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Abstract: 

We first briefly describe the algorithms of 

convolutional encoder and hard decision Viterbi 

decoder. The focus of this work is towards 

developing an application specific design 

methodology for low power solutions. The 

methodology starts from high level models which 

can be used for hardware solution and proceeds 

towards high performance hardware solutions.    The 

methodology starts from algorithmic level, 

concentrating on the functional correctness rather 

than on implementation architecture. The effect on 

performance due to variation in parameters like 

frame length, number of iterations, type of encoding 

scheme. Turbo codes are used for error protection, 

especially in wireless systems. Viterbi algorithm is 

widely used as a decoding technique for 

convolutional codes as well as a bit detection 

method in storage devices. The design space for 

VLSI implementation of Viterbi decoders is huge, 

involving choices of throughput, latency, area, and 

power. Even for a fixed set of parameters like 

constraint length, encoder polynomials and trace-

back depth, the task of designing a Viterbi decoder 

is quite complex and requires significant effort. 

Sometimes, due to incomplete design space 

exploration or incorrect analysis, a suboptimal 

design is chosen. This work analyzes the design 

complexity by applying most of the known VLSI 

implementation techniques for hard-decision Viterbi 

decoding to a different set of code parameters. 

 

1. Introduction 
Convolutional codes represent one technique within 

the general class of channel codes. Channel codes 

(also called error-correction codes) permit reliable 

communication of an information sequence over a 

channel that adds noise, introduces bit errors, or 

otherwise distorts the transmitted signal. These 

codes have found many applications, including 

deep-space communications and voice band 

modems. Convolutional codes continue to play a 

role in low-latency applications such as speech 

transmission and as constituent codes in Turbo 

codes. One way to reduce the transmission power is 

to incorporate powerful forward error correction 

(FEC) codes to increase coding gain at the receiver 

which translates in less transmission power. 

However, Shannon showed that the development of 

error correction techniques with increasing coding 

gain have a limit, arising from  

the channel capacity. Since that work, many 

different types of codes have been designed and 

their decoding algorithms are physically realized. 

They mainly differ in decoding performance and 

their hardware complexity. Traditionally, the Viterbi 

algorithm has been widely accepted as a choice for 

decoder for wireless communications because it is 

an optimum decoding algorithm for the 

convolutional-code. It performs a maximum 

likelihood (ML) detection of the state sequence of a 

finite-state discrete-time Markov process observed 

in memory less noise. It can also be interpreted as 

searching for the minimum-distance path in a trellis 

by dynamic programming, where the measure of 

distance is the log-likelihood of the corresponding 

state transition based on the symbols received over 

noisy channel. 

 

         One of the primary objectives in the design of 

low-energy communication system is power 

reduction. Power consumption is the guiding 

principle for both algorithm development and 

system trade-off evaluation. The tremendous 

savings in power consumption can be attained 

through both algorithm reformulation and 

architectural innovation specifically targeted for 

energy conservation. We first review turbo-codes. 

The encoding scheme and the decoding algorithm 

are briefly described. Then, the low-complexity sub-

optimal decoding algorithm is reformulated where 

many complex operations have been eliminated. A 

simple mechanism for channel estimation is 

discussed. Based on the reduced complexity 

decoding algorithm, the VLSI multistage pipeline 

turbo-code decoder architecture design is presented. 

A further circuit complexity is minimized by 

appropriately choosing the finite quantization word 

length. Finally, the performance and the circuit 

complexity of the decoder are evaluated. The low 
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complexity turbo-code decoder is compared with 

various. 

 

2. Literature Survey: 
Viterbi algorithm is a well-known maximum-

likelihood algorithm for decoding of convolutional 

codes. In this article this algorithm is described 

using the approach suitable both for hardware and 

software implementations. 

 

Convolutional Codes: 

This chapter describes the encoder and decoder 

structures for convolutional codes. The encoder will 

be represented in many different but equivalent 

ways.  

Also, the main decoding strategy for convolutional 

codes, based on the Viterbi Algorithm, will be 

described. A firm understanding of convolutional 

codes is an important prerequisite to the 

understanding of turbo codes. 

