
Venkata Ramana Kumari.Ch, B. Sowjanya Rani

/ International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.534-538

534 | P a g e

Query Results Maneuvers using Concept Hierarchies

Venkata Ramana Kumari.Ch
 1
, B. Sowjanya Rani

 2

1
M Tech Student, Dept of CSE, Aditya Engineering College, Surampalem, Andhra Pradesh, India,

2
Assistant Prof, M.Tech, Dept of CSE, Aditya Engineering College, Surampalem, Andhra Pradesh, India,

Abstract:
Search Query Results on large databases

(Pub Med, HPSS, and NERSC) often return a

large number of results of which only a small

subset is relevant to the end user. To reduce this

information overload Ranking and categorization

were developed earlier. Efficient navigation

through results categorization and annotations is

the focus of this paper. In this paper, we present a

new system based on online shopping that

implement the Top-K algorithm. This system

assists that on-line shoppers navigated in most

effective paths based on their specified criteria

and preferences. The suggestions are continually

adapted to choices/decisions taken by the users

while navigating. Earlier works expand the

hierarchy in a predefined static approach, without

stressing on navigation cost. We show

experimentally that the system outperforms state-

of-the-art categorization systems with respect to

the user navigation cost. We present an

experimental study that our algorithm

outperforms state-of-the-art ranking systems with

respect to the navigation flow.

Index Terms: Pub Med, Top-k algorithm, Effective

Navigation, Ranking, and Categorization etc.

I INTRODUCTION
On-line shopping is extremely popular

nowadays, with millions of users purchasing products

in shops that provide a Web interface. It is common

for on-line shops to offer a vast number of product

Options and combinations thereof [4]. This is very

useful but, at the same time, makes shopping rather

confusing. It is often very difficult to and the specific

navigation path in the site that will lead to an

“optimal” result, best suiting the needs and

preferences of the given user.

 Consider for example an on-line store which

offers various processors, screens etc; that allows

users to assemble computers from a variety of

component parts. Consider a user that is interested in

buying a cheap Intel processor computer. Suppose

user can get a good price by first registering to the

store’s customers club. After passing through some

advertisement page that provides such members with

discount coupons, and finally buying a certain set of

components (including a certain Intel processor) that,

when purchased together with the above coupons,

yields the cheapest overall price. Clearly, the user

might be interested in knowing this information if she

is after the deal with the best price [9]. Alternatively,

the user may prefer combinations where the delivery

time is minimal, or may want to use the experience of

others and view the most popular navigation paths.

 We present here ShopIT (Shopping

assistant); a system which suggests the most effective

navigation paths based on preferences and specified

criteria. When the user starts her navigation in the

site, she may specify her constraints and her ranking

function of interest, and have the system compute and

propose (an initial set of) top-k ranked navigation

flows[2], out of these conforming to the constraints.

The user then continues her navigation taking into

account the presented recommendations, but may

also make choices different than those proposed by

the system.

Several challenges arise in the development

of such a system. First, the number of possible

navigation flows in a given web-site is not only large

but infinite, as users may navigate back and forth

between pages. Hence, enumerating and ranking all

relevant flows is clearly not an option. Second, it is

critical to maintain a fast response time in order to

provide a pleasant user experience. Finally, as

explained above, the computation must be flexible

and adaptive, to account for run-time user choices

and our algorithm is optimal [2] and very efficient.

II TECHNICAL BACKGROUND
 We provide in this section some background

on our model for Web applications and for queries

over such applications.

Web-based Applications: Our model for Web

applications, introduced in [1,6], abstractly models

applications as a set of (nested) DAGs - Directed A

Venkata Ramana Kumari.Ch, B. Sowjanya Rani

/ International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.534-538

535 | P a g e

cyclic Graphs - each intuitively is corresponding to a

specific function or service[1,3]. The graphs consist

of activities (nodes), and links (edges) between them,

that detail the execution order of activities. Each

activity is represented by a pair of nodes, the first

standing as the activity’s activation point and the

second as its completion point. Activities may be

either atomic, or compound. In the latter case their

possible internal structures (called implementations)

are also detailed as DAGs, leading to the nested

structure. A compound activity may have different

possible implementations, corresponding to different

user choices, link traversals, variable values, etc.

