
SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2834 | P a g e

IMPLEMENTATION OF A 16 BIT MEMORY UNIT USING

SABOTEURS AND MUTANTS

SUSRUTHA BABU SUKHAVASI
1*

, SUPARSHYA BABU SUKHAVASI
1

DR.HABIBULLA KHAN
2

, CHIRANJEEVI PILLA
3

1*.ASSISTANT PROFESSOR, Department of ECE, K L University, Guntur, AP, India

1. ASSISTANT PROFESSOR, Department of ECE, K L University, Guntur, AP, India

2. PROFESSOR & HEAD, Department of ECE, K L University, Guntur, AP, India

3.

M.TECH-VLSI STUDENT Department of ECE, K L University, Guntur, AP, India.

ABSTRACT:
Fault tolerant circuits are currently required in several

major application sectors, and a new generation of

CAD tools is required to automate the insertion and

validation of fault tolerant mechanisms. This paper

outlines the characteristics of a new fault injection

platform and its evaluation in a real industrial

environment and also presents a technique to improve

verification at the VHDL level of digital circuits by

means of a specially designed fault injection block.

 Fault injection techniques based on the use of

hardware description languages offer important

advantages with regard to other techniques. First, as this

type of techniques can be applied during the design

phase of the system, they permit reducing the time-to-

market. Second, they present high controllability and

reach ability. Among the different techniques, those

based on the use of saboteurs and mutants are

especially attractive due to their high fault modelling

capability. However, implementing automatically these

techniques in a fault injection tool is difficult.

Especially complex are the insertion of saboteurs and

the generation of mutants. In this paper, we present new

proposals to implement saboteurs for models in VHDL

which are easy-to-automate, and whose philosophy can

be generalized to other hardware description languages.

1. INTRODUCTION:
The importance of fault tolerance (FT) of computing

systems is increasing instantly nowadays. This is a

consequence of the technology trends which try to

follow Moore‘s law in increasing chip density by

decreasing feature size. Smaller feature size, greater

chip density, and minimal power consumption lead to

increasing device vulnerability to external disturbances

such as radiation, internal problems such as crosstalk,

and other reliability problems, which result in an

increasing number of faults, especially transients, in

computing systems.

Fault injection is a validation technique of fault tolerant

systems (FTSs) which is being increasingly

consolidated and applied in a wide range of fields, and

several automatic tools have been designed. Fault

injection is defined in the following way. ―Fault

injection is the validation technique of the

Dependability of Fault Tolerant Systems, which

consists in the accomplishment of controlled

experiments where the observation of the system‘s

behaviour in presence of faults is induced explicitly by

the written introduction (injection) of faults in the

system‖. This analysis can be either the study of the

incidence of faults on the system (called Error

syndrome analysis) or checking the design

specifications (called Validation).

 The objective of the error syndrome analysis is to

detect those parts of the system which are most

sensitive to faults, and eventually, to choose the most

suitable fault-tolerance mechanisms (FTMs). The aim

of the validation is to verify that the system and/or its

built-in FTMs accomplish the design specifications in

presence of faults. If the dependability is analyzed at

early phases of the design cycle, both time and money

can be saved in the development process. A common

experimental method to validate the dependability of a

fault tolerant system (FTS) is fault injection, which is

defined in as the deliberate introduction of faults into a

system (the target system).

 There are works related to fault injection

with saboteurs and mutants in other areas like test or

field programmable gate array (FPGA)-based fault

emulation, although the objective of the study in each

area is quite different. In dependability analysis, the

objective can be either to verify the sensitivity to

physical faults or validate the effectiveness of the FTMs

of a simulation model of the system under analysis, by

modifying the operation of the model at simulation

time. In test, the aim of fault injection is to accelerate

the test process by obtaining reduced test pattern lists

injecting faults at higher abstraction levels, like

register- transfer (RT) or system.

The main motivations and goals for this research

concern is the development of an integrated design

environment. The expected benefits of such an

environment with respect to

(i) The analysis of the fault activation and error

propagation processes

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2835 | P a g e

(ii) The guidance of the fault injection process

according to the validation objectives, are clearly

identified.

 This provides substantial motivations for the choice

of the simulation language.

2. RELATED WORK:
 The first step in a modern digital system

design is to specify it in a high level language such as

VHDL. Before the translation of the specification into

an actual implementation, the design needs to be

evaluated based on several criteria, e.g. area, testability,

power consumption etc. The capability to verify a

testable system (in the presence of faults) at the VHDL

level before it is implemented allows design

modifications to achieve the desired goal. This makes

the case for a fault injection system that provides such

capability. In general faults are separated into two

categories: permanent and transient. Permanent faults

that exist in logic circuits are normally identified during

offline testing by the manufacturer of the IC, so the

transient fault is of major concern after a chip is in the

hands of the consumer. The ability to simulate the

occurrence of a transient fault in the VHDL description

of a system is extremely important to verify the

performance of an on-line testable system In addition

the ability to insert permanent faults on single bits or a

data word must also be taken into consideration. These

features enable the performance of a system under

faulty conditions to be effectively verified before the

system is implemented.

Generally, Fault injection is commonly used for the

validation of the fault tolerance as it can be viewed as a

test of the FTAMs with respect to specific inputs: the

faults. However, these activities make use of specific

methods and tools that are somewhat disconnected from

those applied in the design; this is particularly true

when considering fault injection on a prototype of the

target system.

A simulation environment provides enhanced

controllability and observability on the target system.

This will improve the flexibility of application of fault

injection (e.g., with respect to the mastering of the

synchronization of the fault injection with the

operational activity on the model of the target system).

2.1. Guidance of the fault injection process:

 Two main objectives can be identified for the

fault injection experiments to be carried out:

• Fault removal, i.e., the correction of potential fault

tolerance deficiencies in the FTAMs

• Fault forecasting, i.e., the evaluation of the coverage

distribution (e.g., coverage factor and latency) provided

by the tested FTAMs.