 

 

2.1 Encoder Structure: 

A convolutional code introduces redundant bits into 

the data stream through the use of linear shift 

registers as shown in Figure 

 

 

The information bits are input into shift registers 

and the output encoded bits are obtained by modulo-

2 addition of the input information bits and the 

contents of the shift registers. The connections to the 

modulo-2 adders were developed heuristically with 

no algebraic or combinatorial foundation.  

Convolutional codes are frequently used to correct 

errors in noisy channels. They have rather good 

correcting capability and perform well even on very 

bad channels. Convolutional codes are extensively 

used in satellite communications. Although 

Convolutional encoding is a simple procedure, 

decoding of a Convolutional code is much more 

complex task.  Several classes of algorithms exist 

for this purpose: 

 

1. Threshold decoding is the simplest of them, but it 

can be successfully applied only to the specific 

classes of Convolutional codes. It is also far from 

optimal. 

2. Sequential decoding is a class of algorithms 

performing much better than threshold algorithms. 

Their serious advantage is that decoding complexity 

is virtually independent from the length of the 

particular code. Although sequential algorithms are 

also suboptimal, they are successfully used with 

very long codes, where no other algorithm can be 

acceptable. The main drawback of sequential 

decoding is unpredictable decoding latency. 

3. Viterbi decoding is an optimal (in a maximum-

likelihood sense) algorithm for decoding of a 

Convolutional code. Its main drawback is that the 

decoding complexity grows exponentially with the 

code length.  

    So, it can be utilized only for relatively short 

codes. There are also soft-output algorithms, like 

SOVA (Soft Output Viterbi Algorithm) or MAP 

algorithm, which provide not only a decision, but 

also an estimate of its reliability. They are used 

primarily in the decoders of turbo codes and are not 

discussed in this article. 

 

 

2.2 Convolutional Codes 

 

2.2.1. Convolutional Encoders 

 

     Like any error-correcting code, a convolutional 

code works by adding some structured redundant 

information to the user's data and then correcting 

errors using this information.  

        

A convolutional encoder is a linear system. A binary 

convolutional encoder can be represented as a shift 

register. The outputs of the encoder are modulo 2 

sums of the values in the certain register's cells. The 

input to the encoder is either the uuencoded 

sequence (for non-recursive codes) or the 

uuencoded sequence added with the values of some 

register's cells (for recursive codes).  

 

 

     Convolutional codes can be systematic and non-

systematic. Systematic codes are those where an 

unencoded sequence is a part of the output 

sequence. Systematic codes are almost always 

recursive; conversely, non-recursive codes are 

almost always non-systematic. A combination of 

register's cells that forms one of the output streams 

(or that is added with the input stream for recursive 

codes) is defined by a polynomial. Let m be the 

maximum degree of the polynomials constituting a 

code, then K=m+1 is a constraint length of the code. 

 

 

 

 

 



Susrutha Babu Sukhavasi, Suparshya Babu Sukhavasi, Dr.Habibulla Khan, Chiranjeevi Pilla/ 

International Journal of Engineering Research and Applications (IJERA)    

ISSN: 2248-9622   www.ijera.com  Vol. 2, Issue 3, May-Jun 2012, pp.2849-2861 

2851 | P a g e  
 

 

For example, for the decoder on the Figure 1, the 

polynomials are: 

 

 
A code rate is an inverse number of output 

polynomials. For the sake of clarity, in this article 

we will restrict ourselves to the codes with rate 

R=1/2. Decoding procedure for other codes is 

similar. Encoder polynomials are usually denoted in 

the octal notation. For the above example, these 

designations are “1111001” = 171 and “1011011” = 

133. The constraint length of this code is 7. An 

example of a recursive convolutional encoder is on 

the Figure 2. 

 

 

 

Hardware Implementation 

 

The parameters chosen in our design are as follows: 

 

1. Constraint Length: K=3: That is the number of 

shifts (i.e. flip flops) in the linear shift register over 

which the input data bits have to be shifted before 

they are taken out of the shift register. 

 

2. Code Rate: k/n = ½: That is for every input 

message bit, there are two output bits created out of 

convolution of the impulse response of the linear 

shift register and the input bit sequence. 

3. Minimum Free Distance = 5: That is the 

minimum Hamming Distance between the codeword 

sequence and the all zeroes codeword sequence. 

