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ABSTRACT:  
Fault tolerant circuits are currently required in several 

major application sectors, and a new generation of 

CAD tools is required to automate the insertion and 

validation of fault tolerant mechanisms. This paper 

outlines the characteristics of a new fault injection 

platform and its evaluation in a real industrial 

environment and also presents a technique to improve 

verification at the VHDL level of digital circuits by 

means of a specially designed fault injection block.  

     Fault injection techniques based on the use of 

hardware description languages offer important 

advantages with regard to other techniques. First, as this 

type of techniques can be applied during the design 

phase of the system, they permit reducing the time-to-

market. Second, they present high controllability and 

reach ability. Among the different techniques, those 

based on the use of saboteurs and mutants are 

especially attractive due to their high fault modelling 

capability. However, implementing automatically these 

techniques in a fault injection tool is difficult. 

Especially complex are the insertion of saboteurs and 

the generation of mutants. In this paper, we present new 

proposals to implement saboteurs for models in VHDL 

which are easy-to-automate, and whose philosophy can 

be generalized to other hardware description languages. 

 

1.  INTRODUCTION: 
The importance of fault tolerance (FT) of computing 

systems is increasing instantly nowadays. This is a 

consequence of the technology trends which try to 

follow Moore‘s law in increasing chip density by 

decreasing feature size. Smaller feature size, greater 

chip density, and minimal power consumption lead to 

increasing device vulnerability to external disturbances 

such as radiation, internal problems such as crosstalk, 

and other reliability problems, which result in an 

increasing number of faults, especially transients, in 

computing systems. 

  

Fault injection is a validation technique of fault tolerant 

systems (FTSs) which is being increasingly 

consolidated and applied in a wide range of fields, and 

several automatic tools have been designed. Fault 

injection is defined in the following way. ―Fault  

 

 

injection is the validation technique of the 

Dependability of Fault Tolerant Systems, which 

consists in the accomplishment of controlled 

experiments where the observation of the system‘s 

behaviour in presence of faults is induced explicitly by 

the written introduction (injection) of faults in the 

system‖.  This analysis can be either the study of the 

incidence of faults on the system (called Error 

syndrome analysis) or checking the design 

specifications (called Validation). 

     The objective of the error syndrome analysis is to 

detect those parts of the system which are most 

sensitive to faults, and eventually, to choose the most 

suitable fault-tolerance mechanisms (FTMs). The aim 

of the validation is to verify that the system and/or its 

built-in FTMs accomplish the design specifications in 

presence of faults. If the dependability is analyzed at 

early phases of the design cycle, both time and money 

can be saved in the development process. A common 

experimental method to validate the dependability of a 

fault tolerant system (FTS) is fault injection, which is 

defined in as the deliberate introduction of faults into a 

system (the target system). 

        

                 There are works related to fault injection 

with saboteurs and mutants in other areas like test or 

field programmable gate array (FPGA)-based fault 

emulation, although the objective of the study in each 

area is quite different. In dependability analysis, the 

objective can be either to verify the sensitivity to 

physical faults or validate the effectiveness of the FTMs 

of a simulation model of the system under analysis, by 

modifying the operation of the model at simulation 

time. In test, the aim of fault injection is to accelerate 

the test process by obtaining reduced test pattern lists 

injecting faults at higher abstraction levels, like 

register- transfer (RT) or system.  

 

The main motivations and goals for this research 

concern is the development of an integrated design 

environment. The expected benefits of such an 

environment with respect to 

(i) The analysis of the fault activation and error 

propagation processes   
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(ii) The guidance of the fault injection process 

according to the validation objectives, are clearly 

identified.  

      This provides substantial motivations for the choice 

of the simulation language. 

 

2.  RELATED WORK: 
                       The first step in a modern digital system 

design is to specify it in a high level language such as 

VHDL. Before the translation of the specification into 

an actual implementation, the design needs to be 

evaluated based on several criteria, e.g. area, testability, 

power consumption etc. The capability to verify a 

testable system (in the presence of faults) at the VHDL 

level before it is implemented allows design 

modifications to achieve the desired goal. This makes 

the case for a fault injection system that provides such 

capability. In general faults are separated into two 

categories: permanent and transient. Permanent faults 

that exist in logic circuits are normally identified during 

offline testing by the manufacturer of the IC, so the 

transient fault is of major concern after a chip is in the 

hands of the consumer. The ability to simulate the 

occurrence of a transient fault in the VHDL description 

of a system is extremely important to verify the 

performance of an on-line testable system In addition 

the ability to insert permanent faults on single bits or a 

data word must also be taken into consideration. These 

features enable the performance of a system under 

faulty conditions to be effectively verified before the 

system is implemented. 

    

Generally, Fault injection is commonly used for the 

validation of the fault tolerance as it can be viewed as a 

test of the FTAMs with respect to specific inputs: the 

faults. However, these activities make use of specific 

methods and tools that are somewhat disconnected from 

those applied in the design; this is particularly true 

when considering fault injection on a prototype of the 

target system.  

 

A simulation environment provides enhanced 

controllability and observability on the target system. 

This will improve the flexibility of application of fault 

injection (e.g., with respect to the mastering of the 

synchronization of the fault injection with the 

operational activity on the model of the target system). 

 

2.1. Guidance of the fault injection process: 

 

            Two main objectives can be identified for the 

fault injection experiments to be carried out: 

 

• Fault removal, i.e., the correction of potential fault 

tolerance deficiencies in the FTAMs 

 

• Fault forecasting, i.e., the evaluation of the coverage 

distribution (e.g., coverage factor and latency) provided 

by the tested FTAMs.     

 

    In both cases, the efficiency and relevance of the 

fault injection experiments should be maximized. This 

encompasses both faults injected in and activation 

provided to the target system. Regarding the fault 

removal objective, the test should be directed to achieve 

a high coverage of the possible configurations of the 

FTAMs to be validated on the target system. In this 

case, the selection of the faults/errors to apply and 

errors to propagate is primarily based on the analysis of 

the model describing the FTAMs and of the information 

flow in the simulation of the FTAMs. In practice, it 

may be useful to rely on a predefined and limited set  of 

error classes (those corresponding to the design 

assumptions of the FTAMs). References   and  have 

addressed this issue in the context of fault-tolerant 

protocols.   