 In both cases, the efficiency and relevance of the

fault injection experiments should be maximized. This

encompasses both faults injected in and activation

provided to the target system. Regarding the fault

removal objective, the test should be directed to achieve

a high coverage of the possible configurations of the

FTAMs to be validated on the target system. In this

case, the selection of the faults/errors to apply and

errors to propagate is primarily based on the analysis of

the model describing the FTAMs and of the information

flow in the simulation of the FTAMs. In practice, it

may be useful to rely on a predefined and limited set of

error classes (those corresponding to the design

assumptions of the FTAMs). References and have

addressed this issue in the context of fault-tolerant

protocols.

3. FAULT INJECTION TECHNIQUES:
 Engineers use fault injection to test fault-

tolerant systems or components. Fault injection tests

fault detection, fault isolation, and reconfiguration and

recovery capabilities.

3.1. Fault injection environment:

Figure 3.1 Basic components of a fault injection

environment

Fig.3.1 shows a fault injection environment, which

typically consists of the target system plus a fault

injector, fault library, workload generator, workload

library, controller, monitor, data collector, and data

analyzer. The fault injector injects faults into the target

system as it executes commands from the workload

generator (applications, benchmarks, or synthetic

workloads). The monitor tracks the execution of the

commands and initiates data collection whenever

necessary.

Controller

Work Load

Generator

Target

System

Monitor

Data

Collector

Fault

Injector

Data

Analyzer

Fault injection System

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2836 | P a g e

 The data collector performs online data collection,

and the data analyzer, which can be offline, performs

data processing and analysis. The controller controls the

experiment. Physically, the controller is a program that

can run on the target system or on a separate computer.

The fault injector can be custom-built hardware or

software. The fault injector itself can support different

fault types, fault locations, fault times, and appropriate

hardware semantics or software structure—the values

of which are drawn from a fault library. The fault

library in Figure 1 is a separate component, which

allows for greater flexibility and portability. The

workload generator, monitor, and other components can

be implemented the same way.

 VFIT, a VHDL - based fault injection tool that

applies several of the previously described techniques.

In fact, only the other techniques group has not been

implemented due to their excessive complexity. VFIT

(VHDL - based fault injection tool) that runs on PC

computers (or compatible) under Windows and is

model-independent. Although it admits models at any

abstraction level, it has been mainly used on models at

gate and RT levels.With VFIT it is possible to inject

faults automatically applying the simulator commands

technique. It is also feasible to inject faults using

saboteurs and mutants, but in this case, the injection

process needs the intervention of the user because the

insertion of the saboteurs and the generation of mutants

are not automatic.

3.2. Classifying Fault Injection Techniques:

 The fault injection is a technique of Fault Tolerant

Systems (FTSs) validation which is being increasingly

consolidated and applied in a wide range of fields, and

several automatic tools have been designed. The fault

injection technique is defined in the following way:

 Fault injection is the validation technique of the

Dependability of Fault Tolerant Systems which consists

in the accomplishment of controlled experiments where

the observation of the system's behavior in presence of

faults is induced explicitly by the writing introduction

(injection) of faults in the system. The fault injection

techniques in the hardware of a system can be classified

in three main categories:

3.2.1. Physical fault injection (HWIFI):

 It is accomplished at physical level, disturbing the

hardware with parameters of the environment (heavy

ions radiation, electromagnetic interferences etc.) or

modifying the value of the pins of the integrated

circuits. Hardware-implemented fault injection uses

additional hardware to introduce faults into the target

system‘s hardware. Depending on the faults and their

locations, hardware-implemented fault injection

methods fall into two categories:

• Hardware fault injection with contact:

 The injector has direct physical contact with the

target system, producing voltage or current changes

externally to the target chip. Examples are methods that

use pin-level probes and sockets.

• Hardware fault injection without contact :

 The injector has no direct physical contact with the

target system. Instead, an external source produces

some physical phenomenon, such as heavyion radiation

and electromagnetic interference, causing spurious

currents inside the target chip. Hardware fault injections

occur in actual examples of the circuit after fabrication.

The circuit is subjected to some sort of interference to

produce the fault, and the resulting behavior is

examined. So far, this has been done with transient

faults, as the difficulty and expense of introducing

stuck-at and bridging faults in the circuit has not been

overcome.

 The circuit is attached to a testing apparatus which

operates it and examines the behavior after the fault is

injected. This consumes time to prepare the circuit and

test it, but such tests generally proceed faster than

simulation does. It is, rather obviously, used to test

circuit just before or in production. These simulations

are non-intrusive, since they do not alter the behavior of

the circuit other than to introduce the fault. Should

special circuitry be included to cause or simulate faults

in the finished circuit, these would most likely affect

the timing or other characteristics of the circuit, and

therefore be intrusive.

3.2.2. Software Implemented Fault Injection

(SWIFI):

 The objective of this technique, also called Fault

Emulation, consists of reproducing at software level the

errors that would have been produced upon occurring

faults in the hardware. It is based on different practical

types of injection, such as the modification of the

memory data, or the mutation of either the application

software or the lowest service layers (at operative

system level, for example).

 Software fault injection is used to inject faults into

the operation of software and examine the effects. This

is generally used on code that has communicative or

cooperative functions so that there is enough interaction

to make fault injection useful. All sorts of faults may

be injected, from register and memory faults, to

dropped or replicated network packets, to erroneous

error conditions and flags. These faults may be injected

into simulations of complex systems where the

interactions are understood though not the details of

implementation, or they may be injected into operating

systems to examine the effects. Software fault

injections are more oriented towards implementation

details, and can address program state as well as

communication and interactions. Faults are mis-

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2837 | P a g e

timings, missing messages, replays, corrupted memory

or registers, faulty disk reads.

The system is then run with the fault to examine its

behavior. These simulations tend to take longer

because they encapsulate all of the operation and detail

of the system, but they will more accurately capture the

timing aspects of the system. This testing is performed

to verify the system's reaction to introduced faults and

catalog the faults successfully dealt with. this is done

later in the design cycle to show performance for a final

or near-final design.

