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ABSTRACT
This article deals with the Bayesian and non-Bayesian
estimation of reliability of an s-out-of-ksystem with non-
identical component strengths which are subjected to a
common stress. Both stress and strength are assumed to
have an exponentiated Pareto distribution with common
and known shape parameter. Five non-Bayesian methods
of estimation will be used which are maximum likelihood,
moments, percentile, least squares and weighted least
squares. The Bayesian estimation will be studied under
squared error and LINEX loss functions using Lindley’s
approximation. Based on a Monte Carlo simulation,
comparison studies are made between the different
estimators of system reliability by obtaining their absolute
biases and mean squared errors. Comparison study
revealed that the maximum likelihood estimator works the
best among the competitors.

Keywords- Bayes estimator, exponentiated Pareto
distribution, least squares estimator, maximum likelihood
stress—strength model,

1. Introduction

The estimation of reliability is a very common problem in
statistical literature. The most widely approach applied for
reliability estimation is the well-known stress-strength
model. This model is used in many applications of physics
and engineering such as strength failure and the system
collapse.In the statistical approach to the stress-strength
model, most of the considerations depend on the
assumption that the component strengths are
independently and identically distributed (iid). In many
practical situations, the components of a system are of
different structure so that the assumption of identical
strength distributions may not be quite realistic. This is
often the case with systems having standby components.
Consider a system made up of k non-identical
components. Out of these k components, k; are of one
category and their strengthsYy, ..., Y, are iid random
variablesdistributed as exponentiated Pareto (EP)
suggested by Gupta et al. [1] with parameters (6,1, 4). The
remaining componentsk, = k — kjare  of different
category and their strengths Yy 4, .., Yare iid random
variables distributed as EP with parameters (6,,1). This
system is subjected to a common stress X which is
independent random variable distributed as EP with
parameters (05,4). Let fi(y1;6:,4) be a common
probability density function (PDF) of strengthsY;, ..., Yy,
f2(y2;02,2) be a common PDF of strengthsYy, 4, ..., Y
and g(x;05,1) be PDFof stressX.The corresponding
cumulative distribution functions are given, respectively,

by

Fi(y1; 61,4 = [1— (1 +y)™%; y, > 0,6, >0,1>0,
Fy(y2; 05,0 = [1 = (1 + y,)71%; y, > 0,6, > 0,1 > 0,
G(x;05,1) =[1—(1+x)7%; x>0,0; >0,1>0.

1

: )The system operates successfully if at least s out of k
components withstand the stress. According to Johnson
[2], the system reliability with non-identical component
strengths R,y is given by

Row = 2. () (7) [ - Reow @i
J1Jz Y

- F,(x)]2 x

[F(x)]*272dG (x),(2)
where the summation is over all possible pair (j, j,) with
0<j; <ksand 0 <j, <k, such that s <j; +j, < k.It
is important to note thatthe system reliability can be
extended to more than two groups of components.

The reliability of s-out-of-k system with non-identical
components for EP can be computed by substituting
equations (1) in equation (2) and simplifying

Rsi

k1 k2 Jj1 Jj2
-0 3 ()3 (S e S
X

[6:(m + ky — ji1) + 8,(n + ky — j,) + 65]72.(3)Note that
the above expression depends on 6;,0, and 85 only and
does not depend on A.

The problem of estimation of system reliability was
originally viewed as an extension of the stress-strength
model to a multi-component system. The estimation of
reliability of s-out-of-k stress—strength system has been
discussed by many authors. Few authors considered the
strengths are independently but not all identically
distributed and are subjected to a common stress such as
Pandey et al. [3] and Paul and BorhanUddin[4].

The main aim of this article is estimating the reliability
in multi-component stress-strength model of an s-out-of-
ksystem. Assuming both stress and strength are
independently distributed asEP with common and known
shape parameter A. This problem is studied when the
strengths of the components are independently but not all
identically distributed. Maximum likelihood estimator
(MLE), moments estimator (ME), percentile estimator
(PCE), least squares estimator (LSE) and weighted least
squares estimator (WLSE) are obtained. Also, the Bayes
estimators under squared error and LINEX loss functions
are discussed using Lindley’s approximation. Monte Carlo
simulation is performed for comparing different methods
of estimation.
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The rest of the article is organized as follows. In Section
2, different methods of estimation of R, are discussed.
In Section 3, numerical illustration is carried out to
illustrate theoretical results. In Section 4, simulation
results are displayed. Finally, conclusions are presented in
Section 5.