 

3.  FAULT INJECTION TECHNIQUES: 
                   Engineers use fault injection to test fault-

tolerant systems or components. Fault injection tests 

fault detection, fault isolation, and reconfiguration and 

recovery capabilities. 

3.1. Fault injection environment: 
 

 

Figure 3.1 Basic components of a fault injection 

environment 
 

Fig.3.1 shows a fault injection environment, which 

typically consists of the target system plus a fault 

injector, fault library, workload generator, workload 

library, controller, monitor, data collector, and data 

analyzer. The fault injector injects faults into the target 

system as it executes commands from the workload 

generator (applications, benchmarks, or synthetic 

workloads). The monitor tracks the execution of the 

commands and initiates data collection whenever 

necessary.  
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    The data collector performs online data collection, 

and the data analyzer, which can be offline, performs 

data processing and analysis. The controller controls the 

experiment. Physically, the controller is a program that 

can run on the target system or on a separate computer. 

The fault injector can be custom-built hardware or 

software. The fault injector itself can support different 

fault types, fault locations, fault times, and appropriate 

hardware semantics or software structure—the values 

of which are drawn from a fault library. The fault 

library in Figure 1 is a separate component, which 

allows for greater flexibility and portability. The 

workload generator, monitor, and other components can 

be implemented the same way. 

   VFIT, a VHDL - based fault injection tool that 

applies several of the previously described techniques. 

In fact, only the other techniques group has not been 

implemented due to their excessive complexity. VFIT 

(VHDL - based fault injection tool) that runs on PC 

computers (or compatible) under Windows and is 

model-independent. Although it admits models at any 

abstraction level, it has been mainly used on models at 

gate and RT levels.With VFIT it is possible to inject 

faults automatically applying the simulator commands 

technique. It is also feasible to inject faults using 

saboteurs and mutants, but in this case, the injection 

process needs the intervention of the user because the 

insertion of the saboteurs and the generation of mutants 

are not automatic. 

 

3.2. Classifying Fault Injection Techniques: 

      The fault injection is a technique of Fault Tolerant 

Systems (FTSs) validation which is being increasingly 

consolidated and applied in a wide range of fields, and 

several automatic tools have been designed. The fault 

injection technique is defined in the following way: 

 

       Fault injection is the validation technique of the 

Dependability of Fault Tolerant Systems which consists 

in the accomplishment of controlled experiments where 

the observation of the system's behavior in presence of 

faults is induced explicitly by the writing introduction 

(injection) of faults in the system. The fault injection 

techniques in the hardware of a system can be classified 

in three main categories: 

 

3.2.1.  Physical fault injection (HWIFI): 

        It is accomplished at physical level, disturbing the 

hardware with parameters of the environment (heavy 

ions radiation, electromagnetic interferences etc.) or 

modifying the value of the pins of the integrated 

circuits. Hardware-implemented fault injection uses 

additional hardware to introduce faults into the target 

system‘s hardware. Depending on the faults and their 

locations, hardware-implemented fault injection 

methods fall into two categories: 

 

• Hardware fault injection with contact:  

 

    The injector has direct physical contact with the 

target system, producing voltage or current changes  

externally to the target chip. Examples are methods that 

use pin-level probes and sockets. 

 

• Hardware fault injection without contact : 

 

   The injector has no direct physical contact with the 

target system. Instead, an external source produces 

some physical phenomenon, such as heavyion radiation 

and electromagnetic interference, causing spurious 

currents inside the target chip. Hardware fault injections 

occur in actual examples of the circuit after fabrication.  

The circuit is subjected to some sort of interference to 

produce the fault, and the resulting behavior is 

examined.  So far, this has been done with transient 

faults, as the difficulty and expense of introducing 

stuck-at and bridging faults in the circuit has not been 

overcome.   

    The circuit is attached to a testing apparatus which 

operates it and examines the behavior after the fault is 

injected.  This consumes time to prepare the circuit and 

test it, but such tests generally proceed faster than 

simulation does.  It is, rather obviously, used to test 

circuit just before or in production.  These simulations 

are non-intrusive, since they do not alter the behavior of 

the circuit other than to introduce the fault.  Should 

special circuitry be included to cause or simulate faults 

in the finished circuit, these would most likely affect 

the timing or other characteristics of the circuit, and 

therefore be intrusive. 

 

3.2.2. Software Implemented Fault Injection 

(SWIFI): 

 

      The objective of this technique, also called Fault 

Emulation, consists of reproducing at software level the 

errors that would have been produced upon occurring 

faults in the hardware. It is based on different practical 

types of injection, such as the modification of the 

memory data, or the mutation of either the application 

software or the lowest service layers (at operative 

system level, for example). 

 

     Software fault injection is used to inject faults into 

the operation of software and examine the effects.  This 

is generally used on code that has communicative or 

cooperative functions so that there is enough interaction 

to make fault injection useful.  All sorts of faults may 

be injected, from register and memory faults, to 

dropped or replicated network packets, to erroneous 

error conditions and flags.  These faults may be injected 

into simulations of complex systems where the 

interactions are understood though not the details of 

implementation, or they may be injected into operating 

systems to examine the effects. Software fault 

injections are more oriented towards implementation 

details, and can address program state as well as 

communication and interactions.  Faults are mis-
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timings, missing messages, replays, corrupted memory 

or registers, faulty disk reads.  

 

The system is then run with the fault to examine its 

behavior.  These simulations tend to take longer 

because they encapsulate all of the operation and detail 

of the system, but they will more accurately capture the 

timing aspects of the system.  This testing is performed 

to verify the system's reaction to introduced faults and 

catalog the faults successfully dealt with.  this is done 

later in the design cycle to show performance for a final 

or near-final design. 

   

3.2.3. Simulated fault injection:  

             In this technique, the system under test is 

simulated in other computer system.  

 

The faults are induced altering the logical values during 

the simulation. Some paper describes a tool for 

injecting faults in VHDL simulation models. 

 

   This work is framed in the simulated fault injection, 

and concretely in the simulation of models based on the 

VHDL hardware description language. We have chosen 

this technique due fundamentally to: 

 

1. The growing interest of the simulated injection 

techniques as a complement of the physical fault 

injection (these have been traditionally more numerous 

and developed) and Fault Emulation (SWIFI). The 

greatest advantage of this method over the previous 

ones is the Observability and Controllability of all the 

modelled components. The simulation can be 

accomplished in different abstraction levels. Another 

positive aspect of this technique is the possibility of 

carrying out the validation of the system during the 

design phase, before having the final product.  