3.2.3. Simulated fault injection:

 In this technique, the system under test is

simulated in other computer system.

The faults are induced altering the logical values during

the simulation. Some paper describes a tool for

injecting faults in VHDL simulation models.

 This work is framed in the simulated fault injection,

and concretely in the simulation of models based on the

VHDL hardware description language. We have chosen

this technique due fundamentally to:

1. The growing interest of the simulated injection

techniques as a complement of the physical fault

injection (these have been traditionally more numerous

and developed) and Fault Emulation (SWIFI). The

greatest advantage of this method over the previous

ones is the Observability and Controllability of all the

modelled components. The simulation can be

accomplished in different abstraction levels. Another

positive aspect of this technique is the possibility of

carrying out the validation of the system during the

design phase, before having the final product.

2. The good perspectives of modelling systems and

faults with VHDL that has been consolidated as a

powerful standard to analyse and design computer

systems.

3. Observe system behavior in the presence of faults.A

fault is a random or malicious defect introduced to the

system. A fault may cause an error state of the system.

A system enters error state if its normal operation can

not be performed anymore (due to a fault). A

recognized error does not mean a failure of the system.

 The system fails if it no longer meets the

requirements for proper functions.Fault tolerant systems

are used in safety critical applications. Fault tolerant

(FT) system – a system that provides required

functionality even in the presence of faults.Safety

critical application – the cost of a failure is much higher

than the price of the system, e.g. human lives are in

danger, a production plant is stopped. Real-time (RT)

system – the system responds to events immediately as

they occur. Hard RT systems provide guaranteed

deadlines. Type of fault is a class that have its own

constructor and attributes. A fault is an instance of this

class.

 Simulation-based fault injection is a

useful experimental way to evaluate the dependability

of a system during the design phase, thus reducing the

time-to-market. Another interesting advantage of this

group of techniques with regard to others is that those

based on simulation offer both high observability and

controllability of all the modeled components.

3.2.4. Parameters of the Injection Campaign:

 The following list describes the fault

injection experiment conditions of the injection

Campaign of this work.

I. Number of faults:
 n = 3000 single faults in every injection campaign.

This guarantees the statistical validity of the results.

II. Workload:

 The workload is a simple program that obtains the

arithmetic series of n integer numbers.

III. Fault types:

 The injected faults are

transient/permanent, stuck-at 0, stuck-at 1, Open-line,

or indetermination and they may affect the signals and

the variables in the model.

IV. Place where the fault is injected:

 The faults are systematically injected on any atomic

signal (sets of signals, like buses, are divided into their

bits) and variable of the model, in both the external

structural architecture and the behavioural architectures

of the components. Faults are not injected in the spare

CPU, since it is off while the system is working

properly.

V. Values of the faults:
 The values of faults are produced according a

Uniform distribution along the available range of

signals and variables.

VI. Time instant when the fault is injected:

 The time instant of injection is distributed according

to different types of probability distribution functions

 Signals

 Simulator

 Commands

 Variables

VHDL Based

Fault Injection

 Saboteurs

 VHDL code

 Modification Mutants

 Others

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2838 | P a g e

(Uniform, Exponential, Weibull, and Gaussian), typical

of the transient faults, in the range:

 [0, tworkload];

Where tworkload = workload simulation duration without

faults.

VII. Simulation duration:

 The simulation duration includes the execution time

of the workload and the recovery time with the spare

CPU (tsimul = tworkload + tspare). In our case, we have

chosen a value of 500mS.

4. VHDL-BASED FAULT INJECTION

TECHNIQUES:
 There exist a group of fault injection

techniques based on the use of hardware description

languages (or HDLs) as modeling languages. The most

popular high-level HDLs are VHDL, Verilog, and

SystemC. In our case, we work with VHDL . These

techniques are widely applied, due to the advantages of

employing an HDL. The present work is framed in this

group of techniques. Classification of VHDL-based

fault injection techniques, Nevertheless, both this

taxonomy and the description of the injection

techniques can be generalized to any other HDL.

4.1.Fault Injection Using Simulator Commands:

 This fault injection technique is based on

using the commands of the simulator at simulation

time, in order to modify the value or timing of the

signals and variables of the model. Using simulator

commands it is possible to inject transient, permanent,

and intermittent faults. Though, there exists one

restriction: due to the special nature of variables in

VHDL, it is not possible to inject permanent faults in

variables. This technique is the easiest one to

implement and its temporal cost (to perform the

simulation) is by far the lowest. However, the number

of fault models that can be injected is smaller than with

the other techniques

4.2. Techniques for injecting faults into VHDL

models:

 Three types of techniques for fault injection

can be identified: those that require modification of the

VHDL code and those that use the built-in commands

of the simulator. These techniques are described and

compared in this section.

4.2.1 Modification of the VHDL model:

 Two techniques can be distinguished.

The first is based on the addition to the VHDL model of

dedicated fault injection components, called saboteurs.

The second is based on the mutation of existing

component descriptions in the VHDL model, which

generates modified component descriptions called

mutants. A saboteur is a component added to the VHDL

model for the sole purpose of fault injection. It is

inactive during normal system operation, while altering

the value or timing characteristics of one or more

signals when active, i.e., when a fault is being injected.

Saboteurs are inserted, either interactively at the

schematic editor level or manually/automatically

directly into the VHDL source code.

 A serial and a parallel technique of insertion can be

distinguished. Serial insertion, in its simplest form,

consists of breaking up the signal path between a driver

(output) and its corresponding receiver (input) and

placing a saboteur in between. In its more complex

form, it is possible to break up the signal paths between

a set of drivers and its corresponding set of receivers

and insert a saboteur. Using the latter form, the signal

value for a receiver can be a function of the values

provided by the set of drivers, allowing complex faults

to be modelled, e.g., signal crosstalk. For parallel

insertion, a saboteur is simply added as an additional

driver for a resolved signal.