2. Different Methods of Estimation of R g s

It is well known that the method of maximum likelihood
estimation has invariance property. When the method of
estimation of unknown parameter is changed from
maximum likelihood to any other traditional method, this
invariance principle does not hold good to estimate the
parametric function. However, such an adoption of
invariance property for other optimal estimators of the
parameters to estimate a parametric function is attempted
in different situations by different authors (see
SrinivasaRao and Kantam [5]). In this direction, in the
following subsections some methods of estimation for the
reliability of an s-out-of-k system in stress—strength model
will be proposed by considering the estimators of model
parameters.

2.1 Maximum likelihood estimator of R s,

LetY;1, Y12, ..., Vi, be a random sample of size m; drawn
from EP(6,, 1), then Y (1) < Y5y <..< Yy, denotes the
corresponding order statistic sample. Let Y51, Y55, ..., Yo,
be a random sample of size m, drawn from EP(6,, 1), then
Y1y < Y22y <. < Yz0m,) denotes the corresponding order
statistic sample.LetX;, X,,..,X,, be a random sample of
size n drawn from EP(03, 1),then Xy < X(2) <..< X(n)
denotes the corresponding order statistic sample.Then the
likelihood function is given by
L= L(elﬁ 92' 93')" yl' yZ! x)

= oy g2 rtmama 1_[[1 — (14 x,)7A]%"1 1_[(1

+x;)” a+D) X
miy mi
[ - a+mpen] Ja+mnex
j=1 ] =1
7200 = (L4 920010 T2 (1 + ) 040,

(4)
The first derivatives of the log-likelihood function with
respect to 6,,6, and @are given, respectively, by

alnL ml Z ln[l (1 +y1j)—/1] = Oil

Ern

?THZL mz T Yoz In[1— (1 +y,)7]=0

|
dlnlL —
26, "+Z"11n1—(1+x)’1]— J
(5)

Then the MLE’s of 6,6, and 05,
denotedby® w1ry,02miey andBs iy, respectively, can be
obtained as the solution of equations (5) as

~ - m

O1mLey = S 1n[1—(1+y11')_’1]'\

~ _ my

O2mLE) = Y2 In[1-(1+y2,) 4] ©)

8 -___ "~ I
3MLE) = T 3 In[1—(14a) 4] J

The MLE of R, denoted by }?(s,k)MLE, is obtained by
substitute 81 gy, 02miey andOs .y iN equation (3).

2.2 Moments estimator ofR 4,

Since the strengthsYy,...,Y,, follow EP (6,,4),
strengths Yy, 41, ..., Y follow EP (6, 4)and the stress X
follows EP (63, 1), then their population means are given

by
n=EM)=6,B(6,1-)-1;4>1,
= E() = 0,B(0,1-)—1;4>1,
ux = E(X) = 63B(63,1-3) —
(M

where B(.,.) stands for the beta function.
According to the method of moments, equating the
samples means with the corresponding populations means.

Then,

1 =6B(6,1-)-1;1>1,
1;1>1, (8)

1; ,1>1J

Y2 = 6,B(63,1 )
X =03B(63,1— )

The ME’s 0f91,92 and 65, denoted by, ygy,0(mr)
andég(ME), respectively, can be obtained by solving the
non-linear equations (8)numerically. The ME of R,
denoted by R 4w is obtained by substituted; o), 02ur)
and G5y in equation (3).

1;A>1,

2.3 Percentile estimator of Ry,

The percentile estimators can be obtained by equating the
sample percentile points with the population percentile
points.In case of a EP distribution it is possible to use the
same concept to obtain the estimators based on the
percentiles, because of the structure of its distribution
function.According to Kao [6,7] several estimators of p;;,
P2y and ps;, where py;, py, and ps; are the samples
percentile, can be used as estimates for populations

percentileF; (y1(); 61, 4), F,(Y200y; 62, 1) and
G(x(l)l 63! /‘l)
The foIIowing formulas will be considered in this work:
plj:m+1'] -, My, vazﬁ;
1,2,..,myand
Lo
Psi = b= 1,2,..,m,

which are the expected values of F, (Y;;)),F2(Y,(,)) and
G (X(;y)respectively.