 

 

4. Trace Back Depth=15: That is the number of 

paths in Trellis Diagram or the branches in the Tree 

Diagram, which must be covered before the first 

input bit can be decoded. 

 

Now we describe the three basic entities used in our 

VHDL design. 

 

2.2.2. Encoder Representations: 

 

The encoder can be represented in several different 

but equivalent ways. They are 

1. Generator Representation 

2. Tree Diagram Representation 

3. State Diagram Representation 

4. Trellis Diagram Representation 

 

 

1. Generator Representation 

Generator representation shows the hardware 

connection of the shift register taps to the modulo-2 

adders. A generator vector represents the position of 

the taps for an output. A “1” represents a connection 

and a “0” represents no connection. 

 

2. Tree Diagram Representation 

 

The tree diagram representation shows all possible 

information and encoded sequences for the 

convolutional encoder. Figure 2.3 shows the tree 

diagram for the encoder 

 

 

In the tree diagram, a solid line represents input 

information bit 0 and a dashed line represents input 

information bit 1. The corresponding output 

encoded bits are shown on the branches of the tree. 

An input information sequence defines a specific 

path through the tree diagram from left to right. For 

example, the input information sequence x= {1011} 

produces the output encoded sequence c= {11, 10, 
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00, 01}. Each input information bit corresponds to 

branching either upward (for input information bit 

0) or downward (for input information bit 1) at a 

tree node. 

 

3. State Diagram Representation 
The state diagram shows the state information of a 

convolutional encoder. The state information of a 

convolutional encoder is stored in the shift registers. 

 

 

  

In the state diagram, the state information of the 

encoder is shown in the circles. Each new input 

information bit causes a transition from one state to 

another. The path information between the states, 

denoted as x/c, represents input information bit x 

and output encoded bits c. It is customary to begin 

convolutional encoding from the all zero state. For 

example, the input information sequence x={1011} 

(begin from the all zero state) leads to the state 

transition sequence s={10, 01, 10, 11} and produces 

the output encoded sequence c={11, 10, 00, 01}. 

Figure 2.5 shows the path taken through the state 

diagram for the given example. 

 
 

 

4. Trellis Diagram 
A convolutional encoder is often seen as a finite 

state machine. Each state corresponds to some value 

of the encoder's register. Given the input bit value, 

from a certain state the encoder can move to two 

other states.  

 

These state transitions constitute a diagram which is 

called a trellis diagram. A trellis diagram for the 

code on the Figure 2 is depicted on the Figure 3. 

 

           A solid line corresponds to input 0, a dotted 

line – to input 1 (note that encoder states are 

designated in such a way that the rightmost bit is the 

newest one). Each path on the trellis diagram 

corresponds to a valid sequence from the encoder's 

output. Conversely, any valid sequence from the 

encoder's output can be represented as a path on the 

trellis diagram. One of the possible paths is denoted 

as red (as an example).  

Note that each state transition on the diagram 

corresponds to a pair of output bits. There are only 

two allowed transitions for every state, so there are 

two allowed pairs of output bits, and the two other 

pairs are forbidden. If an error occurs, it is very 

likely that the receiver will get a set of forbidden 

pairs, which don't constitute a path on the trellis 

diagram. So, the task of the decoder is to find a path 

on the trellis diagram which is the closest match to 

the received sequence. 

  

            Let's define a free distance d as a minimal 

Hamming distance between two different allowed 

binary sequences (a Hamming distance is defined as 

a number of differing bits). A free distance is an 

important property of the convolutional code. It 

influences a number of closely located errors the 

decoder is able to correct. 

 

3. Viterbi Algorithm 
The Viterbi algorithm as a dynamic programming 

algorithm for finding the shortest path through a 

trellis, and the algorithm can be broken down into 

the following three steps: 
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• Weigh the trellis; that is, calculate the branch 

metrics. 

 

• Recursively computes the shortest paths to time n, 

in terms of the shortest paths to time n-1. In this 

step, decisions are used to recursively update the 

survivor path of the signal. This is known as add-

compare-select (ACS) recursion. 

 

 

• Recursively find the shortest path leading to each 

trellis state using the decisions from Step 2. The 

shortest path is called the survivor path for that state 

and the process is referred to as survivor path 

decode. Finally, if all survivor paths are traced back 

in time, they merge into a unique path, which is the 

most likely signal path that we are trying to find. 