 

 

2. The good perspectives of modelling systems and 

faults with VHDL that has been consolidated as a 

powerful standard to analyse and design computer 

systems. 

 

3. Observe system behavior in the presence of faults.A 

fault is a random or malicious defect introduced to the 

system. A fault may cause an error state of the system. 

A system enters error state if its normal operation can 

not be performed anymore (due to a fault). A 

recognized error does not mean a failure of the system. 

    

                  The system fails if it no longer meets the 

requirements for proper functions.Fault tolerant systems 

are used in safety critical applications. Fault tolerant 

(FT) system – a system that provides required 

functionality even in the presence of faults.Safety 

critical application – the cost of a failure is much higher 

than the price of the system, e.g. human lives are in 

danger, a production plant is stopped. Real-time (RT) 

system – the system responds to events immediately as 

they occur. Hard RT systems provide guaranteed 

deadlines. Type of fault is a class that have its own 

constructor and attributes. A fault is an instance of this 

class. 

 

                      Simulation-based fault injection is a 

useful experimental way to evaluate the dependability 

of a system during the design phase, thus reducing the 

time-to-market. Another interesting advantage of this 

group of techniques with regard to others is that those 

based on simulation offer both high observability and 

controllability of all the modeled components. 

 

3.2.4. Parameters of the Injection Campaign: 

 

                    The following list describes the fault 

injection experiment conditions of the injection 

Campaign of this work. 

 

I. Number of faults:  
     n = 3000 single faults in every injection campaign. 

This guarantees the statistical validity of the results. 

 

II. Workload:  

     The workload is a simple program that obtains the 

arithmetic series of n integer numbers. 

III. Fault types: 

 

                                   The injected faults are 

transient/permanent, stuck-at 0, stuck-at 1, Open-line, 

or indetermination and they may affect the signals and 

the variables in the model. 

IV. Place where the fault is injected: 

     The faults are systematically injected on any atomic 

signal (sets of signals, like buses, are divided into their 

bits) and variable of the model, in both the external 

structural architecture and the behavioural architectures 

of the components. Faults are not injected in the spare 

CPU, since it is off while the system is working 

properly. 

V. Values of the faults:  
     The values of faults are produced according a 

Uniform distribution along the available range of 

signals and variables. 

VI. Time instant when the fault is injected: 

     The time instant of injection is distributed according 

to different types of probability distribution functions 

                                                                   Signals 

                                  Simulator              

                                  Commands                                              

                                                                   Variables  

VHDL Based                       

Fault Injection 

                                                                   Saboteurs                                               

                                  VHDL code               

                                  Modification            Mutants  

                                                                         

                                                                   Others  
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(Uniform, Exponential, Weibull, and Gaussian), typical 

of the transient faults, in the range: 

                       [0, tworkload];  

Where tworkload = workload simulation duration without 

faults. 

VII. Simulation duration:  

    The simulation duration includes the execution time 

of the workload and the recovery time with the spare 

CPU (tsimul = tworkload + tspare). In our case, we have 

chosen a value of 500mS. 

 

4. VHDL-BASED FAULT INJECTION 

TECHNIQUES: 
                       There exist a group of fault injection 

techniques based on the use of hardware description 

languages (or HDLs) as modeling languages. The most 

popular high-level HDLs are VHDL, Verilog, and 

SystemC. In our case, we work with VHDL . These 

techniques are widely applied, due to the advantages of 

employing an HDL. The present work is framed in this 

group of techniques. Classification of VHDL-based 

fault injection techniques, Nevertheless, both this 

taxonomy and the description of the injection 

techniques can be generalized to any other HDL. 

 

4.1.Fault Injection Using Simulator Commands:  

 

                     This fault injection technique is based on 

using the commands of the simulator at simulation 

time, in order to modify the value or timing of the 

signals and variables of the model. Using simulator 

commands it is possible to inject transient, permanent, 

and intermittent faults. Though, there exists one 

restriction: due to the special nature of variables in 

VHDL, it is not possible to inject permanent faults in 

variables. This technique is the easiest one to 

implement and its temporal cost (to perform the 

simulation) is by far the lowest. However, the number 

of fault models that can be injected is smaller than with 

the other techniques  

 

4.2. Techniques for injecting faults into VHDL 

models: 

                   Three types of techniques for fault injection 

can be identified: those that require modification of the 

VHDL code and those that use the built-in commands 

of the simulator. These   techniques are described and 

compared in this section. 

 

4.2.1 Modification of the VHDL model: 

 

                         Two techniques can be distinguished. 

The first is based on the addition to the VHDL model of 

dedicated fault injection components, called saboteurs. 

The second is based on the mutation of existing 

component descriptions in the VHDL model, which 

generates modified component descriptions called 

mutants. A saboteur is a component added to the VHDL 

model for the sole purpose of fault injection. It is 

inactive during normal system operation, while altering 

the value or timing characteristics of one or more 

signals when active, i.e., when a fault is being injected. 

Saboteurs are inserted, either interactively at the 

schematic editor level or manually/automatically 

directly into the VHDL source code.  

     A serial and a parallel technique of insertion can be 

distinguished. Serial insertion, in its simplest form, 

consists of breaking up the signal path between a driver 

(output) and its corresponding receiver (input) and 

placing a saboteur in between. In its more complex 

form, it is possible to break up the signal paths between 

a set of drivers and its corresponding set of receivers 

and insert a saboteur. Using the latter form, the signal 

value for a receiver can be a function of the values 

provided by the set of drivers, allowing complex faults 

to be modelled, e.g., signal  crosstalk. For parallel 

insertion, a saboteur is simply added as an additional 

driver for a resolved signal.  

     A mutant is a component description that replaces 

another component description. It behaves as the 

component description it replaces, except during fault 

injection when the mutant's   behaviour is switched to 

imitate the component's behaviour in presence of faults. 

It is easy to  implement this technique in VHDL when 

the mutant is distinguished from the original  

component description by a different architecture, as 

the configuration mechanism can be  used to select an 

architecture (in our case the mutated one) for the 

component.  

 

   The required mutation may be accomplished in 

several ways by: 

 

• adding saboteur(s) to structural or behavioral 

component descriptions. 

 

• Mutating structural component descriptions by 

replacing subcomponents; for example, a          NAND-

gate may be replaced by a NOR-gate. 