Then the PCE’s of 6;,6, and 6; can be obtained by
minimizing the following equationswith respect to
6,,0,and 65, respectively,

Y n(py) — 61In[1 = (1 +y159) 1%,

Y2 [In(2,) — 65In[1 = (1 + y0)) 1%,

Yialn(ps,) — 65In[1 — (1 + x¢y) 1%

9

Sl'rzen the PCE’s of 64,6, and 63, denoted
byB (pciy B2pciy aNdB3 pcry, respectively, take the forms
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2/ In(p1j) In[1-(+y1()) "

él(PCE) = 2
27 1=y 1) ]
~ Tord n(p2p) In[1-(14+y () ]
) — v ,(10)
2(PCE) = 52 I [1—(1+y 20021
4 X In(p3) In[1-(1+x) A
3(PCE) ™ Ty In[1-(1+x ) 12

The PCE of R, denoted by R )pcg. is obtained by
substitute 85 pcry,02(pcr)andBspery in equation (3).

2.4 Least squares and weighted least squares
estimatorsof R s

Least squares estimators are obtained by minimizing the
sum of squared errors between the value and it’s expected
value. This estimation method is very popular for model
fitting, especially in linear and non-linear regression.
According to Johnson et al. [8]:

j .
E(Fl(yl(]))) = m o+ 1 ] = 1:--:m1:E(F2(Y2(v)))

v
=1,..,my, E(G(X))

m2+1

= SIS —w % 111
n+ 1’ &
and
jmy —j+1)
V(FL(Yiy)) = ;
(it100) = G v 2y + 2
_ vimp—v+1)
~ (my + 1)%(my + 2)’
im—i+1)
V(GXp)) = ————.
(6¢w)) (n+1D?*(n+2)

Using the expectations and the variances of
Fi (Y1), F2(Y2ry) and G(X(;)), two variants of the least
squares methods can be used. The LSE’s of 6,,0, and 65,
denoted by®; ;sgy,02155yaNd03 55y, respectively, can be
obtained by minimizing the following equationswith
respect to 6,,6, and 65
YR M) = E(F,(Ygy))1%

Yo [F (Vo) — E(F (Ya))12

1[G (X)) — E(G(X))I?
(11)

The LSE 0fR ), denoted by R ).z, is obtained by
substitute 65 ;sgy,02157) andBzsey in equation (3).Also,
the WLSE’s of 6y, 6,and;,denoted byd; yysxy,02wise)
and93(WLSE), respectively, can be obtained by minimizing
the following equationswith respect to 6;, 6,and 65

27211 wy; [Fi (Y1) — E(Fy (Y12,
Yo Wy [F, (Vo)) — E(F2(Ya)))12,
Xig W3 [G(X(i)) - E(G(X(i)))]2

V(F2(Y2)))

(12)

where,

Wi 1 _ (m1+1)2(m1+2) _ 1 _
Ly V(F1(Y1(]))) j(mi—j+1) 2v V(R (Y2()))

(m2+1)2(mz+2) _ 1 _ (n+D)?(n+2)
v(ma—v+1) andws; = vEXe)) | itn—itl)

The WLSE of R, denoted by R xyw.se, is obtained
by substitute 8;ayisey, O2awisey andOsyysey in equation

(3).

In the following subsection the approximate Bayes
estimators (BE’s) ofR; ., are obtained. The approximate
Bayes estimators under squared error and LINEX loss
functions, by using Lindley’s approximation, denoted by
BESL and BELL, respectively, are discussed.