 

    Associated with each trellis state S at time n is a 

state metric which is the accumulated metric along 

the shortest path leading to that state. The state 

metrics at time n can be recursively calculated in 

terms of the state metrics of the previous iteration as 

follows: 

 

PMi+1 =min (PMi +BMi,i+1, PMj+BMj,i+1); (1) 

PMj+1 =min (PMi +BMi,j+1, PMj+BMj,j+1); (2) 

 

 

Where i+1 is a predecessor state of i and BMi,i+1 is 

the branch metric on the transition from state i to 

state j. The qualitative interpretation of this 

expression is as follows. By definition, the shortest 

path into state j must pass through a predecessor 

state. 

 

Basic Definitions 

        Ideally, Viterbi algorithm reconstructs the 

maximum-likelihood path given the input sequence. 

 

Let's define some terms: 

 

A soft decision decoder: 

 

            a decoder receiving bits from the channel 

with some kind of reliability estimate. Three bits are 

usually sufficient for this task. Further \ increasing 

soft decision width will increase performance only 

slightly while considerably increasing 

computational difficulty. For example, if we use a 3-

bit soft decision, then “000” is the strongest zero, 

“011” is a weakest zero, “100” is a weakest one and 

“111” is a strongest one. 

 

A hard decision decoder: 

 

  a decoder which receives only bits from the 

channel (without any reliability estimate). A branch 

metric – a distance between the received pair of bits 

and one of the “ideal” pairs (“00”, “01”, “10”, 

“11”).  

 

A path metric: a sum of metrics of all branches in 

the path. A meaning of distance in this context 

depends on the type of the decoder: 

 

• For a hard decision decoder it is a Hamming 

distance, i.e. a number of differing bits; 

• For a soft decision decoder it is an Euclidean 

distance. 

In these terms, the maximum-likelihood path is a 

path with the minimal path metric. Thus the problem 

of decoding is equivalent to the problem of finding 

such a path. 

 Let's suppose that for every possible encoder state 

we know a path with minimum metric ending in this 

state. For any given encoder state there is two (and 

only two) states from which the encoder can move 

to that state, and for both of these transitions we 

know branch metrics. So, there are only two paths 

ending in any given state on the next step. One of 

them has lesser metric, it is a survivor path. The 

other path is dropped as less likely. Thus we know a 

path with minimum metric on the next step, and the 

above procedure can be repeated. 

 

3.1. Viterbi Decoder 

The receiver can deliver either hard or soft symbols 

to the Viterbi decoder. A hard symbol is equivalent 

to a binary +/-1. A soft symbol, on the other hand, is 

multileveled to represent the confidence in the bit 

being positive or negative. For instance, if the 

channel is non-fading and Gaussian, the output of 

the matched filter quantified to a given number of 

bits is a suitable soft input. In both cases, 0 is used 

to represent a punctured bit. In case of hard decision 

demodulation, data is demodulated into either 1s or 

0s, or quantized into two levels only. The process 

described above makes a hard binary decision about 

each incoming bit and then uses only the Hamming 

distances. This simplifiers the hardware, but does 

not result in optimal perform.  

 

Implementation  
A Viterbi algorithm consists of the following three 

major parts: 

 

1. Branch metric calculation – calculation of a 

distance between the input pair of bits and the four 

possible “ideal” pairs (“00”, “01”, “10”, “11”). 

 

 

2. Path metric calculation – for every encoder state, 

calculate a metric for the survivor path ending in 

this state (a survivor path is a path with the 

minimum metric). 

 

3. Traceback – this step is necessary for hardware 

implementations that don't store full information 
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about the survivor paths, but store only one bit 

decision every time when one survivor path is 

selected from the two. 

 

 

The Working of Viterbi decoder in term of block 

diagram and trellis diagram: 

 
 

 

 

 

   For hard decision decoding, the Viterbi algorithm 

uses the hamming distance to find the branch metric 

and path metric.  

    

    Codeword is given to branch metric unit. Branch 

metric unit's function is to calculate branch metrics, 

which are Hamming distances between every 

possible symbol in the codeword and the received 

symbol. Path metric unit summarizes branch metrics 

to get metrics for 2K − 1 path, one of which can 

eventually be chosen as optimal.  