These are captured by logical formulas (over the user

choices, variable values, etc.) that guard each of the

possible implementations. A Web-based application

may be recursive, where an (indirect) implementation

of some activity a contains another occurrence of a.

Navigation Flow: A navigation flow[6] (in a given

application) corresponds to concrete choices of

implementations for compound activities. For

instance, a possible navigation flow in our computer

store is one where the user first reviews the possible

deals, then chooses to purchase an Intel Motherboard,

subsequently cancels her choice, buys a discount

coupon and selects a CPU by HP, etc. Note that the

number of possible navigation flows may be

extensively large even for relatively small-scaled

applications.

Ranking: The rank[6] of navigation flows is derived

using two functions, namely, cWeight and fWeight.

Function cWeight assigns a weight to each single

(implementation) choice within a flow, depending on

the course of the flow thus far and the objective that

the user wishes to optimize, e.g., monetary cost or

likelihood. Function fWeight aggregates the per-

choice weights in a single score for the entire flow.

Top-k query results: The users’ search criteria[6] are

modeled by queries. These use navigation patterns,

an adaptation of the tree patterns, found in existing

query languages for XML, to nested application

DAGs [1]. Our top-k query evaluation algorithm gets

as input the schematic representation of the

application, the user query and the chosen ranking

metric, and efficiently retrieves the qualifying

navigation flows with the highest rank. The algorithm

operates in two steps. First, it generates a refined

version of the original application representation,

describing only flows that are relevant to the user

request. Then it greedily analyzes the refined

representation to obtain the best-ranked flows. The

choices made by the user throughout the navigation

are modeled as additional constraints/relaxations to

the original query, and an efficient adaptive

evaluation technique is employed to update the query

result.

III SYSTEM OVERVIEW
We give here a brief overview of the main

components and their interaction. Figure 1 depicts the

system architecture.

Store Model[6]: The abstract model of the on-line

store application and its cWeight information are

stored in the ShopIT database.

 The first component, namely the application

abstract model, was manually configured. Many

Web-based applications are specified in declarative

languages and then an automated extraction of their

abstract model structure is possible. The products

information, including compatibility relation in-

between products, as well as additional parameters

such as products cost, discount deals, shipment time

etc. were automatically retrieved via a standard Web

interface. The cWeight function was automatically

derived to reflect this data.

 Fig 1: System Architecture

Query Engine: The query engine[6] is composed of

two components. The first is the Top-k queries

evaluator that receives, as input, from the user, her

search criteria and chosen ranking metric, and

computes the initial suggestion of top-k qualifying

navigation paths. ShopIT supplies a Graphical User

Interface that allows users to specify their criteria for

search. The specified criteria are compiled into a

navigation pattern, which in turn is evaluated over the

Web Application model.

 The second component is the adaptive

recommendation engine that is continuously

informed about the user actual navigation choices (or

Venkata Ramana Kumari.Ch, B. Sowjanya Rani

/ International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.534-538

536 | P a g e

changes to her search criteria and ranking choice) and

adapts the offered top-k suggestions accordingly. We

have designed the query engine so that it is accessible

through an API that allows the placement of user

queries and preferences, and the retrieval of the

corresponding recommendations. This general API

can be used to incorporate ShopIT within a given

website.

The ShopIT virtual store: Users interact with a

virtual store[6] that wraps the original store. User

actions are passed, through the API, to the ShopIT

engine and to the (original) store application. The

obtained recommendations are then presented to the

user alongside with the resulting store screens. Each

recommendation consists of a sequence of proposed

actions, such as “click on button X”, “choose option

Y at box Z”, etc., and is accompanied by its

corresponding weight (e.g. total price, likelihood,

etc.).