2.5 Bayes estimators of R

Assume 64, 8,and 65 are independent random variables.
Following Afify[9] the noninformative type of priors for
parameters 6;, 6,and 65 are assumed. Therefore, the joint
prior density of (8, 8,, 83) is:
11
g (64,6,,03) o« — 0, 92 93

Combining the joint prior density of (64,6,,65)and the
likelihood function given in equation (4) to obtain the joint
posterior density of (6,4, 6,,03) as

(61,02, 051y1, y2, %)

9(61,6,,05)L(61,62, 603, 4; Y1, Y2, %)

;0<60;, <o ,i=1,23.

f(;o f()OO fowg(gll 62' 93)L(91! 92; 63; /‘l; Xl; XZ' &)d91d62d93’
=20<6, <o ,i=123(13)
i}
where,

n
b = pp-tgmi—tgmal 1_[[1 — (1 +x)% 1 x

i=1
miy

1_[[1—(1+y ) 1]1_[[1—(1+y D7,

n

fffe 19m1 -1 ‘mz 1“[1_(1+xl_)—l]93—1
000

i=1

mi mp
[ [o-a+wmp=e] [
j=1 v=1
— (1 ar yZU)—ﬂ]Hz—l] d91d92d93
Under squared error and LINEX loss functions, the
BE’s  ofR(;)denoted  byR(sizes  and
respectively, defined as:

Risipes = EResioly1 y2, %)

o0 00 oo

R (s,k)BEL>»

=fffR(s,k)”(gpgz;93|X1;Xz;£)d91d92d93'
0

A 1 )
R(speL = —aln[E(e aR(S'k)|X1:X2,£)]

=— il [ [ e tnn(0,,0,,0313,,y,, 106,040,
00 0
this integrals cannot be obtained in a simple closed form.

Alternatively, using the approximation of Lindley [10] to
compute the approximate BE ofR s ;).

Using Lindley’s approximation,the approximate BE’s
ofR(yunder  squared error and LINEX  loss
functions,denoted byR s x)zes. and R xypeLs. respectively,
take the following forms
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< = 1
Resjopest = Rispy +5 U171 + UpaTop + UssTsz +
Qi1 Uit + Qo2 UT5, + +Q333Us733],
~ 1 —aR 1
Rispoyprr = —ZIn[e™ 60 + U1 Ty4 + UppTop + Usz T3z +

Q11 Uith + Qu22Up73; + +Q333Ust53],

(14)
where all functions in equations (14) defined in appendix A
and evaluated at the posterior
5o _ (m1-1) Fo_
moded; = ijllln[l—(1+y1j)_’1]'92
(mz-1) (n-1)

andds = — T

Tyl In[1-(1+y20) 74T
3. Numerical Experiments and Discussions
In this Section, a numerical experiment will be presented
to compare the performance of the different estimatorsof
R(s,x) Proposed in the previous subsections with respect to
their absolute biases and mean squared errors (MSE’s).
Monte Carlo simulation is applied for different sample
sizes, different parameter values and for different s-out-of-
k systems. The absolute biases and MSE’s are computed
for the different estimators over 5000 replications for
different cases. The simulation procedures are described
through the following steps:
Step 1:A random samplesY;q, Yiz, oo, Yige, s
Y21, Ya2, s Yo, andXy, Xy,.., X, of sizes (m;,my,n) =
(10,10,10), (10,10,30), (10,10,50), (30,30,10), (30,30,30),
(30,30,50), (50,50,10), (50,50,30) and (50,50,50) are
generated from EP distributions.
Step 2: The parameters values are selected as (0, 85, 63) =
(2,1.5,0.5), (0.5,1.5,2) for A= 3 in all cases are considered
here. The selected values for s-out-of-k systems are
(51,52, k1, k2) =(1,1,2,2), (1,2,2,2), (2,1,2,2) and (2,2,2,2).
Step 3: The estimation of the parameters 6,,0,and6; are
considered. The MLE’s and PCE’s of 6;,6,andf; can be
obtained from equations (6) and (10), respectively. The
ME’s of 6;,6,andf;can be obtained by solving the non-
linear equations (8). Also, The LSE’s and WLSE’s of
6,,0,andf; can be obtained by minimizing equations (11)
and (12) with respect to 6,,0,and60s, respectively.
Step 4: The MLE, ME, PCE, LSE and WLSE of R, are
computed by using the estimates of 6;,6,andf; obtained
in step 3.
Step 5: The approximate Bayes estimates of R junder
squared error and LINEX loss functions, at a=1, using
Lindley’s approximation can be computed from equations
(14).
Step 6: Repeat the pervious steps from 1 to 5r times
representing r different samples, where r = 5000. Then,
the absolute average bias and MSE of the estimates of
R,y are computed.

