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1. Introduction 
Transient heat transfer problems usually involve the solution of the classical Fourier heat Conduction 

equation, which is of parabolic character, as a consequence a perturbed heat signal propagates with an infinite 

velocity through the medium. That is, if an isotropic homogeneous elastic continuum is subjected to a mechanical or 

thermal disturbance, the effect of the disturbance will be felt instantaneously at distances infinitely far from its 

source. Such a behaviour is physically inadmissible and contradicts the existing theories of heat transport 

mechanisms. 

Nonconventional thermoelasticity theories in which the parabolic heat transport equation is replaced by a hyperbolic 

heat transport equation do not suffer from the above said drawbacks and they admit Wave – like thermal signals 

propagating with finite speeds. A wave like thermal signal is referred to as second Sound – the first sound being the 

usual sound wave. Thermoelasticity theories admitting such signals are known as thermoelasticity theories with 

Second Sound or Generalized thermoelasticity theories or hyperbolic thermoelasticity. A bibliographical review of 

the literature on the above theory was given by Chandrasekharaiah, D.S [2] in his review article, and 

“Thermoelasticity with second sound“. 

Tisza, L [4] predicted the possibility of extremely small heat propagation rates (Second Sound) in liquid Helium – 

II. Chester, M [5] discussed the possibility of  existence of Second Sound in solids. The experiments on Sodium 

Helium by Ackerman, C.C et.al [1] and by Mc Nelly, T et.al [7] on Sodium fluoride, have shown that second sound 

occurs in solids also. The second sound effect indicates that heat can be transported by wave type mechanism rather 

than usual diffusion process. All these researches lead to the reformulation of the existing Fourier heat conduction 

equation in to a damped wave type equation, which is hyperbolic. 

Morse, P.M and Feshbach, H [6] postulated that the governing transient heat conduction must depend upon the 

velocity of the propagation of heat C. They assumed that the equation, 
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 Which is hyperbolic, must be the correct governing differential equation for heat conduction problems. 

              Here, we have studied the application of the generalized theory of thermoelasticity to semi–infinite thin 

rods when the rods are subjected to Step in strain. Since the specimen is very thin and long the problem is treated as 

one dimensional. 
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    The solutions of problems of this type usually do not permit closed forms unless certain 

relaxations in the constraints are made. In order to obtain a closed form solution Lord, H.W. and Schulman Y [3] 

neglected the strain – acceleration term in the field equations, on the assumption that, for most materials, the 

relaxation constant and coupled parameter have very small values (< < 1) and that their product has naturally very 

insignificant value.  

   Since the problems of this type are amenable to integral transform methods, Laplace 

transform is used and the solutions are obtained for small values of time.  

2. Formulation of the problem: 

Consider a long thin rod in which the only non zero stress component is the axial one  1 . The equation of 

motion reduces to 
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  Where  1u   is the displacement in the axial direction x1 , 0  is the undeformed density and t is the 

time. The energy equation of isotropic linear thermoelasticity is given by,   
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  The constitutive equation for the isotropic linear elastic solid can be written as  

        (3 2 ) 3 (3 2 ) (3)
1
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  For the case of thin rod 
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     From   (2) and (3), we get 
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 Where, 
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          Here, 
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 From equations (1) and (4), we get 
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 Using the following non dimensional variables,      
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            β = Relaxation constant =  
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 We get the field equations as, 

   

....

(1 ) (1 ) (1 ) 0 (9)
IV II II

u u u u u              

            and similar equations to     and    also. Here, primes denote differentiation with respect to x and 

superposed dots denote differentiation with respect to time   . The following auxiliary relations can be obtained 

from the foregoing equations. 

  From equation (7), we get 

    (10)
I II

u u   
 

           From equation (4), we get 
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  (10 )
I
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   From the above two equations, we get 

  

.. ..

(11)
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  From equation (5), we get 

 

. .. . ..

(12)
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   From equations (10), (10 a) and (12), we get, 

    (1 ) (1 ) (1 ) (13)
III I I

u u u                  

   Applying Laplace transform to equation (9), we get 
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 while applying Laplace transform, we have used the initial conditions 
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2 2
[(1 ) 1]

1 2

1
2 2 2 2

[(1 ) 1] 4 (1 )(1 )] (15)
1 2

p p

p p p p

  

    

   

      
 

 Solving, we get 
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  For large values of p, we get 
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 Where,           
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   For small values of p, we get     

1
2
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3. Problem of step in strain 
 

 The boundary and initial conditions are, 
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  We know the governing equation satisfied by displacement u   is (equation 9)  
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  Proceeding as in previous problems, applying Laplace transform and using boundary conditions 

(19), we get   
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           Taking inverse transform for large values of p, we get 
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   From equation (13), the temperature distribution is given by, 
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            For most of the materials the parameters   and    have smaller values so that the product  
 
 is far less 

than Unity. Based on this assumption, Lord, H.W. and Shulman, Y [3] neglected the term containing  , which is 

the term involving strain acceleration. Here we want to study the effect of dropping this term from the field 

equations. 



D. Raju / International Journal of Engineering Research and Applications 

 (IJERA)          ISSN: 2248-9622       www.ijera.com 

Vol. 2, Issue 4, July-August 2012, pp.621-630 

628 | P a g e  

 

   Neglecting the term containing  , we get the field equations as  
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  For large values of p, 
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   For large values of p, we get 
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