 

• Automatically mutating statements in behavioral 

component descriptions, e.g., by    generating wrong 

operators or exchanging variable identifiers; this 

approach is similar    to the mutation techniques used 

by the software testing community. 

 

• Manually mutating behavioral component descriptions 

to achieve complex and detailed     fault models. 

 

    In all cases, it simplifies matters if the mutant has an 

interface (entity declaration) compatible with the 

component description it replaces. Indeed, the VHDL 

code for the component description in which the mutant 

itself is a subcomponent may remain unchanged. 

 

4.3. Fault injection using a behavioural model: 

 

4.3.1. Bit-flip injection using a VHDL description: 
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    Using behavioral descriptions to study the 

consequences of faults for complex circuits has been 

widely proposed in the specialized literature. A review 

of VHDL-based techniques can be found .Here we have 

applied the so-called ―saboteurs‖ technique to a VHDL 

behavioral model of 80C51 in order to study the effects 

of bit flips when executing a program.  

 

    The VHDL model uses an array of 8 bit vectors in 

order to simulate all the 128 internal RAM bytes and 

Special Function Registers (SFR) included in the 8051 

architecture. Series of tests were performed where 

faults were randomly injected both in location of the 

affected bits inside this array and in time of the SEU 

occurrence. Note that injected faults did not target the 

memory bits of program code to be executed by the 

micro controller, the fault injection being performed by 

means of suitable modifications added to the VHDL 

signals within the emulated 8051. 

 

                      The setup of the experiment was therefore 

a simulation setup. In fact, we generated a VHDL 

schematic with the instantiation of the studied micro 

controller and other needed blocks. The main blocks 

are: 

 8051 

 SRAM 64k 

 ROM 4k 

  These blocks were simulated using a commercial 

VHDL simulator. The only modification we made to 

the VHDL model was to add a saboteur process able to 

inject bit flips inside the registers within the 8051.The 

VHDL simulator, concurrently with the normal 

processes emulating the 8051 micro controller, executes 

the saboteur process.  

                                                                                                             

 

 

           Therefore the activation of fault injection, 

performed by means of the two extra signals IND and 

BIT, is totally independent and asynchronous to the 

state of the 8051. 

 

     In fig 4.3.1.1 is shown a schematic description of the 

fault injection strategy in a general case. The VHDL 

behavioral description of the 8051 can be seen as a set 

of concurrent processes, each one implementing a 

function of the micro controller (ALU, PC incrementer, 

Watchdog, etc.) and the communication between these 

processes is provided by a set of internal signals visible 

to all the processes. Some of these signals have physical 

counterparts like SFR, RAM, PC and others. The 

saboteur is a special process that runs concurrently to 

the other processes and is activated, in our case, by two 

external commands IND and BIT. 

 

    When normal operation (without fault injection) is 

carried out the saboteur is in a stand-by mode, when the 

fault injection is activated, the saboteur modifies an 

internal signal inverting its value. In this way the 

saboteur provides an asynchronous SEU injection on 

any internal signal of the VHDL description. 

     It has to be noticed that, in order to have a realistic 

behavior of the micro controller, the injection must be 

performed only on those signals representing physical 

registers. Assuming that the SEUs mainly affect the 

internal registers rather than combinatorial logic, we 

isolated the signals representing these registers and 

made them our SEU injection target. The fault injection 

technique is composed of the following steps.  

First is defined the time width of injection zone 

relatively to the program that must be tested, secondly 

is defined the number of logical targets that must be 

used in order to inject error in all internal register (in 

this case 152).  

 

 

 

     Fig4.3.1.1 Saboteur process 

 

 

 

 

 

Fig4.3.1.2. Structure of VHDL 8051 model with fault 

injection capability 

 

 

 

 

PROCESS 2 
INTERNAL 

 SIGNALS 

PROCESS 4 

 

PROCESS 1 

 

PROCESS 3 

 

SABOTEUR 

PROCESS 
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In the above figure the external 8051-module 

instantiation with fault injection capability. The IND 

and BIT signals appear as two additional ports of the 

8051 and are driven by the simulator executing a macro 

file.IND Signal indicates the address of the internal 

byte to be affected by the injected fault and BIT 

indicates Specific bit to flip. 

The instance of injection is forced by the macro 

together with these two addresses. 

  

4.3.2. Setup of a VHDL fault injection Campaign 

 

Setting up a fault injection campaign requires the 

following steps: 

 

- Analysis of the VHDL model 

- Set up of the Saboteur process 

- Set up of the Macro generator Program 

 

                    In principle these steps can be applied to 

any VHDL description of a digital system including 

memory elements. For instance, can be corrupted by 

this method the content of bits of a Finite State Machine 

status register, as well as the internal registers of a 

micro controller description. The first step requires the 

analysis of the VHDL description to find the targets 

suitable for bit-flip injection. The second step is done 

adding the saboteur VHDL process described above, 

capable of modification of the value of the selected 

target.  

 

              The third step is the generation of the macro 

file that drives the simulator engine giving both the 

stimuli to the VHDL description of the device under 

test (like clock reset etc) and the randomly generated 

activation stimuli for the saboteur process. The first 

step is the more important change to be afforded when a 

new device VHDL description must be tested. Once the 

targets of the VHDL code are identified, the 

modifications related to the second step consist in the 

connection of the saboteur to the selected target. The 

stimuli for the macro generator to the saboteur are 

almost the same while the stimuli for the DUT VHDL 

description are strictly related to its functions. 

     

  Therefore, once the setup phase is performed the fault 

injection campaign can be carried out in batch mode, 

the length of the simulation depending on the 

complexity of the VHDL model. In the following 

paragraphs are described the results obtained when 

applying this injection strategy to the 8051 VHDL 

description while running two test bench applications. 

 

4.3.2.1 Matrix multiplication: 

 

                        

   The matrix multiplication program operates in four 

phases, in the first phase, some internal registers are set 

in order to initialize the system, in the second phase, the 

6x6 matrixes are generated and stored in the internal 

RAM, in the third phase the 6x6 product matrix is 

generated (this is the more time consuming phase), in 

the last phase, the result matrix is compared to the 

expected one and the incorrect results are stored in the 

external RAM. We define the ―Test‖ as the union of all 

these four phases, and define the ―Injection Zone‖ as 

the union of ―generate matrix‖ and ―product of matrix‖ 

phases.  