4. Simulation Results

All simulated studies presented here are obtained via

MathCAD (14). The results are reported in Tables 1 and 2.

From Tables 1 and 2 many conclusions can be made on

the performance of all methods of estimationof R(,y,.

These conclusions are summarized as follows:

1- The value of R increases as the value of 6,and
6,increase and as the value of 8;decreases (see Tables
land 2).

\ 2- For all the methods it is clear that when my =m, =n
and 7z, 73, 7 increase then the MSE’s decrease. For
fixed 72, 7, as 7 increases then the MSE’s decrease.
For fixed 7, as z, 72 increase then the MSE’s
decrease. In addition, the biases decrease in almost all
values expect for some few cases.
For fixed 4,, as s,,7 = 1,2 increases then the value
of #, 4) decreases.
Comparing the MSE’s of all estimators, the MLE
performs the best estimators for A ,y for most
different values of (&4,8,,63) and (51,55, £1,45)
considered here. The performance of the BESL and
BELL are quite close to the MLE.
Comparing the biases of different estimators, it is noted
that the MLE’s have the minimum biases in almost all
of the cases. In few cases, The PCE’s have minimum
biases.
The BESL works the best estimators for 4, at
(51,59 £1, £2) =(1,2,2,2) for most different values of
(72, 13, ) When (84, 8, 3)= (2,1.5,0.5) in terms of
MSE’s (see Table 1).
At (51,5, £1,%7) =(1,1,2,2) and (1,2,2,2) the BELL
works the best estimators for #; , when (&4, 85, &3)
= (0.5,1.5,2) for most different sample sizes with
respect to MSE’s (see Table 2).
In all cases, WLSE works better estimator for
AR pthan LSE.
The ME performs the worst estimators for £, , with
respect to MSE’s in all the cases.
10-In the context of computational complexities, MLE,
PCE, BESL and BELL are easiest to compute. They
do not involve any non-linear equation solving,
whereas the ME, LSE and WLSE involve solving non-
linear equations and they need to be calculated by
some iterative processes.

9-

5. Conclusions

This article deals with the estimation problem of reliability
of s -out-of-£ system with non-identical components. All
the components are subjected to a common stress.t.
Assuming that, both stress and strength are independent
and have EP distribution with common and known shape
parameter.Z . Comparing the performance of all estimators,
it is observed that the MLE performs the best among the
others relative to their absolute biases and MSE’s.
Furthermore, the reliability of .s-out-of-4# system
increases for large value of ¢, and#, and small value of
&sin all cases.

This article may give a chance to other studies. The
following are some suggestions that might be considered
in future researches:

1- Estimate the reliability of an s -out-of-£ system when
all the strengths are not identically distributed
assuming that each strength follow independent
exponentiated Pareto distribution.

Estimate the reliability of an .s -out-of-£ system when
the strengths are dependent and identically distributed
random variables follow multivariate  Pareto
distribution.
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Table 1: Results of simulation study of absolute bias and MSE of estimates of reliability with non-identical components for
#1=2,0,=15,05=0.5, 1=3, =1 and 5000 replications

Method of estimations
(51,50 4y, £ True MLE | MME | PCE LSE | WLSE | BESL | BELL
Ris ) | (mm, my, 72)

(10,10,10) | 0.01519 | 0.03490 | 0.01792 | 0.03286 | 0.03129 | 0.02982 | 0.03217
0.00488 | 0.02246 | 0.00572 | 0.02063 | 0.01912 | 0.00573 | 0.00604

(10,10,30) | 0.00529 | 0.04179 | 0.02100 | 0.00739 | 0.00859 | 0.02156 | 0.02295
0.00224 | 0.01376 | 0.00341 | 0.00310 | 0.00297 | 0.00287 | 0.00299

(10,10,50) | 0.00252 | 0.04001 | 0.02316 | 0.00409 | 0.00469 | 0.01906 | 0.02024
0.00189 | 0.01124 | 0.00317 | 0.00246 | 0.00239 | 0.00242 | 0.00251

(30,30,10) | 0.01372 | 0.01205 | 0.00171 | 0.02635 | 0.02208 | 0.01681 | 0.01836
0.00367 | 0.01668 | 0.00367 | 0.01550 | 0.01308 | 0.00371 | 0.00385

