSEL signal 

of the current master is “1,” the same master 

remains selected, and the counter is decreased. 

c) If the currently selected master completes a 

transaction before the counter is expired, the 

following hold. 

i) If the requesting masters do not exist, the No- Port 

signal is asserted. 

ii) Otherwise, a master for the next transfer is 

chosen based on the priority levels of the requesting 

masters, and the counter is updated [12]. 

 

The AD arbitration scheme is achieved through 

iteration of the aforementioned steps. Combining the 

priority level and the desired transfer length of the 

masters allows our arbiter to handle the transfer-

based fixed-priority, round-robin, and dynamic-

priority arbitration schemes (abbreviated as the FT, 

RT, and DT arbitration schemes, respectively), as 

well as the transaction-based fixed-priority, round-

robin, and dynamic-priority arbitration schemes 

(abbreviated as the FR, RR, and DR arbitration 

schemes, respectively). Moreover, our arbiter can 

also deal with the desired-transfer-length-based 

fixed-priority, round-robin, and dynamic-priority 

arbitration schemes (abbreviated as the FL, RL, and 

DL arbitration schemes, respectively). The transfer- 

or transaction-based arbiter switches the data 

transfer based upon a single transfer (burst 

transaction), and the desired-transfer-length-based 

arbiter multiplexes the data transfer based on the 

transfer length assigned by the masters [13-15]. 

 

IV.IMPLEMENTATION RESULTS AND 

PERFORMANCE ANALYSIS 
We implemented different slave-side 

arbitration schemes for the ML-AHB busmatrix. 

Each arbitration-scheme-based busmatrix was 

implemented with synthesizable RTL Verilog 

targeting XILINX FPGA (XC3S200). The XILINX 

design tool (ISE 12.1i) was used to measure the total 

area. The implemented arbitration schemes are as 

follows: 

• FT, FR, RT, RR, DT, DR, and AD arbitration 

schemes. 

 

The total area of the AD-based busmatrix is 

9%–25% larger than those of the other busmatrixes. 

This may be due to our AD-based busmatrix also 

requiring the comparator to compare the priority of 

the masters and the counters to calculate the transfer 

length. Although our AD-based busmatrix occupies 

more area than the other busmatrixes, our arbiter is 

able to deal with varied arbitration schemes such as 

the FT, FR, RT, RR, DT, and DR arbitration 

schemes. 

 

 
Fig.5.Simulation environment for performance 

analysis 

 

Fig.5 shows our simulation environment. 

In our simulation environment, the clock 

frequencies of all components are 100 MHz (10 ns). 

The implemented ML-AHB busmatrix has a 32-b 

address bus, a 32-b write data bus, a 32-b read data 

bus, a 15-b control bus, and a 3-b response bus. 

Meanwhile, the simulation environment consists of 

both an implemented and a virtual part. The former 

corresponds to the ML-AHB busmatrixes with 

different arbitration schemes and consists of four 

masters and two slaves. Specifically, we only 

considered two target slaves, which is when conflict 

frequently happens. The masters then access these in 

order to focus on the performance analysis based on 

the arbitration schemes of each busmatrix. The 

virtual part, however, is composed of AHB masters 

and AHB slaves. The AHB master generates the 

transactions, with the transactions of the masters 
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having the same length as an 8-beat incrementing 

burst type. The AHB slave responds to the transfers 

of the masters. Both the AHB masters and slaves are 

fully compatible with the AMBA AHB protocol. 

For a more realistic model of a SoC design, we 

modeled the AHB masters after the features of the 

processor and DMA with verilog at the behavioral 

level. For the AHB slaves, we used the real SRAM, 

SDRAM, and SDRAM controller RTL models used 

in many applications. We also constructed the 

protocol checker and performance monitor modules 

with the verilog and foreign language interface (FLI 

C module) to ensure the reliability of our 

performance simulations. Prior to the simulation, the 

workloads should be determined as they affect the 

simulation results. However, determining the 

appropriate workloads of real applications is 

difficult because these can only be obtained when 

all applications with real input data are specifically 

modeled. Instead, the workloads for performance 

simulation are obtained through synthetic workload 

generation with the following parameters. 

 

1) The distribution of transactions. This indicates 

what proportion of the total transactions that each 

master is responsible 

for. 

2) The ratio of the nonbus transaction time to the 

total transaction time per AHB master, where the 

total transaction time consists of a nonbus 

transaction (internal transaction of the master) time 

and a bus transaction (external transaction of the 

master through the busmatrix) time. 

3) The latency time of the accessed slave by each 

master. These parameters determine the delay of 

components in the virtual part. Through synthetic 

workload generation, various possible situations are 

investigated, where the ML-AHB busmatrixes with 

each arbitration scheme can be utilized well. In this 

regard, we found three useful categories of 

experiments to identify the effects of the following 

factors: 

1) job length of the masters; 

2) latency time of the slaves; 

3) both the job length of the masters and the latency 

time of 

the slaves. 

  

The dynamic-priority-based arbitration 

scheme has the advantage for throughput when there 

are few masters with long job lengths in a system; in 

other cases, the round-robin-based arbitration 

scheme can get higher throughput than other 

arbitration schemes. In addition, the arbitration 

scheme with transaction-based multiplexing 

performs better than the same arbitration scheme 

with single-transfer-based switching in applications 

with frequent access to long-latency slaves such as 

SDRAM. The slave for the first category is the 

SRAM-type AHB slave (AHB slave0 in Fig. 10) 

without latency for access, while the slave for the 

second category is the SDRAM-type AHB slave 

with a long latency time for access. The slave for the 

third category can be an AHB slave0 or an AHB 

slave1. In particular, the target addresses are 

generated based on the uniform distribution random 

number function between AHB slave0 and AHB 

slave1. Therefore, each master communicates with 

the slaves with the same probability in the third 

category. We performed a number of performance 

simulations at various job lengths and observed no 

difference in the results of the performance 

simulation at specific job lengths. The specific job 

length was 4800, and we decided the job length for 

performance analysis to be the same at 4800. In 

addition, this job length explicitly exhibits the 

features of each arbitration scheme very well. 

 

 
 

Fig 6: RTL Schematic of AD Arbiter 

 

Fig 6 represents the RTL Schematic of AD Arbiter. 

In this block the implemented ML-AHB busmatrix 

has a 32-b address bus, a 32-b write data bus, a 32-b 

read data bus, a 15-b control bus, and a 3-b response 

bus. 
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Fig 7: RTL Schematic of AHB Master 

 

Fig 7 represents RTL Schematic of AHB Master  

 
 

Fig 8: RTL Schematic of AHB Slave 

 

V.SIMULATION RESULTS 
 

 

VI.CONCLUSION 
In this paper, we proposed a flexible arbiter 

based on the AD arbitration scheme for the ML-

AHB busmatrix. Our arbiter supports three priority 

policies-fixed priority, round-robin, and dynamic 

priority-and three approaches to data multiplexing- 

transfer, transaction, and desired transfer length; in 

other words, there are nine possible arbitration 

schemes. In addition, the proposed AD arbiter 

selects one of the nine possible arbitration schemes 

based on the priority-level notifications and the 

desired transfer length from the masters to allow the 

arbitration to lead to the maximum performance. 

Experimental results show that, although the area of 

the proposed AD arbitration scheme is 9%–25% 

larger than those of other arbitration schemes, our 

arbiter improves the throughput by 14%–62% 

compared with other schemes. We therefore expect 

that it would be better to apply our AD arbitration 

scheme to an application- specific system because it 

is easy to tune the arbitration scheme according to 

the features of the target system. 
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