IV OPTIMAL TOP-K ALGORITHM
TOP-K Algorithm [2, 5]: we define an EX-

flows table, F Table, (compactly) maintaining the

top-k (sub) flows for each equivalence class. It has

rows corresponding to equivalence classes, and

columns ranging from 1 to k. Each entry contains a

pointer to the corresponding sub-flow. In turn, every

implementation of a compound activity node in this

sub-flow is not given explicitly, but rather as a

pointer to another entry in F Table, and so on. This

guarantees that the size of each flow representation is

bounded by the table size, avoiding the blow-up of

EX-flow sizes. In what follows, every EX-flow is

represented via a single pointer to an entry at F Table.

The algorithm then operates in two steps. First, it

calls a subroutine FindFlows which computes a

compact representation of the top-k EX-flows within

F Table, and then it calls Enumerate Flows that uses

the table to explicitly enumerate the EX-flows from

this compact representation. We next explain the

operation of these two subroutines.

Find Flows: The Find Flows procedure maintains

two priority queues Frontier and Out of (partial) EX-

flows, ordered by fWeight. At each step, Frontier

contains all flows that still need to be examined.

Upon termination, Out will contain the top-k flows.

Initially, Out is empty and Frontier contains a single

partial EX-flow, containing only the BP root. At each

step, we pop the highest weighted flow e from

Frontier. If e is a full (partial) flow, the algorithm

invokes Handle Full (Handle Partial) to handle it.

HandleFull: First, the given full EX-flow e is

inserted into Out. If Out already contains k flows,

then we terminate. Otherwise, every node appearing

in e, along with its preceding sub flow defines an

equivalence class, used as entry at F Table. The sub-

flow rooted at the node is then inserted into the table

at that entry, if it does not appear there already. Last,

all EX-flows that were put by Handle Partial due to a

node participating in e, are returned to Frontier.

HandlePartial: Handle Partial is given a partial flow

e and considers all possible expansions e′ of e. To

that end, we assume the existence of an All Exps

function that allows to retrieve, given a partial flow e,

all of its expansions (i.e. all e′ s.t. e → e′), along with

their weights. The algorithm first retrieves the next-

to-be- expanded node v of e, and looks up its

equivalence class in F Table. If no entry is found, it

means that we haven't encountered yet an equivalent

node during the computation. We thus create a new

row in F Table for this equivalence class. Entries in

this row will be filled later, when corresponding full

flows are found. Then, we obtain all expansions of e,

and for each such expansion we compute its fWeight

value, and insert it to the Frontier queue for

processing in the following iterations. Otherwise, if

the appropriate row already exists in the table, we

consider the partial EX-flows that appear in this row

but were not yet considered for expanding e. If no

such EX-flow exists, (although the table entry exists),

it means that e was previously reached when

expanding some other node v′ (which appears in e as

well). We may compute the next best EX-flow

without further expanding e. Thus, we put e on hold.

It will be released upon finding a full flow originating

in v′. If an unused EX-flow exists, we take the

highest ranked such EX-flow and “attach" it to v, that

Venkata Ramana Kumari.Ch, B. Sowjanya Rani

/ International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.534-538

537 | P a g e

is, we make v point to this flow. We now compute

the weight of the obtained EX-flow and add it to

Frontier.

V EXPERIMENTAL STUDY
We present an experimental study of our

algorithm based on synthetic and real-life data. The

study evaluates the performance of the algorithm in

practice relative to the worst-case bounds implied by

our analysis, examining cases where optimality is

guaranteed as well as cases where it is not.

Note that TOP-K gradually fills in F Table,

and halts once it discovered the top-k flows. We

implemented a variant of TOP-K, termed WC (for

worst-case), that fills in all entries of F Table before

terminating, and compared the performance of TOP-

K to WC that provides a comparison to [8]. A

comparison of TOP-K to WC demonstrates the

significant performance gains achieved by our new

algorithm.

A representative sample of the experimental

results is presented below. Figure 1(a) examines the

execution times (in seconds) of TOP-K and WC for

increasing number (in thou- sands) of equivalence

classes. (The scale for the time axis in all graphs is

logarithmic). The number k of requested results here

is 100. (We will consider varying k values below).