(30,30,30) | 0.00486 | 0.01655 | 0.00581 | 0.00651 | 0.00601 | 0.00957 | 0.01026
(1122) | 0813 0.00136 | 0.00815 | 0.00169 | 0.00197 | 0.00182 | 0.00145 | 0.00148
(30,30,50) | 0.00346 | 0.01649 | 0.00892 | 0.00566 | 0.00531 | 0.00850 | 0.00901
0.00099 | 0.00591 | 0.00137 | 0.00134 | 0.00122 | 0.00108 | 0.00110

(50,50,10) | 0.01438 | 0.00678 | 0.00199 | 0.03045 | 0.02501 | 0.01522 | 0.01667
0.00362 | 0.01533 | 0.00336 | 0.01918 | 0.01590 | 0.00355 | 0.00367

(50,50,30) | 0.00451 | 0.00868 | 0.00104 | 0.00458 | 0.00418 | 0.00699 | 0.00757
0.00119 | 0.00728 | 0.00137 | 0.00172 | 0.00158 | 0.00123 | 0.00125

(50,50,50) | 0.00284 | 0.00996 | 0.00377 | 0.00362 | 0.00336 | 0.00565 | 0.00605
0.00081 | 0.00483 | 0.00103 | 0.00108 | 0.00098 | 0.00085 | 0.00086

(10,10,10) | 0.01383 | 0.01882 | 0.01669 | 0.02493 | 0.02394 | 0.02642 | 0.03293
0.01245 | 0.04181 | 0.01432 | 0.02471 | 0.02320 | 0.01203 | 0.01280

(10,10,30) | 0.00126 | 0.03982 | 0.02461 | 0.00132 | 0.00418 | 0.01927 | 0.02359
0.00744 | 0.02978 | 0.00976 | 0.01043 | 0.00980 | 0.00754 | 0.00791

(10,10,50) | 0.00267 | 0.04019 | 0.02907 | 0.00325 | 0.00235 | 0.01643 | 0.02030
0.00667 | 0.02607 | 0.00908 | 0.00971 | 0.00933 | 0.00675 | 0.00704

(30,30,10) | 0.01633 | 0.00662 | 0.00373 | 0.02376 | 0.01952 | 0.01550 | 0.01978
0.00916 | 0.03398 | 0.00982 | 0.01801 | 0.01606 | 0.00855 | 0.00890

(30,30,30) | 0.00491 | 0.01211 | 0.00582 | 0.00630 | 0.00585 | 0.00920 | 0.01131
(1222) | 0632 0.00412 | 0.01916 | 0.00509 | 0.00551 | 0.00510 | 0.00409 | 0.00418
(30,30,50) | 0.00291 | 0.01454 | 0.01081 | 0.00572 | 0.00549 | 0.00827 | 0.00993
0.00322 | 0.01493 | 0.00417 | 0.00429 | 0.00392 | 0.00323 | 0.00330

(50,50,10) | 0.01776 | 0.01272 | 0.00882 | 0.02693 | 0.02173 | 0.01421 | 0.01809
0.00873 | 0.03189 | 0.00895 | 0.01951 | 0.01713 | 0.00806 | 0.00836

(50,50,30) | 0.00510 | 0.00108 | 0.00089 | 0.00400 | 0.00370 | 0.00664 | 0.00834
0.00348 | 0.01732 | 0.00413 | 0.00463 | 0.00426 | 0.00342 | 0.00348

(50,50,50) | 0.00290 | 0.00634 | 0.00408 | 0.00331 | 0.00318 | 0.00548 | 0.00675
0.00253 | 0.01259 | 0.00319 | 0.00329 | 0.00301 | 0.00251 | 0.00255

(10,10,10) | 0.01823 | 0.03108 | 0.02144 | 0.03046 | 0.02989 | 0.03427 | 0.03956
0.01096 | 0.03759 | 0.01267 | 0.02361 | 0.02214 | 0.01132 | 0.01209

(10,10,30) | 0.00574 | 0.04844 | 0.02828 | 0.00826 | 0.00983 | 0.02616 | 0.02954
0.00566 | 0.02601 | 0.00798 | 0.00769 | 0.00736 | 0.00631 | 0.00665