 A mutant is a component description that replaces

another component description. It behaves as the

component description it replaces, except during fault

injection when the mutant's behaviour is switched to

imitate the component's behaviour in presence of faults.

It is easy to implement this technique in VHDL when

the mutant is distinguished from the original

component description by a different architecture, as

the configuration mechanism can be used to select an

architecture (in our case the mutated one) for the

component.

 The required mutation may be accomplished in

several ways by:

• adding saboteur(s) to structural or behavioral

component descriptions.

• Mutating structural component descriptions by

replacing subcomponents; for example, a NAND-

gate may be replaced by a NOR-gate.

• Automatically mutating statements in behavioral

component descriptions, e.g., by generating wrong

operators or exchanging variable identifiers; this

approach is similar to the mutation techniques used

by the software testing community.

• Manually mutating behavioral component descriptions

to achieve complex and detailed fault models.

 In all cases, it simplifies matters if the mutant has an

interface (entity declaration) compatible with the

component description it replaces. Indeed, the VHDL

code for the component description in which the mutant

itself is a subcomponent may remain unchanged.

4.3. Fault injection using a behavioural model:

4.3.1. Bit-flip injection using a VHDL description:

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2839 | P a g e

 Using behavioral descriptions to study the

consequences of faults for complex circuits has been

widely proposed in the specialized literature. A review

of VHDL-based techniques can be found .Here we have

applied the so-called ―saboteurs‖ technique to a VHDL

behavioral model of 80C51 in order to study the effects

of bit flips when executing a program.

 The VHDL model uses an array of 8 bit vectors in

order to simulate all the 128 internal RAM bytes and

Special Function Registers (SFR) included in the 8051

architecture. Series of tests were performed where

faults were randomly injected both in location of the

affected bits inside this array and in time of the SEU

occurrence. Note that injected faults did not target the

memory bits of program code to be executed by the

micro controller, the fault injection being performed by

means of suitable modifications added to the VHDL

signals within the emulated 8051.

 The setup of the experiment was therefore

a simulation setup. In fact, we generated a VHDL

schematic with the instantiation of the studied micro

controller and other needed blocks. The main blocks

are:

 8051

 SRAM 64k

 ROM 4k

 These blocks were simulated using a commercial

VHDL simulator. The only modification we made to

the VHDL model was to add a saboteur process able to

inject bit flips inside the registers within the 8051.The

VHDL simulator, concurrently with the normal

processes emulating the 8051 micro controller, executes

the saboteur process.

 Therefore the activation of fault injection,

performed by means of the two extra signals IND and

BIT, is totally independent and asynchronous to the

state of the 8051.

 In fig 4.3.1.1 is shown a schematic description of the

fault injection strategy in a general case. The VHDL

behavioral description of the 8051 can be seen as a set

of concurrent processes, each one implementing a

function of the micro controller (ALU, PC incrementer,

Watchdog, etc.) and the communication between these

processes is provided by a set of internal signals visible

to all the processes. Some of these signals have physical

counterparts like SFR, RAM, PC and others. The

saboteur is a special process that runs concurrently to

the other processes and is activated, in our case, by two

external commands IND and BIT.

 When normal operation (without fault injection) is

carried out the saboteur is in a stand-by mode, when the

fault injection is activated, the saboteur modifies an

internal signal inverting its value. In this way the

saboteur provides an asynchronous SEU injection on

any internal signal of the VHDL description.

 It has to be noticed that, in order to have a realistic

behavior of the micro controller, the injection must be

performed only on those signals representing physical

registers. Assuming that the SEUs mainly affect the

internal registers rather than combinatorial logic, we

isolated the signals representing these registers and

made them our SEU injection target. The fault injection

technique is composed of the following steps.

First is defined the time width of injection zone

relatively to the program that must be tested, secondly

is defined the number of logical targets that must be

used in order to inject error in all internal register (in

this case 152).

 Fig4.3.1.1 Saboteur process

Fig4.3.1.2. Structure of VHDL 8051 model with fault

injection capability

PROCESS 2
INTERNAL

 SIGNALS

PROCESS 4

PROCESS 1

PROCESS 3

SABOTEUR

PROCESS

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2840 | P a g e

In the above figure the external 8051-module

instantiation with fault injection capability. The IND

and BIT signals appear as two additional ports of the

8051 and are driven by the simulator executing a macro

file.IND Signal indicates the address of the internal

byte to be affected by the injected fault and BIT

indicates Specific bit to flip.

The instance of injection is forced by the macro

together with these two addresses.

4.3.2. Setup of a VHDL fault injection Campaign

Setting up a fault injection campaign requires the

following steps:

- Analysis of the VHDL model

- Set up of the Saboteur process

- Set up of the Macro generator Program

 In principle these steps can be applied to

any VHDL description of a digital system including

memory elements. For instance, can be corrupted by

this method the content of bits of a Finite State Machine

status register, as well as the internal registers of a

micro controller description. The first step requires the

analysis of the VHDL description to find the targets

suitable for bit-flip injection. The second step is done

adding the saboteur VHDL process described above,

capable of modification of the value of the selected

target.

 The third step is the generation of the macro

file that drives the simulator engine giving both the

stimuli to the VHDL description of the device under

test (like clock reset etc) and the randomly generated

activation stimuli for the saboteur process. The first

step is the more important change to be afforded when a

new device VHDL description must be tested. Once the

targets of the VHDL code are identified, the

modifications related to the second step consist in the

connection of the saboteur to the selected target. The

stimuli for the macro generator to the saboteur are

almost the same while the stimuli for the DUT VHDL

description are strictly related to its functions.

 Therefore, once the setup phase is performed the fault

injection campaign can be carried out in batch mode,

the length of the simulation depending on the

complexity of the VHDL model. In the following

paragraphs are described the results obtained when

applying this injection strategy to the 8051 VHDL

description while running two test bench applications.