The figure shows the performance of TOP-K for

cWeight values in the range [0, 1] with different

distributions. This includes uniform and normal

distributions with average value of 0.5 and varying

standard deviation of 0.2, 0.1, and 0 (the latter

corresponding to all-equal cWeight values). WC

always fills in all entries of the FTable, thus is not

sensitive to the cWeight distribution, and we show

only one curve for it.

Figure 1(b) examines the execution times of

WC and TOP-K for a growing number k of requested

results (for the same distributions of cWeights as

above). The number of equivalence classes here is

200K and the history bound is 5. We can see that the

running time increases only moderately as k grows,

with TOP-K steadily showing significantly better

performance than WC.

Figure 1(c) examines the e®ect of the

monotonicity strength of the weight function, on

TOP-K's execution time. We fix k, the number of

equivalence classes, and the history bound (to 100,

40K, and 5, resp.), and vary the percentage of neutral

weights, with the non-neutral weights uniformly

distributed. At the left-most end, there are no neutral

weights and TOP-K is guaranteed to be optimal; at

the right-most (very unlikely) case all weights are

neutral, and TOP-K and WC exhibit the same

execution times (as the flows table must be fully

filled). We see that the performance of TOP-K is

significantly superior even when the conditions for

optimality do not necessarily hold. In particular, in all

realistic scenarios where less than 90% of the weights

Venkata Ramana Kumari.Ch, B. Sowjanya Rani

/ International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.534-538

538 | P a g e

are neutral, TOP-K improves over WC by more than

75%.

Fig. 1(d) depicts results for 15 representative

such subsets, involving increasing counts of

equivalence classes-the leading factor in the

performance of the TOP-K algorithm. At the extreme

right, all equivalence classes participate in the

computation. Observe that TOP-K outperforms WC

by a factor of over 98%, demonstrating scalability

and good performance.

VI CONCLUSION
Web-sites for on-line shopping typically

offer a vast number of product options and

combinations thereof. While this is very useful, it

often makes the navigation in the site and the

identification of the “ideal” purchase (where the

notion of ideal differs among users) a confusing, non-

trivial experience. This demonstration presents

ShopIT (Shopping assistant), a system that assists on-

line shoppers by suggesting the most effective

navigation paths for their specified criteria and

preferences. The suggestions are continually adapted

to choices/decisions taken by the users while

navigating. ShopIT is based on a set of novel,

adaptive, provably optimal algorithms for TOP-K

query evaluation in the context of weighted BPs

(business process). We analyzed different classes of

weight functions and their implications on the

complexity of query evaluation, and have given, for

the first time, a provably optimal algorithm for

identifying the top-k EX-flows of BPs [5]. We

showed that our algorithm outperforms by an order of

magnitude.

VII REFERENCES
[1] C. Beeri, A. Eyal, S. Kamenkovich, and T.

Milo. “Querying business processes”. In Proc.

of VLDB, 2006.

[2] D. Deutch, T. Milo, N. Polyzotis, and T. Yam.

“Optimal top-k query evaluation for weighted

BPs“(submitted). 2009.

[3] A. Deutsch, L. Sui, V. Vianu, and D. Zhou.

Verification of communicating data-driven

web services. In PODS, 2006.

[4] Yahoo! shopping. http://shopping.yahoo.com/

[5] I. F. Ilyas, G. Beskales, and M. A. Soliman. A

survey of top-k query processing techniques in

relational database systems. ACM Comput.

Surv., 40(4), 2008.

[6] Daniel Deutch, Tova Milo, Tom Yam,” Goal-

Oriented Web-site Navigation for On-line

Shoppers”.

[7] N. Koudas and D. Srivastava. “Data stream

query processing: A tutorial”. In Proc. of

VLDB, 2003.

[8] D. Deutch and T. Milo. “Evaluating top-k

queries over business processes (short paper)”.

In Proc. of ICDE, 2009.

[9] R. Dechter and J. Pearl. “Generalized best-first

search strategies and the optimality of A*”.

JACM, 32(3), 1985.