(10,10,50) | 0.00182 | 0.04804 | 0.03120 | 0.00342 | 0.00511 | 0.02310 | 0.02606
0.00490 | 0.02106 | 0.00746 | 0.00635 | 0.00610 | 0.00548 | 0.00574

(30,30,10) | 0.01666 | 0.00231 | 0.00155 | 0.02595 | 0.02156 | 0.01818 | 0.02171
0.00771 | 0.02970 | 0.00807 | 0.01756 | 0.01540 | 0.00737 | 0.00771

(30,30,30) | 0.00553 | 0.01583 | 0.00642 | 0.00747 | 0.00686 | 0.01100 | 0.01266
(2122) | 0.683 0.00326 | 0.01610 | 0.00402 | 0.00443 | 0.00407 | 0.00332 | 0.00340
(30,30,50) | 0.00402 | 0.01828 | 0.01208 | 0.00683 | 0.00641 | 0.01030 | 0.01158
0.00251 | 0.01245 | 0.00340 | 0.00330 | 0.00302 | 0.00260 | 0.00265

(50,50,10) | 0.01810 | 0.00367 | 0.00671 | 0.02965 | 0.02410 | 0.01663 | 0.01987
0.00763 | 0.02812 | 0.00750 | 0.01989 | 0.01718 | 0.00717 | 0.00746

(50,50,30) | 0.00526 | 0.00601 | 0.00043 | 0.00512 | 0.00457 | 0.00774 | 0.00911
0.00275 | 0.01430 | 0.00323 | 0.00373 | 0.00343 | 0.00274 | 0.00279

(50,50,50) | 0.00309 | 0.01020 | 0.00404 | 0.00426 | 0.00390 | 0.00638 | 0.00737
0.00197 | 0.01013 | 0.00248 | 0.00260 | 0.00236 | 0.00199 | 0.00202
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Continued Table 1

Method of estimations
(51,5941, 4 True MLE | MME | PCE LSE | WLSE | BESL | BELL
Ris i | (mm, my, 72)
(10,10,10) | 0.01903 | 0.02529 | 0.02251 | 0.02957 | 0.02887 | 0.03579 | 0.04257
0.01346 | 0.04439 | 0.01554 | 0.02324 | 0.02195 | 0.01332 | 0.01413
(10,10,30) | 0.00599 | 0.05301 | 0.03269 | 0.00887 | 0.01121 | 0.02991 | 0.03404
0.00703 | 0.03067 | 0.00971 | 0.00927 | 0.00885 | 0.00768 | 0.00804
(10,10,50) | 0.00160 | 0.05420 | 0.03715 | 0.00409 | 0.00522 | 0.02698 | 0.03055
0.00608 | 0.02573 | 0.00893 | 0.00786 | 0.00759 | 0.00668 | 0.00696
(30,30,10) | 0.01814 | 0.00816 | 0.00397 | 0.02433 | 0.02001 | 0.01764 | 0.02252
0.01029 | 0.03775 | 0.01110 | 0.01816 | 0.01640 | 0.00956 | 0.00994
(30,30,30) | 0.00645 | 0.01570 | 0.00757 | 0.00843 | 0.00778 | 0.01239 | 0.01459
(2222) | 0572 0.00430 | 0.02031 | 0.00533 | 0.00572 | 0.00528 | 0.00431 | 0.00441
(30,30,50) | 0.00462 | 0.01976 | 0.01394 | 0.00805 | 0.00762 | 0.01190 | 0.01355
0.00322 | 0.01553 | 0.00427 | 0.00426 | 0.00389 | 0.00329 | 0.00336
(50,50,10) | 0.01935 | 0.01598 | 0.01034 | 0.02668 | 0.02141 | 0.01525 | 0.01981
0.01015 | 0.03634 | 0.01049 | 0.01951 | 0.01743 | 0.00932 | 0.00965
(50,50,30) | 0.00603 | 0.00242 | 0.00070 | 0.00521 | 0.00473 | 0.00831 | 0.01018
0.00378 | 0.01887 | 0.00448 | 0.00501 | 0.00461 | 0.00372 | 0.00379
(50,50,50) | 0.00373 | 0.00937 | 0.00504 | 0.00468 | 0.00438 | 0.00734 | 0.00865
0.00263 | 0.01333 | 0.00333 | 0.00343 | 0.00313 | 0.00264 | 0.00267

Note: The first entry is the simulated about absolute biases.