4.3.2.1 Matrix multiplication:

 The matrix multiplication program operates in four

phases, in the first phase, some internal registers are set

in order to initialize the system, in the second phase, the

6x6 matrixes are generated and stored in the internal

RAM, in the third phase the 6x6 product matrix is

generated (this is the more time consuming phase), in

the last phase, the result matrix is compared to the

expected one and the incorrect results are stored in the

external RAM. We define the ―Test‖ as the union of all

these four phases, and define the ―Injection Zone‖ as

the union of ―generate matrix‖ and ―product of matrix‖

phases.

 At the end of each test the system provides

the dump signal that generates a report of errors

revealed during the result control phase.

 The obtained results, in terms of percentages

of errors with respect the total number of injected bit

flips, are reported in the above table classified as

tolerated errors, result errors and lost of sequences.

―Tolerated errors‖, correspond to those bit flips injected

in memory elements which do not cause any effect at

the outputs of the program. ―Results errors‖, gathers

cases where obtained results are different from the

expected ones. Finally, the cases where we do not get

any answer from the processor are classified in the loss

of sequence group.

 The consequences of injected bit flips

belonging to this last malfunction type are

unrecoverable, needing to restart program execution.

The results were analyzed in detail to determine the

number of wrong elements in the result matrix obtained

in each faulty execution.

 0 464us

8.3ms 12ms

 Write Vector Vector sorting

Write to EXRAM Result control

 Initialization Injection Zone

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2841 | P a g e

 An explanation of these results could be that the

propagation of an injected SEU is related to the fault

injection instant. In particular the experiments leading

to six errors suggest that was corrupted a value of one

of the 2 matrixes before they were multiplied. The

latency of these unelaborated data inside the micro is

quite long; in fact, if we inject the bit flip during the

generation of the matrixes the incorrect value of the

multiplicand matrix will generate 6 incorrect values on

the result matrix.

4.3.2.2 Vector sorting program

 In the first phase, some internal registers are set in

order to initialize the system and a 30 element vector is

generated and stored in the micro controller internal

RAM. In the second phase, the original unsorted vector

is stored in the external RAM. In the next phase the

vector stored in the internal RAM of 8051 micro

controller is sorted, this is the more time consuming

phase. In the fourth phase the sorted vector is copied in

the external RAM, this is the last phase of injection

zone. In the last phase, the result of sorting algorithm is

tested and the incorrect results are stored to the external

RAM. Note that in this case the number of maximum

possible errors is 30.

 In this case we define the ―Test‖ as the union of

all these five phases, and define the ―Injection Zone‖ as

union of ―Write vector‖, ―Vector sorting‖ and ―Write to

exRAM‖ phases. At the end of each test the system

provides the dump signal that generates a report of

errors revealed during the result control phase. The test

follows the same steps of the previous one and the fault

injection and result analysis are made in the same way. .

4.2.3. Use of built-in simulator commands

Two types of techniques based on the use of simulator

commands can be identified: signal and variable

manipulation. When using signal manipulation, faults

are injected by altering the value of signals in the

VHDL model. This is done by disconnecting a signal

from its driver(s) and forcing it to a new value. The

signal's driver(s) is (are) reconnected when the fault

injection is completed. Variable manipulation allows

injection of faults into behavioral models by altering

values of variables defined in the VHDL code. The

main reason for using built-in commands for fault

injection is that this does not require a modification of

the VHDL code. This technique is based on the use of

the simulator commands to modify the value of the

model signals and variables. The way that faults are

injected depends on the injection place. To inject faults

on signals, the following sequence of pseudo-

commands must be performed:

1. Simulate until [injection instant]

2. Modify Signal [name] [faulty value]

3. Simulate for [fault duration]

4. Restore Signal [name]

5. Simulate for [observation time]

 This sequence is thought to inject transient faults,

which are the most common and difficult to detect . To

inject permanent faults, the sequence is the same, but

omitting steps 3 and 4. To inject intermittent faults, the

sequence consists in repeating steps 1–5, with random

separation intervals. The sequence of pseudo-

commands to inject faults on variables is:

1. Simulate until [injection instant]

2. Assign Variable [variable name] [fault value]

3. Simulate for [observation time]

 The operation is similar to the injection on

signals, but in this case there is no control of the fault

duration. This implies that it is not possible to inject

permanent faults on variables using simulator

commands. The sequence of commands needed to carry

out the injection (for both transient and permanent

faults) can be included in a macro file, where the

elements between brackets will be passed to the macro

as parameters. This means that the injection conditions

can be varied without modifying the command code. It

is interesting to point out that, from the point of view of

Results of bit flip injection for the

matrix multiplication program

Values

Injected Fault Numbers 2416

Lost of Sequences 134

Result Errors 1068

Tolerated Errors 1348

Result Errors Percentage (%) 44.20%

Lost of Sequences Percentage (%) 5.54%

Overall Percentage of Result Errors 49.74%

 0 464us

8.3ms 12ms

 Write Vector Vector sorting

Write to EXRAM Result control

 Initialization Injection Zone

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2842 | P a g e

the injection procedure, VHDL generics are managed as

‗special‘ variables. This enables the injection of some

nonusual fault types, such as delay faults (by modifying

timing generics).

4.2.4. Comparison of fault injection techniques

 The fault injection techniques presented above are

compared in terms of fault modeling capacity, effort

required for setting up an experiment and simulation

time overhead. The implication of a fault injection

campaign made up of a series of experiments is also

considered. Mutants offer the highest fault modeling

capacity of the fault injection techniques presented.

They can be designed by using the full strength of the

VHDL language itself, and are therefore well suited for

implementing realistic behavioral fault models. They

can be used also for implementing complex structural

fault models, such as the stuck-open fault model for

CMOS logic, in which a combinatorial circuit must be

substituted for a sequential circuit. Saboteurs are

generally less powerful than mutants in their fault

modeling capacity. They can be used for simple fault

models, such as the stuck-at fault model, but also for

more complex fault models, for example by

incorporating a finite state machine in the saboteur.