    

 Survivor memory unit can be trace-back process or 

register exchange method, where the survivor path 

and the output data are identified. The error 

probabilities achieved by Viterbi algorithm depends 

on the code, the rate of the code, its free distance, 

channel SNR and demodulation Quantized output.  

       

The quality of Viterbi decoder design is mainly 

measured by three criteria 

 

 

• Coding gain 

• Throughput 

• Power dissipation 

 

 

Adaptive Viterbi Decoder (AVD) 

 
Block diagram of Adaptive Viterbi decoder 

Fig shows the data flow diagram of an adaptive 

Viterbi algorithm, which adds two functional 

blocks, including the best winner search and non 

survivor purge, into the original Viterbi algorithm. 

Codeword is applied to branch metric computation 

unit. It calculates branch metric by comparing with 

expected symbol. ACS updates path metric by 

cumulative accumulation of branch metric. Best 

winner search determines final winner and give it 

non survivor purge unit. It deletes all paths expect 

winner.  

 

 

        The first unit is called branch metric unit 

BMU is the simplest block in the Viterbi decoder 

design. Here the received data symbols are 

compared to the ideal outputs of the encoder from 

the transmitter and branch metric is calculated. 

Hamming distance or the Euclidean distance is used 

for branch metric computation. 

 

 

 

3.1.1. Branch Metric Calculation 
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                   Block diagram of Branch Metric Unit 

  The BMU calculates the branch metrics from the 

input data. For hard decision BMU calculate 

everything in term of hamming distance. Hamming 

distance between the received Codeword and the 

expected is calculated by compares the received 

code symbol with the expected code symbol and 

counting the number of different bits. BMC (branch 

metric computation) unit is to calculate the branch 

metrics which are then moved to the ACS (add 

compare select) unit.  

     The major task of the ACS is to calculate the 

metrics and selected paths. The add-compare-select 

(ACS) unit recursively accumulates the branch 

metrics to path metrics for all the incoming paths of 

each state and selects the path with minimum path 

metric as the survivor path. An ACS module is 

shown in Figure2.5.  

     The two adders compute the partial path metric 

of each branch, the comparator compares the two 

partial metrics, and the selector selects an 

appropriate branch. ACS units determine their own 

local winners, the best winner search block finds the 

one having the best (minimum) path metric among 

all the winners, and the non survivor purge block 

deletes the local winners     Methods of branch 

metric calculation are different for hard decision and 

soft decision decoders.  

 

                                4.5 BMU Block 

   For a hard decision decoder, a branch metric is a 

Hamming distance between the received pair of bits 

and the “ideal” pair. Therefore, a branch metric can 

take values of 0, 1 and 2. Thus for every input pair 

we have 4 branch metrics (one for each pair of 

“ideal” values). 

    

     The branch metric uses the Hamming distance 

for the four possible paths. First we initial four 

different received hamming distance lookup table. 

Then each time with check the input symbol, we get 

the four possible distances. 

   The BMU perform simple check and select 

operations on the decision bits to generate the 

output. The detail hardware implementation is 

shown in the Figure 4.5. 

 

 
 

Fig: one possible path hardware implementation 

example 

 

 

    For a soft decision decoder, a branch metric is 

measured using the Euclidean distance. Let x be the 

first received bit in the pair, y – the second, x0 and 

y0 – the “ideal” values. Then branch metric is  

Furthermore, when we calculate 4 branch metric for 

a soft decision decoder, we don't actually need to 

know absolute metric values – only the difference 

between them makes sense. So, nothing will change 

if we subtract one value from the all four branch 

metrics: 

 
Note that the second formula, Mb * , can be 

calculated without hardware multiplication: x0 2 

and y0 2 can be pre-calculated, and multiplication of 

x by x0 and y by y0 can be done very easily in 

hardware given that x0 and y0 are constants. It 
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should be also noted that Mb * is a signed variable 

and should be calculated in 2's complement format. 

 

 

Path Metric Calculation 

 

Path metrics are calculated using a procedure called 

ACS (Add-Compare-Select). This procedure is 

repeated for every encoder state. 