 

                   At the end of each test the system provides 

the dump signal that generates a report of errors 

revealed during the result control phase. 

 

 

               The obtained results, in terms of percentages 

of errors with respect the total number of injected bit 

flips, are reported in the above table classified as 

tolerated errors, result errors and lost of sequences. 

―Tolerated errors‖, correspond to those bit flips injected 

in memory elements which do not cause any effect at 

the outputs of the program. ―Results errors‖, gathers 

cases where obtained results are different from the 

expected ones. Finally, the cases where we do not get 

any answer from the processor are classified in the loss 

of sequence group.  

 

                      The consequences of injected bit flips 

belonging to this last malfunction type are 

unrecoverable, needing to restart program execution. 

The results were analyzed in detail to determine the 

number of wrong elements in the result matrix obtained 

in each faulty execution. 

        

 

    0        464us                                                                           

8.3ms                12ms 

 

                    Write Vector    Vector sorting      

Write to EXRAM  Result control 

                      

                                 

    Initialization                     Injection Zone 
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     An explanation of these results could be that the 

propagation of an injected SEU is related to the fault 

injection instant. In particular the experiments leading 

to six errors suggest that was corrupted a value of one 

of the 2 matrixes before they were multiplied. The 

latency of these unelaborated data inside the micro is 

quite long; in fact, if we inject the bit flip during the 

generation of the matrixes the incorrect value of the 

multiplicand matrix will generate 6 incorrect values on 

the result matrix. 

 

 

4.3.2.2 Vector sorting program 

       In the first phase, some internal registers are set in 

order to initialize the system and a 30 element vector is 

generated and stored in the micro controller internal 

RAM. In the second phase, the original unsorted vector 

is stored in the external RAM. In the next phase the 

vector stored in the internal RAM of 8051 micro 

controller is sorted, this is the more time consuming 

phase. In the fourth phase the sorted vector is copied in 

the external RAM, this is the last phase of injection 

zone. In the last phase, the result of sorting algorithm is 

tested and the incorrect results are stored to the external 

RAM. Note that in this case the number of maximum 

possible errors is 30. 

      

            In this case we define the ―Test‖ as the union of 

all these five phases, and define the ―Injection Zone‖ as 

union of ―Write vector‖, ―Vector sorting‖ and ―Write to 

exRAM‖ phases. At the end of each test the system 

provides the dump signal that generates a report of 

errors revealed during the result control phase. The test 

follows the same steps of the previous one and the fault 

injection and result analysis are made in the same way. . 

 

4.2.3. Use of built-in simulator commands  

Two types of techniques based on the use of simulator 

commands can be identified: signal and variable 

manipulation. When using signal manipulation, faults 

are injected by altering   the value of signals in the 

VHDL model. This is done by disconnecting a signal 

from its driver(s) and forcing it to a new value. The 

signal's driver(s) is (are) reconnected when the fault 

injection is completed. Variable manipulation allows 

injection of faults into behavioral models by altering 

values of variables defined in the VHDL code.  The 

main reason for using built-in commands for fault 

injection is that this does not require a modification of 

the VHDL code. This technique is based on the use of 

the simulator commands to modify the value of the 

model signals and variables. The way that faults are 

injected depends on the injection place. To inject faults 

on signals, the following sequence of pseudo-

commands must be performed:  

 

1. Simulate until [injection instant]  

2. Modify Signal [name] [faulty value] 

3. Simulate for [fault duration] 

4. Restore Signal [name] 

5. Simulate for [observation time] 

 

         This sequence is thought to inject transient faults, 

which are the most common and difficult to detect . To 

inject permanent faults, the sequence is the same, but 

omitting steps 3 and 4. To inject intermittent faults, the 

sequence consists in repeating steps 1–5, with random 

separation intervals. The sequence of pseudo-

commands to inject faults on variables is: 

 

1. Simulate until [injection instant] 

2. Assign Variable [variable name] [fault value] 

3. Simulate for [observation time] 

 

         The operation is similar to the injection on 

signals, but in this case there is no control of the fault 

duration. This implies that it is not possible to inject 

permanent faults on variables using simulator 

commands. The sequence of commands needed to carry 

out the injection (for both transient and permanent 

faults) can be included in a macro file, where the 

elements between brackets will be passed to the macro 

as parameters. This means that the injection conditions 

can be varied without modifying the command code. It 

is interesting to point out that, from the point of view of 

Results of bit flip injection for the 

matrix multiplication program 

Values 

Injected Fault Numbers 2416 

Lost of Sequences 134 

Result Errors 1068 

Tolerated Errors 1348 

Result Errors Percentage (%) 44.20% 

Lost of Sequences Percentage (%) 5.54% 

Overall Percentage of Result Errors 49.74% 

    0        464us                                                                           

8.3ms                12ms 

 

                    Write Vector    Vector sorting      

Write to EXRAM  Result control 

                      

                                 

    Initialization                     Injection Zone 
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the injection procedure, VHDL generics are managed as 

‗special‘ variables. This enables the injection of some 

nonusual fault types, such as delay faults (by modifying 

timing generics). 

 

4.2.4. Comparison of fault injection techniques 

 

    The fault injection techniques presented above are 

compared in terms of fault modeling capacity, effort 

required for setting up an experiment and simulation 

time overhead. The implication of a fault injection 

campaign made up of a series of experiments is also 

considered.  Mutants offer the highest fault modeling 

capacity of the fault injection techniques presented. 

They can be designed by using the full strength of the 

VHDL language itself, and are therefore well suited for 

implementing realistic behavioral fault models. They 

can be used also for implementing complex structural 

fault models, such as the stuck-open fault model for 

CMOS logic, in which a combinatorial circuit must be 

substituted for a sequential circuit. Saboteurs are 

generally less powerful than mutants in their fault 

modeling capacity. They can be used for simple fault 

models, such as the stuck-at fault model, but also for 

more complex fault models, for example by 

incorporating a finite state machine in the saboteur.  