 Signal manipulation is suited for

implementing simple fault models, such as permanent

or temporary stuck-at fault models. Variable

manipulation offers a simple way for injecting

behavioral faults. The usefulness of this technique is

limited, however, as very few realistic behavioral fault

models can be implemented by simply altering variable

values. Both signal and variable manipulation can be

used for controlling saboteurs and mutants. In this way,

the injections of faults can be controlled by the built-in

commands of the simulator when either mutants or

saboteurs are used. If signal manipulation is used for

this, the control signals should preferably be internal to

the component description of the mutant/saboteur so

that they do not have to be routed through the hierarchy

of the VHDL model. The effort for setting up an

experiment is small using signal and variable

manipulation, as modification of the VHDL model is

not required. More effort is needed for mutants and

saboteurs, as they require:

(i) creation/generation of saboteurs/mutants,

(ii) Inclusion of saboteurs/mutants in the model and (iii)

recompilation of the VHDL model.

 Two ways can be distinguished for such an

inclusion. One way is to generate a new configuration

for each fault location, i.e., a configuration in which

only one mutant is present at a time. This requires

recompilation of the VHDL model for each fault

location and may also require manual intervention to

start up a simulation using the new model; both

activities may incur a significant time overhead.

Another way is to generate only one configuration in

which all required mutants are included, and then

activate these one at a time.

 This may increase the simulation time depending

on whether the mutants generate any supplementary

events when fault injection is inhibited; thus, there is a

trade-off between the overhead in simulation time and

the overhead in compilation time. The creation of

saboteurs and automatic generation of mutants is a

relatively easy task, provided that simple fault models

are considered. It is worth noting that a saboteur is a

reusable component, while a mutant has to be

specifically generated for each mutated component.

The inclusion of saboteurs requires modification of the

component description while mutants are easily

included in the model by means of the VHDL

configuration mechanism. The simulation time

overhead imposed by signal and variable manipulation

is only due to fault injection control, as the simulation

must be stopped and started again for each fault

injected. It is important to note that the simulation time

overhead imposed by saboteurs and mutants depends on

several factors: (i) amount of additional generated

events (signal changes), e.g., a simple serial saboteur

generates one event per input signal change, (ii) amount

of code to execute per event, e.g., a complex

behavioural mutant may require many statements to be

executed per event, (iii) complexity of the fault

injection control.

5. AUTOMATING THE INSERTION OF

SABOTEURS:
 A saboteur is a special VHDL component added to

the original model. The mission of this component is to

alter the value, or timing characteristics, of one or more

signals when a fault is injected, remaining inactive

during the normal operation of the system. In saboteurs

are classified into: serial simple, serial complex and

parallel. So far, VFIT can inject faults using serial

saboteurs inserted manually in the design. The models

of saboteurs implemented are as follows

5.1. Previous Models:

(a) Serial simple saboteur: It interrupts the connection

between an output (driver) and its corresponding

receptor (input), modifying the reception value.

(b) Serial simple bi-directional saboteur: It has two

input/output signals, plus a read/write input that

determines the perturbation direction.

(c) Serial complex saboteur: It interrupts the connection

between two outputs and their corresponding receptors,

modifying the reception values.

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2843 | P a g e

(d) Serial complex bi-directional saboteur: It has four

input/output signals, plus a read/write input that

determines the perturbation direction.

(e) n-Bit unidirectional simple saboteur: It is used in

unidirectional buses of n bits (address and control). It is

composed of n serial simple saboteurs.

(f) n-Bit bi-directional simple saboteur: It is used in

bidirectional buses of n bits (data and control). It is

composed of n bi-directional serial simple saboteurs.

(g) n-Bit unidirectional complex saboteur: It is used in

unidirectional buses of n bits (address and control). It is

composed of n=2 serial complex saboteurs.

(h) n-Bit bi-directional complex saboteur: It is used in

bi-directional buses of n bits (data and control). It is

composed of n=2 bi-directional complex saboteurs.

 Faults can be injected on the signals which connect

components in structural models. The internal

architecture of the saboteurs can be behavioural or

structural. The behavioural design is basically a process

whose sensitivity list contains the control and

input/output signals. The structural design is based on

the use of multiplexers.

Fig5.1. (a) Serial simple saboteur (b) Serial simple

bi-directional saboteur (c) Serial complex saboteur

(d) Serial complex bi-directional saboteur

5.2. Fault Injection with Saboteur:

Fig: 5.1.1. (a) Serial

 (b) Parallel saboteur Technique

A saboteur is a special VHDL component added to the

original model. When activated, the mission of this

component is to alter the value, or timing

characteristics, of one or more signals, simulating the

occurrence of a fault. During the normal operation of

the system, instead, the component remains inactive.

Saboteurs affect to the ports of the components in the

model. Thus, this technique is applicable only to

structural descriptions.

 Attending to how saboteurs are inserted in the

model, two types can be distinguished: serial and

parallel. As Fig. 5.1.1 (a) shows, a serial saboteur

interposes between a component input port (I in the

figure) and its source signal (O in the figure), whereas a

parallel saboteur Fig.5.1.1. (b) Is added as an additional

source (S in the figure) of a given signal. Second, they

allow to inject fewer fault models. For these reasons,

their implementation has no special interest. So, in this

paper, only serial saboteurs will be considered.

5.3 Enhanced models of saboteurs

 This following new set of saboteur models has

important differences with respect to prior ones.

• All models have been implemented using behavioural

descriptions. This simplifies greatly their code and,

what is more important, also the code of the design

including the saboteurs. Moreover, the -bit versions can

be used for vectors of any length, because their length

is defined by means of a generic parameter. Every time

an -bit saboteur is added to the model, the actual value

of the generic parameter must be set.

• The number of saboteurs has been reduced to ease

their automatic insertion. Now, depending on both the

length (1 bit or n bits) and the mode (that is, the

directionality) of the port sabotaged, only one model

can be chosen.