 

1. Add – for a given state, we know two states on 

the previous step which can move to this state, and 

the output bit pairs that correspond to these 

transitions. To calculate new path metrics, we add 

the previous path metrics with the corresponding 

branch metrics. 

 

2. Compare, select – we now have two paths, ending 

in a given state. One of them (with greater metric) is 

dropped. As there are 2K−1 encoder states, we have 

2K−1 survivor paths at any given time. It is 

important that the difference between two survivor 

path metrics cannot exceed δlog (K−1), where δ is a 

difference between maximum and minimum 

possible branch metrics. The problem with path 

metrics is that they tend to grow constantly and will 

eventually overflow. But, since the absolute values 

of path metric don't actually matter, and the 

difference between them is limited, a data type with 

a certain number of bits will be sufficient. 

 

There are two ways of dealing with this problem: 

 

1. Since the absolute values of path metric don't 

actually matter, we can at any time subtract an 

identical value from the metric of every path. It is 

usually done when all path metrics exceed a chosen 

threshold (in this case the threshold value is 

subtracted from every path metric). This method is 

simple, but not very efficient when implemented in 

hardware. 

 

 

2. The second approach allows overflow, but uses a 

sufficient number of bits to be able to detect whether 

the overflow took place or not. The compare 

procedure must be modified in this case. 

 

 
The whole range of the data type's capacity is 

divided into 4 equal parts. If one path metric is in 

the 3-rd quarter, and the other – in the 0-th, then the 

overflow took place and the path in the 3-rd quarter 

should be selected. In other cases an ordinary 

compare procedure is applied. This works, because a 

difference between path metrics can't exceed a 

threshold value, and the range of path variable is 

selected such that it is at least two times greater than 

the threshold. 

 

3.1.2. The ACS block  

 

When the 4 possible input distance is ready, the 

ACS block’ butterfly module adds the results and 

the related distance value stored in the state metric 

storage to get the each two paths for the 64 initial 

states. The butterfly module is shown in the next 

figure. Since, each butterfly computes 4 possible 

paths and selects the two smaller distance paths 

form. We have totally 32 butterflies.  

 

 
 

For each nod (state), the ACS module selects a 

smaller one as the survival path and stores them to 

the accumulated state metric storage block and the 

survivor path metric. Following Figure is the ACS 

module. 

     PMU is a critical block both in terms of area and 

throughput. The key problem of the PMU design is 

the recursive nature of the add-compare-select 

(ACS) operation The throughput of hard- or soft-

output Viterbi decoders is set by the particular target 

application requirements. Depending on the 

implementation platform or the complexity 

limitations, the decoders can be built using 

concurrent computation of all state metrics or by 

resource sharing through multiplexing the 

computational units.  

      High-throughput applications require the use of 

fully parallel decoder implementations. The 

throughput of a SOVA decoder has traditionally 

been limited by the difficulty of pipelining the 

single-step ACS recursion.  the transition trellis of 

an example eight-state hard or soft-decision Viterbi 

decoder. The critical-path of a traditional ACS 

computation extends through the sequential 

execution of two parallel additions, a comparison 
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and a selection. Let represent the path metric for 

state, and, the branch metric of a corresponding 

transition from state to state , with the time step 

denoted by . Then, an example of the ACS recursion 

corresponding to state 0 is shown.  

        The comparison is implemented through 

subtraction, and the most significant bit (MSB) of 

the result selects the winning path. The ripple-carry 

implementations of both add and compare 

operations take advantage of the similarity in carry 

profiles. The amount of overhead in the critical path 

required for executing the subtraction only involves 

the computation of the MSB of the difference. Fast 

adder structures such as the carry-select adder will 

require the subsequent subtraction to follow an 

abrupt carry profile, which yields minimal 

performance gains. With large area penalties. The 

use of a redundant numbering system with MSB-

first computations can provide performance 

improvement.  