                 Signal manipulation is suited for 

implementing simple fault models, such as permanent 

or temporary stuck-at fault models. Variable 

manipulation offers a simple way for injecting 

behavioral faults. The usefulness of this technique is 

limited, however, as very few realistic behavioral fault 

models can be implemented by simply altering variable 

values. Both signal and variable manipulation can be 

used for controlling saboteurs and mutants. In this way, 

the injections of faults can be controlled by the built-in 

commands of the simulator when either mutants or 

saboteurs are used. If signal manipulation is used for 

this, the control signals should preferably be internal to 

the component description of the mutant/saboteur so 

that they do not have to be routed through the hierarchy 

of the VHDL model. The effort for setting up an 

experiment is small using signal and variable 

manipulation, as modification of the VHDL model is 

not required. More effort is needed for mutants and 

saboteurs, as they require: 

 

(i) creation/generation of saboteurs/mutants,  

(ii) Inclusion of saboteurs/mutants in the model and (iii) 

recompilation of the VHDL model. 

 

      Two ways can be distinguished for such an 

inclusion. One way is to generate a new configuration 

for each fault location, i.e., a configuration in which 

only one mutant is present at a time. This requires 

recompilation of the VHDL model for each fault 

location and may also require manual intervention to 

start up a simulation using the new model; both 

activities may incur a significant time overhead. 

Another way is to generate only one configuration in 

which all required mutants are included, and then 

activate these one at a time.  

        This may increase the simulation time depending 

on whether the mutants generate any supplementary 

events when fault injection is inhibited; thus, there is a 

trade-off between the overhead in simulation time and 

the overhead in compilation time. The creation of 

saboteurs and automatic generation of mutants is a 

relatively easy task, provided that simple fault models 

are considered. It is worth noting that a saboteur is a 

reusable component, while a mutant has to be 

specifically generated for each mutated component.       

The inclusion of saboteurs requires modification of the 

component description while mutants are easily 

included in the model by means of the VHDL 

configuration mechanism. The simulation time 

overhead imposed by signal and variable manipulation 

is only due to fault injection control, as the simulation 

must be stopped and started again for each fault 

injected. It is important to note that the simulation time 

overhead imposed by saboteurs and mutants depends on 

several factors: (i) amount of additional generated 

events (signal changes), e.g., a simple serial saboteur 

generates one event per input signal change, (ii) amount 

of code to execute per event, e.g., a complex 

behavioural mutant may require many statements to be 

executed per event, (iii) complexity of the fault 

injection control. 

 

 

5. AUTOMATING THE INSERTION OF 

SABOTEURS:  
       A saboteur is a special VHDL component added to 

the original model. The mission of this component is to 

alter the value, or timing characteristics, of one or more 

signals when a fault is injected, remaining inactive 

during the normal operation of the system. In saboteurs 

are classified into: serial simple, serial complex and 

parallel. So far, VFIT can inject faults using serial 

saboteurs inserted manually in the design. The models 

of saboteurs implemented are as follows 

 

5.1. Previous Models: 

 

 

(a) Serial simple saboteur: It interrupts the connection 

between an output (driver) and its corresponding 

receptor (input), modifying the reception value. 

 

 

(b) Serial simple bi-directional saboteur: It has two 

input/output signals, plus a read/write input that 

determines the perturbation direction. 

 

 

(c) Serial complex saboteur: It interrupts the connection 

between two outputs and their corresponding receptors, 

modifying the reception values. 
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(d) Serial complex bi-directional saboteur: It has four 

input/output signals, plus a read/write input that 

determines the perturbation direction. 

 

 

(e) n-Bit unidirectional simple saboteur: It is used in 

unidirectional buses of n bits (address and control). It is 

composed of n serial simple saboteurs. 

 

 

(f) n-Bit bi-directional simple saboteur: It is used in 

bidirectional buses of n bits (data and control). It is 

composed of n bi-directional serial simple saboteurs. 

 

 

(g) n-Bit unidirectional complex saboteur: It is used in 

unidirectional buses of n bits (address and control). It is 

composed of n=2 serial complex saboteurs. 

 

 

(h) n-Bit bi-directional complex saboteur: It is used in 

bi-directional buses of n bits (data and control). It is 

composed of n=2 bi-directional complex saboteurs.             

 

     Faults can be injected on the signals which connect 

components in structural models. The internal 

architecture of the saboteurs can be behavioural or 

structural. The behavioural design is basically a process 

whose sensitivity list contains the control and 

input/output signals. The structural design is based on 

the use of multiplexers.  

 

 

Fig5.1. (a) Serial simple saboteur (b) Serial simple 

bi-directional saboteur (c) Serial complex saboteur 

(d) Serial complex bi-directional saboteur 

      

5.2. Fault Injection with Saboteur: 

 

          
Fig: 5.1.1.         (a) Serial 

      (b) Parallel saboteur Technique 

 

A saboteur is a special VHDL component added to the 

original model. When activated, the mission of this 

component is to alter the value, or timing 

characteristics, of one or more signals, simulating the 

occurrence of a fault. During the normal operation of 

the system, instead, the component remains inactive. 

Saboteurs affect to the ports of the components in the 

model. Thus, this technique is applicable only to 

structural descriptions. 

  

           Attending to how saboteurs are inserted in the 

model, two types can be distinguished: serial and 

parallel. As Fig. 5.1.1 (a) shows, a serial saboteur 

interposes between a component input port (I in the 

figure) and its source signal (O in the figure), whereas a 

parallel saboteur Fig.5.1.1. (b) Is added as an additional 

source (S in the figure) of a given signal. Second, they 

allow to inject fewer fault models. For these reasons, 

their implementation has no special interest. So, in this 

paper, only serial saboteurs will be considered. 

 

5.3 Enhanced models of saboteurs 

 

     This following new set of saboteur models has 

important differences with respect to prior ones. 

 

• All models have been implemented using behavioural 

descriptions. This simplifies greatly their code and, 

what is more important, also the code of the design 

including the saboteurs. Moreover, the -bit versions can 

be used for vectors of any length, because their length 

is defined by means of a generic parameter. Every time 

an -bit saboteur is added to the model, the actual value 

of the generic parameter must be set. 

 

• The number of saboteurs has been reduced to ease 

their automatic insertion. Now, depending on both the 

length (1 bit or n bits) and the mode (that is, the 

directionality) of the port sabotaged, only one model 

can be chosen.  

 

• The bidirectional versions have the capability of 

injecting the fault only in the direction that data flow. In 

this way, the R/W input used in the models of prior 

version is not needed anymore, thus reducing the 
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overhead. In the reduced version used to inject single 

faults, without the Control input, the spatial overhead is 

even more diminished. 

 

• They can inject more fault models: pulse, short, and 

bridging the new models of saboteurs proposed, shown 

in Fig., are as follows. 