• The bidirectional versions have the capability of

injecting the fault only in the direction that data flow. In

this way, the R/W input used in the models of prior

version is not needed anymore, thus reducing the

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2844 | P a g e

overhead. In the reduced version used to inject single

faults, without the Control input, the spatial overhead is

even more diminished.

• They can inject more fault models: pulse, short, and

bridging the new models of saboteurs proposed, shown

in Fig., are as follows.

• Unidirectional Serial Saboteur (USS): It is the same

model as the SSS in the previous set, although the USS

allows injecting new fault models.

• Bidirectional Serial Saboteur (BSS): It is similar to the

SSBS in the first set, but like in the previous case, the

fault model set that can be injected has been extended.

Also, it eliminates the R/W control signal.

•N-Bit Unidirectional Serial Saboteur (NUSS): This

model replaces all the unidirectional multi-bit models in

prior model set.

• N-Bit Bidirectional Serial Saboteur (NBSS): It

replaces all bidirectional multi-bit models in the former

proposal and eliminates the R/W control signal.

 As the timing of Control and Selection inputs are

identical, we have implemented an ―optimized‖ version

of these models in which the fault injection is managed

only by Selection input.

The idea is simple:

 When an injection is in progress, Selection indicates

the fault(s) to be injected; but while no fault is injected,

the value of Selection must represent a ―no-fault‖

injection.

 However, this reduced version has a negative aspect:

only single faults and multiple faults in the domain of

time can be injected. To inject faults in the domain of

space, the original scheme must be used.

 Fig5.2.1 Example of perturbation of model

Distribution of saboteur

 Fig5.2.2. Set of Saboteur implemented

 (a) Unidirectional serial saboteur

 (b) Bidirectional saboteurs

 (c) n-USS (d) n-BSS

 tinj

 Control Fault
 tinj t

 Every saboteur is controlled by means of the

following three inputs.

• Control: whose mission is the timing of the injection:

its activation determines both the injection instant (tinj)

and the fault duration (∆tinj). It can be seen more clearly

in the above figure.

• Selection: this allows selecting the fault model to be

injected.

• R/W: this indicates, in the bidirectional versions, the

direction of the perturbation.

 The task of modifying automatically a source code

seems apparently very complex. However, if the

injection tool includes a parser, this is not actually so.

From a syntactical tree of the model containing its

complete structure, it is possible to go over the tree and

generate a new copy of the source files, inserting new

sentences or modifying other existing as needed.

The insertion of saboteurs involves the following three

actions:

1) Declaring the signals required to activate the

saboteurs and to select the fault model to be injected;

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2845 | P a g e

2) Declaring the components of the saboteurs

introduced;

3) Inserting the instances of the saboteurs, interposing

between local and formal ports of the sabotaged

components; this also implies declaring new signals to

connect the saboteurs to local ports, and modifying the

original mapping of ports.

5.4. Fault Injection Using Mutants

 A mutant is a component that replaces another

component. While inactive, it works like the original

component, but when it is activated, it behaves like the

component in presence of faults.

The mutation can be made in three ways:

• By adding saboteurs to structural model descriptions.

• By modifying structural descriptions replacing sub-

components.

• By modifying syntactical structures of behavioral

descriptions.

There can exists lots of possible mutations in a

VHDL model, so representative subsets of faults at

logical and RT levels must be considered replacing the

values of conditions in if and case statements (called

stuck-then, stuck-else, dead clause, etc.), disturbing

assignment statements (assignment control, global

stuck-data, etc.), disturbing operators in expressions

(micro-operation, local stuck-data), etc.

Here we considered the following fault models

• Stuck-Then: Replacement of the ‗if‘ condition by

true.

• Stuck-Else: Replacement of the ‗if‘ condition by

false.

• Assignment Control: Disturbing an assignment

operation.

• Dead Process: Elimination of the sensitivity list of a

process.

• Dead Clause: Elimination of a clause in a case.

• Micro-Operation: Disturbing an operator.

• Local Stuck-Data: Disturbing the value of a variable,

constant, or signal in an expression.

• Global Stuck-Data: Elimination of all value

modifications of a variable or signal in architecture.

Many of these fault models do not have a direct

correspondence with physical faults, but they can show

somehow an erroneous internal operation.

5.4.1 Graphical User Interface

 The experiment configuration is carried out

through VFIT‘s graphic user interface (GUI). Among

other functions, this GUI allows the user to select a list

of fault targets among all the possible targets in the

model. The class of the fault targets eligible depends

directly on the fault injection technique applied like

model signals and variables for simulator commands;

inputs and internal connection signals of the model

components for saboteurs; and special VHDL sentences

for mutants.

5.4.2 Injection Schedulers

 It decides at a given time instant (injection

instant), the value of one or several points of the system

must behave in a wrong way. If it occurs once for a

short time then it is simulating the occurrence of a

transient fault, if it occurs for a short time but

repeatedly then it is simulating the occurrence of an

intermittent fault or permanently i.e. until the end of the

simulation.

5.4.3 Dependency

 Wrong behavior of the fault

targets means depends strongly on the injection

technique used. In the case of simulator commands, the

injection consists on modifying directly the internal

value or timing of the fault target(s) by using the

commands of a simulation language. When saboteurs

are used, the injection consists on modifying directly

the control lines that manage one or several saboteurs

inserted in the original model. In this way, the

saboteur(s) activated will propagate the affected lines

with erroneous values or timing. When injecting faults

with mutants, the, By means of simulator commands,

an erroneous sentence will be ―executed‖ instead of the

correct one. During the simulation phase, VFIT

automatically selects randomly a fault target from the

list, and then, a particular fault model to inject on it.

The output of an injection experiment can be either an

error syndrome analysis or a validation.

6. SIMULATION RESULTS

6.1. Saboteurs Top-level

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2846 | P a g e

6.2. Saboteurs Top-level Internal block diagram

6.3. USS:

6.5. USS 16:

6.6. MEMORY output without fault application

6.7. MEMORY output with fault application

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2847 | P a g e

7. CONCLUSION

 In this project, we introduced new methods to

implement and use saboteurs and mutants into VHDL

models. The new models of saboteurs fix some

problems of ambiguity that the previous approach had.