   However, this is achieved at the expense of large 

area due to the carry-save representation  

 

 
 

ACS Recursive Equations: 

 

 
 Previous high-throughput implementations of the 

Viterbi decoder unrolled the ACS loop in order to 

perform two-step iterations of the trellis recursions 

within a single clock period. These lookahead 

methods replace the original radix-2 trellis  with a 

radix-4 trellis, at the cost of increased interconnect 

complexity. A radix-4 ACS computes four sums in 

parallel followed by a four-way comparison. In 

order to minimize the critical-path delay, the 

comparison is realized using six parallel pair-wise 

subtractions of the four output sums. In general, the 

critical-path delay increases. However, due to the 

doubled symbol rate, the effective throughput is 

improved if this increase in delay is less than 

twofold. An alternative approach with a lower area 

overhead is the concurrent ACS. Maintaining the 

use of a radix-2 trellis, the concurrent ACS performs 

the addition and comparison operations 

simultaneously. It requires the comparison to be 

realized with a four-input adder. A sub-8-ns four-

input adder was implemented in 0.6- m CMOS 

using two layers of three-to-two carry-save adders, 

followed by a final carry-lookahead adder. The 

critical path through the four-input adder and a 

multiplexer determines the throughput of the 

concurrent ACS. 

    The concurrent ACS becomes the choice structure 

for delays between 29 and 35 FO4 delays. For low-

throughput rates with critical-path delays above 35 

FO4 delays, the ACS structure is the best choice in 

terms of both area and power consumption. In this 

high-throughput SOVA decoder implementation, the 

transformed CSA was implemented because it 

provided the highest decoding throughput, without 

incurring the excessive area and power penalties of 

the radix-4 ACS structure. 

 

Traceback  

 

      It has been proven that all survivor paths merge 

after decoding a sufficiently large block of data (D 

on Figure 5), i.e. they differ only in their endings 

and have the common beginning. If we decode a 

continuous stream of data, we want our decoder to 

have finite latency. It is obvious that when some 

part of path at the beginning of the graph belongs to 

every survivor path, the decoded bits corresponding 

to this part can be sent to the output. Given the 

above statement, we can perform the decoding as 

follows: 
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1. Find the survivor paths for N+D input pairs of 

bits. 

 

2. Trace back from the end of any survivor paths to 

the beginning. 

 

3. Send N bits to the output. 

 

4. Find the survivor paths for another N pairs of 

input bits. 

 

5. Go to step 2. 

 

In these procedures D is an important parameter 

called decoding depth. A decoding depth should be 

considerably large for quality decoding, no less than 

5K. Increasing D decreases the probability of a 

decoding error, but also increases latency. 

 

 

    As for N, it specifies how many bits we are 

sending to the output after each traceback. For 

example, if N=1, the latency is minimal, but the 

decoder needs to trace the whole tree every step. It 

is computationally ineffective. In hardware 

implementations N usually equals D. 

 

Decoding Procedure:  

               Each time we receive a pair of channel 

symbols, we're going to compute a metric to 

measure the "distance" between what we received 

and all of the possible channel symbol pairs we 

could have received. Going from t = 0 to t = 1, there 

are only two possible channel symbol pairs we 

could have received: 002, and 112. That's because 

we know the convolutional encoder was initialized 

to the all-zeroes state, and given one input bit = one 

or zero, there are only two states we could transition 

to and two possible outputs of the encoder. These 

possible outputs of the encoder are 00 2 and 112. 

The metric we're going to use for now is the 

Hamming distance between the received channel 

symbol pair and the possible channel symbol pairs. 

The Hamming distance is computed by simply 

counting how many bits are different between the 

received channel symbol pair and the possible 

channel symbol pairs. The results can only be zero, 

one, or two.  

     The Hamming distance (or other metric) values 

we compute at each time instant for the paths 

between the states at the previous time instant and 

the states at the current time instant are called 

branch metrics. For the first time instant, we're 

going to save these results as "accumulated error 

metric" values, associated with states. For the 

second time instant on, the accumulated error 

metrics will be computed by adding the previous 

accumulated error metrics to the current branch 

metrics. 

      At t = 1, we received 002. The only possible 

channel symbol pairs we could have received are 

002 and 112.  The Hamming distance between 002 

and 002 is zero. The Hamming distance between 

002 and 112 is two. Therefore, the branch metric 

value for the branch from State 002 to State 002 is 

zero, and for the branch from State 002 to State 102 

it'stwo. 