 

• Unidirectional Serial Saboteur (USS): It is the same 

model as the SSS in the previous set, although the USS 

allows injecting new fault models. 

 

• Bidirectional Serial Saboteur (BSS): It is similar to the 

SSBS in the first set, but like in the previous case, the 

fault model set that can be injected has been extended. 

Also, it eliminates the R/W control signal. 

 

•N-Bit Unidirectional Serial Saboteur (NUSS): This 

model replaces all the unidirectional multi-bit models in 

prior model set. 

 

• N-Bit Bidirectional Serial Saboteur (NBSS): It 

replaces all bidirectional multi-bit models in the former 

proposal and eliminates the R/W control signal.  

    As the timing of Control and Selection inputs are 

identical, we have implemented an ―optimized‖ version 

of these models in which the fault injection is managed 

only by Selection input.  

 

The idea is simple:  

 

 

    When an injection is in progress, Selection indicates 

the fault(s) to be injected; but while no fault is injected, 

the value of Selection must represent a ―no-fault‖ 

injection.  

    However, this reduced version has a negative aspect: 

only single faults and multiple faults in the domain of 

time can be injected. To inject faults in the domain of 

space, the original scheme must be used. 

   
  Fig5.2.1 Example of perturbation of model 

Distribution of saboteur 

 

                                     
 

 

     Fig5.2.2. Set of Saboteur implemented 

 

                  (a) Unidirectional serial saboteur 

 

                  (b) Bidirectional saboteurs  

 

                  (c) n-USS        (d) n-BSS 

 

 

                                      tinj 

  

  Control        Fault                                                                                                           
                        tinj                                                  t 

       

 

     Every saboteur is controlled by means of the 

following three inputs. 

 

• Control: whose mission is the timing of the injection: 

its activation determines both the injection instant (tinj) 

and the fault duration (∆tinj). It can be seen more clearly 

in the above figure. 

 

• Selection: this allows selecting the fault model to be 

injected. 

 

• R/W: this indicates, in the bidirectional versions, the 

direction of the perturbation. 

 

   The task of modifying automatically a source code 

seems apparently very complex. However, if the 

injection tool includes a parser, this is not actually so. 

From a syntactical tree of the model containing its 

complete structure, it is possible to go over the tree and 

generate a new copy of the source files, inserting new 

sentences or modifying other existing as needed.  

 

 

The insertion of saboteurs involves the following three 

actions: 

1) Declaring the signals required to activate the 

saboteurs and to select the fault model to be injected; 
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2) Declaring the components of the saboteurs 

introduced;  

3) Inserting the instances of the saboteurs, interposing 

between local and formal ports of the sabotaged 

components; this also implies declaring new signals to 

connect the saboteurs to local ports, and modifying the 

original mapping of ports.  

 

5.4. Fault Injection Using Mutants  

 

         A mutant is a component that replaces another 

component. While inactive, it works like the original 

component, but when it is activated, it behaves like the 

component in presence of faults. 

 

The mutation can be made in three ways: 

 

• By adding saboteurs to structural model descriptions. 

 

• By modifying structural descriptions replacing sub-

components. 

 

• By modifying syntactical structures of behavioral 

descriptions. 

 

There can exists lots of possible mutations in a 

VHDL model, so representative subsets of faults at 

logical and RT levels must be considered replacing the 

values of conditions in if and case statements (called 

stuck-then, stuck-else, dead clause, etc.), disturbing 

assignment statements (assignment control, global 

stuck-data, etc.), disturbing operators in expressions 

(micro-operation, local stuck-data), etc. 

 

Here we considered the following fault models 

 

• Stuck-Then: Replacement of the ‗if‘ condition by 

true. 

• Stuck-Else: Replacement of the ‗if‘ condition by 

false. 

• Assignment Control: Disturbing an assignment 

operation. 

• Dead Process: Elimination of the sensitivity list of a 

process. 

• Dead Clause: Elimination of a clause in a case. 

• Micro-Operation: Disturbing an operator. 

• Local Stuck-Data: Disturbing the value of a variable, 

constant, or signal in an expression. 

• Global Stuck-Data: Elimination of all value 

modifications of a variable or signal in architecture. 

 

Many of these fault models do not have a direct 

correspondence with physical faults, but they can show 

somehow an erroneous internal operation. 

 

 

 

 

 

5.4.1 Graphical User Interface  

 

        The experiment configuration is carried out 

through VFIT‘s graphic user interface (GUI). Among 

other functions, this GUI allows the user to select a list 

of fault targets among all the possible targets in the 

model. The class of the fault targets eligible depends 

directly on the fault injection technique applied like 

model signals and variables for simulator commands; 

inputs and internal connection signals of the model 

components for saboteurs; and special VHDL sentences 

for mutants. 

 

5.4.2 Injection Schedulers  

 

                    It decides at a given time instant (injection 

instant), the value of one or several points of the system 

must behave in a wrong way. If it occurs once for a 

short time then it is simulating the occurrence of a 

transient fault, if it occurs for a short time but 

repeatedly then it is simulating the occurrence of an 

intermittent fault or permanently i.e. until the end of the 

simulation.  

 

 

5.4.3 Dependency 

 

                                  Wrong behavior of the fault 

targets means depends strongly on the injection 

technique used. In the case of simulator commands, the 

injection consists on modifying directly the internal 

value or timing of the fault target(s) by using the 

commands of a simulation language. When saboteurs 

are used, the injection consists on modifying directly 

the control lines that manage one or several saboteurs 

inserted in the original model. In this way, the 

saboteur(s) activated will propagate the affected lines 

with erroneous values or timing. When injecting faults 

with mutants, the, By means of simulator commands, 

an erroneous sentence will be ―executed‖ instead of the 

correct one. During the simulation phase, VFIT 

automatically selects randomly a fault target from the 

list, and then, a particular fault model to inject on it. 

The output of an injection experiment can be either an 

error syndrome analysis or a validation. 

 

6. SIMULATION RESULTS  
 

 

6.1. Saboteurs Top-level 
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6.2. Saboteurs Top-level Internal block diagram 

 

 

 

 

 
6.3. USS: 

 

 

 
 

6.5. USS 16: 

 

 
 

 

6.6. MEMORY output without fault application 

 

 
 

6.7. MEMORY output with fault application 
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7. CONCLUSION   

       In this project, we introduced new methods to 

implement and use saboteurs and mutants into VHDL 

models. The new models of saboteurs fix some 

problems of ambiguity that the previous approach had. 