These problems prevented their automatic insertion.

Moreover, the new models have been implemented in

such a way that they diminish the overhead, by

reducing the number of signals required to manage

bidirectional saboteurs. Another enhancement respect to

prior models is that they allow injecting more fault

models. The advantages of the new proposal to

implement mutants are especially relevant: it is easy to

automate and reduces notably the spatial overhead. But

its main success is to shrink considerably the temporal

overhead. These saboteurs and mutants have been

applied to example circuits at gate level and register

level. Thus their output waveforms have been observed

using Simulation by Model Sim-6.2g.

Acknowledgements
The authors like to express their thanks to management

and department of ECE KLUniversity for their support

and encouragement during this work.

8. References:
1. E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, and J.

Karlsson, ―Fault injection into VHDL models:

The MEFISTO tool,‖ in Proc. FTCS, 1994, pp.

356–363

2. V. Sieh, O. Tschäche, and F. Balbach,

―VERIFY: Evaluation of reliability using

VHDL-models with embedded fault

descriptions,‖ in Proc. FTCS, 1997, pp. 32–36.

3. J. Boué, P. Pétillon, and Y. Crouzet,

―MEFISTO-L: A VHDL-based fault injection

tool for the experimental assessment of fault

tolerance,‖

4. J. Arlat, Y. Crouzet, and J.C. Laprie, ―Fault

Injection for Dependability Validation of Fault-

Tolerant Computer Systems,‖ Proc. 19th Ann.

Int‘l Symp. Fault-Tolerant Computing, IEEE CS

Press, Los Alamitos, Calif., 1989, pp. 348-355.

5. O. Gunnetlo, J. Karlsson, and J. Tonn,

―Evaluation of Error Detection Schemes Using

Fault Injection by Heavy-ion Radiation,‖ Proc.

19th Ann. Int‘l Symp. Fault-Tolerant

Computing, IEEE CS Press, Los Alamitos,

Calif., 1989, pp. 340-347.

6. C. Constantinescu, ―Impact of deep submicron

technology on dependability of VLSI circuits,‖

in Proc. DSN, 2002, pp. 205–209.

7. P. Shivakumar, M. Kistler, S. W. Keckler, D.

Burger, and L. Alvisi, ―Modeling the effect of

technology trends on soft error rate of

combinational logic,‖ in Proc. DSN, 2002, pp.

389–398.

8. J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C.

Fabre, J. C. Laprie, E. Martins, and D. Powell,

―Fault injection for dependability validation: A

methodology and some applications,‖ IEEE

Trans. Softw. Eng., vol. 16, no. 2, pp. 166–182,

Feb. 1990.

9. Fault Injection Techniques and Tools for VLSI

Reliability Evaluation, A. Benso and P. Prinetto,

Eds. Norwell, MA: Kluwer Academic,

2003.fault injection tool for the experimental

assessment of fault tolerance,‖ in Proc. FTCS,

1998, pp. 168–173.

10. Enhancement of Fault Injection Techniques Based

on the Modification of VHDL Code Juan-Carlos

Baraza, Joaquín Gracia, Sara Blanc, Daniel Gil,

and Pedro-J. Gil, Member, IEEE

11. C. Constantinescu, ―Impact of deep submicron

technology on dependability of VLSI circuits,‖

in Proc. DSN, 2002, pp. 205–209.

Susrutha Babu Sukhavasi was

born in India, A.P. He received the B.Tech degree from

JNTU, A.P, and M.Tech degree from SRM University,

Chennai, Tamil Nadu, India in 2008 and 2010

respectively. He worked as Assistant Professor in

Electronics & Communications Engineering in Bapatla

SUSRUTHA BABU SUKHAVASI, SUPARSHYA BABU SUKHAVASI,

DR.HABIBULLA KHAN, CHIRANJEEVI PILLA / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2834-2848

2848 | P a g e

Engineering College for academic year 2010-2011 and

from 2011 to till date working in K L

University. He is a member of Indian Society For

Technical Education and International Association of

Engineers. His research interests include Mixed and

Analog VLSI Design, FPGA Implementation, Low

Power Design and wireless Communications, Digital

VLSI. He published articles in various international

journals and conference.

 Suparshya Babu Sukhavasi was

born in India, A.P. He received the B.Tech degree from

JNTU, A.P, and M.Tech degree from SRM University,

Chennai, Tamil Nadu, and India in 2008 and 2010

respectively. He worked as Assistant Professor in

Electronics & Communications Engineering in Bapatla

Engineering College for academic year 2010-2011 and

from 2011 to till date working in K L University. He is

a member of Indian Society For Technical Education

and International Association of Engineers. His

research interests include Mixed and Analog VLSI

Design, FPGA Implementation, Low Power Design and

Wireless communications, VLSI in Robotics. He

published articles in various international journals and

conference.

Dr.Habibulla khan born in India,

1962. He obtained his B.E. from V R Siddhartha

Engineering College, Vijayawada during 1980-84. M.E

from C.I.T, Coimbatore during 1985-87 and PhD from

Andhra University in the area of antennas in the year

2007.He is having more than 20 years of teaching

experience and having more than 20 international,

national journals/conference papers in his credit.Prof.

Habibulla khan presently working as Head of the ECE

department at K L University. He is a fellow of

I.E.T.E, Member IE and other bodies like ISTE. His

research interested areas includes Antenna system

designing, microwave engineering, Electro magnetics

and RF system designing.

Chiranjeevi Pilla was born in garividi,

vizianagaram(dist), a.p, india. He received

the B.Tech. degree in Electronics &

Communications Engineering from St.

Theressa inistitute of Engineering

&Technology, garividi, A.P., Affiliated to

the JNTU , Kakinada, A.P., India in 2009

and pursuing M.Tech Degree in VLSI

technology in KL University. His research

interests include Digital VLSI Design and

Fault Diagnosis & testing and

Verification.