 
Since the previous accumulated error metric values 

are equal to zero, the accumulated metric values for 

State 002 and for State 102 are equal to the branch 

metric values. The accumulated error metric values 

for the other two states are undefined. The figure 

below illustrates the results at t = 1.Note that the 

solid lines between states at t = 1 and the state at t = 

0 illustrate the predecessor-successor relationship 

between the states at t = 1 and the state at t = 0 

respectively. This information is shown graphically 

in the figure, but is stored numerically in the actual 

implementation. To be more specific, or maybe 

clear is a better word, at each time instant t, we will 

store the number of the predecessor state that led to 

each of the current states at t. Now let's look what 

happens at t = 2.  

     We received a 112 channel symbol pair. The 

possible channel symbol pairs we could have 

received in going from t = 1 to t = 2 are 002 going 

from State 002 to State 002, 112 going from State 

002 to State 102, 102 going from State 102 to State 

01 2, and 012 going from State 102 to State 11 2. 

The Hamming distance between 002 and 112 is two, 

between 112 and 112 is zero, and between 10 2 or 

012 and 112 is one. We add these branch metric 

values to the previous accumulated error metric 

values associated with each state that we came from 

to get to the current states. At t = 1, we could only 

be at State 002 or State 102. The accumulated error 

metric values associated with those states were 0 

and 2 respectively. The figure below shows the 

calculation of the accumulated error metric 

associated with each state, at t = 2. 
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That's all the computation for t = 2. What we carry 

forward to t = 3 will be the accumulated error 

metrics for each state, and the predecessor states for 

each of the four states at t = 2, corresponding to the 

state relationships shown by the solid lines in the 

illustration of the trellis. Now look at the figure for t 

= 3. Things get a bit more complicated here, since 

there are now two different ways that we could get 

from each of the four states that were valid at t = 2 

to the four states that are valid at t = 3. So how do 

we handle that? The answer is, we compare the 

accumulated error metrics associated with each 

branch, and discard the larger one of each pair of 

branches leading into a given state. If the members 

of a pair of accumulated error metrics going into a 

particular state are equal, we just save that value.  

    The other thing that's affected is the predecessor 

successor history we're keeping. For each state, the 

predecessor that survives is the one with the lower 

branch metric. If the two accumulated error metrics 

are equal, some people use a fair coin toss to choose 

the surviving predecessor state. Others simply pick 

one of them consistently, i.e. the upper branch or the 

lower branch. It probably doesn't matter which 

method you use. The operation of adding the 

previous accumulated error metrics to the new 

branch metrics, comparing the results, and selecting 

the smaller (smallest) accumulated error metric to be 

14 retained for the next time instant is called the 

add-compare-select operation. 

 

Traceback versus register-exchange approaches 

in power efficiency 

 

      In the traceback approach, each register storing 

the survivor path information updates its content 

only once (when it receives the new survivor path 

information) during the entire period of a code 

word. In contrast, all the registers in the register-

exchange approach update their contents for each 

code symbol. Hence, the switching activity of the 

registers in a traceback approach is much lower than 

that for the registers in a register-exchange 

approach. Hence, the registers in traceback approach 

would dissipate less power. 

      As explained earlier the registers and the 

traceback module are active only one clock period 

during the entire period of a code word in the 

traceback approach. So low power design 

techniques can be applied readily to the registers 

and the traceback module as proposed in this 

chapter. However, the same low-power techniques 

cannot be applied to the register-exchange approach. 

Hence, the traceback approach is more desirable for 

applications in which power dissipation is critical. 

 

Simulation Results: 
 

Encoder waveform 

 

 

 
 

Waveform for BMU 

 

 
 

 

 

Waveform for ACS 
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Conclusion: 
 

It is noticed that the hard decision technique can 

detect any number of errors which are less than or 

equal to the correction capacity of the code.  

We have completed the design of Convolutional 

Encoder and Viterbi Decoder that achieves 

minimum decoding delay, data rate upto 211 Mbps 

at the optimum Constraint Length K = 2, with hard 

decision decoding and reasonable hardware 

complexity 

 

   So far, this work discusses most of the known 

VLSI implementation techniques for the hard-

decision Viterbi algorithm in standard cell CMOS 

technology and carefully analyzes the tradeoffs and 

dependencies between different design decisions.  

To the best of authors’ knowledge, this is the most 

comprehensive analysis of hard-decision Viterbi 

algorithm VLSI implementation based on actual 

designs. 
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