These problems prevented their automatic insertion. 

Moreover, the new models have been implemented in 

such a way that they diminish the overhead, by 

reducing the number of signals required to manage 

bidirectional saboteurs. Another enhancement respect to 

prior models is that they allow injecting more fault 

models. The advantages of the new proposal to 

implement mutants are especially relevant: it is easy to 

automate and reduces notably the spatial overhead. But 

its main success is to shrink considerably the temporal 

overhead. These saboteurs and mutants have been 

applied to example circuits at gate level and register 

level. Thus their output waveforms have been observed 

using Simulation by Model Sim-6.2g. 

 

Acknowledgements 
The authors like to express their thanks to management 

and department of ECE KLUniversity for their support 

and encouragement during this work. 

 

8. References: 
1.  E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, and J. 

Karlsson, ―Fault injection into VHDL models: 

The MEFISTO tool,‖ in Proc. FTCS, 1994, pp. 

356–363 

 

2.  V. Sieh, O. Tschäche, and F. Balbach, 

―VERIFY: Evaluation of reliability using 

VHDL-models with embedded fault 

descriptions,‖ in Proc. FTCS, 1997, pp. 32–36. 

 

3.  J. Boué, P. Pétillon, and Y. Crouzet, 

―MEFISTO-L: A VHDL-based fault injection 

tool for the experimental assessment of fault 

tolerance,‖ 

 

4.  J. Arlat, Y. Crouzet, and J.C. Laprie, ―Fault 

Injection for Dependability Validation of Fault-

Tolerant Computer Systems,‖ Proc. 19th Ann. 

Int‘l Symp. Fault-Tolerant Computing, IEEE CS 

Press, Los Alamitos, Calif., 1989, pp. 348-355. 

 

5.  O. Gunnetlo, J. Karlsson, and J. Tonn, 

―Evaluation of Error Detection Schemes Using 

Fault Injection by Heavy-ion Radiation,‖ Proc. 

19th Ann. Int‘l Symp. Fault-Tolerant 

Computing, IEEE CS Press, Los Alamitos, 

Calif., 1989, pp. 340-347. 

 

6.  C. Constantinescu, ―Impact of deep submicron 

technology on dependability of VLSI circuits,‖ 

in Proc. DSN, 2002, pp. 205–209. 

 

7.  P. Shivakumar, M. Kistler, S. W. Keckler, D. 

Burger, and L. Alvisi, ―Modeling the effect of 

technology trends on soft error rate of 

combinational logic,‖ in Proc. DSN, 2002, pp. 

389–398. 

 

8.   J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C. 

Fabre, J. C. Laprie, E. Martins, and D. Powell, 

―Fault injection for dependability validation: A 

methodology and some applications,‖ IEEE 

Trans. Softw. Eng., vol. 16, no. 2, pp. 166–182, 

Feb. 1990. 

  

9.   Fault Injection Techniques and Tools for VLSI 

Reliability Evaluation, A. Benso and P. Prinetto, 

Eds. Norwell, MA: Kluwer Academic, 

2003.fault injection tool for the experimental 

assessment of fault tolerance,‖ in Proc. FTCS, 

1998, pp. 168–173. 

 

10.  Enhancement of Fault Injection Techniques Based 

on the Modification of VHDL Code Juan-Carlos 

Baraza, Joaquín Gracia, Sara Blanc, Daniel Gil, 

and Pedro-J. Gil, Member, IEEE 

 

11.   C. Constantinescu, ―Impact of deep submicron 

technology on dependability of VLSI circuits,‖ 

in Proc. DSN, 2002, pp. 205–209. 

 

 

Susrutha Babu Sukhavasi was 

born in India, A.P. He received the B.Tech degree from 

JNTU, A.P, and M.Tech degree from SRM University, 

Chennai, Tamil Nadu, India in 2008 and 2010 

respectively. He worked as Assistant Professor in 

Electronics & Communications Engineering in Bapatla 



SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI, 

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research 

and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848 

2848 | P a g e  
 

Engineering College for academic year 2010-2011 and 

from 2011 to till date working in                       K L 

University. He is a member of Indian Society For 

Technical Education and International Association of 

Engineers. His research interests include Mixed and 

Analog VLSI Design, FPGA Implementation, Low 

Power Design and wireless Communications, Digital 

VLSI. He published articles in various international 

journals and conference.  

 

 Suparshya Babu Sukhavasi was 

born in India, A.P. He received the B.Tech degree from 

JNTU, A.P, and M.Tech degree from SRM University, 

Chennai, Tamil Nadu, and India in 2008 and 2010 

respectively. He worked as Assistant Professor in 

Electronics & Communications Engineering in Bapatla 

Engineering College for academic year 2010-2011 and 

from 2011 to till date working in K L University. He is 

a member of Indian Society For Technical Education 

and International Association of Engineers. His 

research   interests     include Mixed and Analog VLSI 

Design, FPGA Implementation, Low Power Design and 

Wireless communications, VLSI in Robotics. He 

published articles in various international journals and 

conference. 

 

 

Dr.Habibulla khan born in India, 

1962. He obtained his B.E. from V R Siddhartha 

Engineering College, Vijayawada during 1980-84. M.E 

from C.I.T, Coimbatore during 1985-87 and PhD from 

Andhra University in the area of antennas in the year 

2007.He is having more than 20 years of teaching 

experience and  having more than 20 international, 

national  journals/conference papers in his credit.Prof. 

Habibulla khan presently working as Head of the ECE 

department at K L University. He is a fellow of 

I.E.T.E, Member IE and other bodies like ISTE. His 

research interested areas includes Antenna system 

designing, microwave engineering, Electro magnetics 

and RF system designing. 

 

 

 

 

 

 

 

 

 
 

 

 

Chiranjeevi Pilla was born in garividi, 

vizianagaram(dist), a.p, india. He received 

the B.Tech. degree in Electronics & 

Communications Engineering from St. 

Theressa inistitute of Engineering 

&Technology, garividi, A.P., Affiliated to 

the JNTU  , Kakinada, A.P., India in 2009 

and pursuing M.Tech Degree in VLSI 

technology in KL University. His research 

interests include Digital VLSI Design and 

Fault Diagnosis & testing and 

Verification. 

 