The second entry is the simulated about MSE’s.

Table 2: Results of simulation study of absolute bias and MSE of estimates of reliability with non-identical components for
#.=0.5,0,=15 ,05=2, 1=3, =1 and 5000 replications

Method of estimations
(51,50 41,4 True MLE MME PCE LSE WLSE | BESL BELL
Ris i | (ma, my, 72)

(10,10,10) | 0.00290 | 0.00372 | 0.00334 | 0.00677 | 0.00623 | 0.00709 | 0.00234
0.00873 | 0.02630 | 0.00982 | 0.01387 | 0.01300 | 0.00797 | 0.00767

(10,10,30) | 0.00881 | 0.02085 | 0.01056 | 0.01305 | 0.01026 | 0.00218 | 0.00045
0.00524 | 0.01827 | 0.00568 | 0.00897 | 0.00831 | 0.00471 | 0.00460

(10,10,50) | 0.00954 | 0.02436 | 0.01661 | 0.01247 | 0.00958 | 0.00068 | 0.00155
0.00455 | 0.01661 | 0.00496 | 0.00806 | 0.00743 | 0.00406 | 0.00399

(30,30,10) | 0.00302 | 0.02019 | 0.01709 | 0.00396 | 0.00197 | 0.00913 | 0.00542
0.00649 | 0.02101 | 0.00830 | 0.00917 | 0.00863 | 0.00634 | 0.00614

(30,30,30) | 0.00203 | 0.00139 | 0.00195 | 0.00280 | 0.00258 | 0.00347 | 0.00192
(1122) | 0.267 0.00302 | 0.01178 | 0.00368 | 0.00400 | 0.00369 | 0.00294 | 0.00290
(30,30,50) | 0.00266 | 0.00306 | 0.00398 | 0.00166 | 0.00146 | 0.00188 | 0.00074
0.00217 | 0.00955 | 0.00264 | 0.00289 | 0.00262 | 0.00210 | 0.00208

(50,50,10) | 0.00523 | 0.02555 | 0.02202 | 0.00567 | 0.00331 | 0.00854 | 0.00506
0.00632 | 0.02070 | 0.00833 | 0.00900 | 0.00859 | 0.00623 | 0.00605

(50,50,30) | 0.00011 | 0.00511 | 0.00741 | 0.00153 | 0.00155 | 0.00321 | 0.00189
0.00254 | 0.01007 | 0.00333 | 0.00332 | 0.00305 | 0.00250 | 0.00247

(50,50,50) | 0.00136 | 0.00026 | 0.00144 | 0.00156 | 0.00146 | 0.00223 | 0.00131
0.00178 | 0.00780 | 0.00221 | 0.00235 | 0.00215 | 0.00175 | 0.00173

(10,10,10) | 0.00830 | 0.01357 | 0.00942 | 0.01399 | 0.01272 | 0.01708 | 0.01366
0.00602 | 0.01743 | 0.00684 | 0.00916 | 0.00858 | 0.00574 | 0.00536

(10,10,30) | 0.01051 | 0.00598 | 0.00499 | 0.01473 | 0.01182 | 0.00771 | 0.00600
0.00361 | 0.01059 | 0.00367 | 0.00610 | 0.00556 | 0.00318 | 0.00306

(10,10,50) | 0.01057 | 0.01024 | 0.01055 | 0.01351 | 0.01055 | 0.00541 | 0.00400
(1,2,2,2) 0.146 0.00311 | 0.00930 | 0.00307 | 0.00538 | 0.00490 | 0.00268 | 0.00260
(30,30,10) | 0.00180 | 0.03024 | 0.01938 | 0.00365 | 0.00478 | 0.01669 | 0.01387
0.00437 | 0.01521 | 0.00622 | 0.00565 | 0.00539 | 0.00465 | 0.00439

(30,30,30) | 0.00336 | 0.00824 | 0.00367 | 0.00473 | 0.00433 | 0.00646 | 0.00540
0.00204 | 0.00734 | 0.00251 | 0.00271 | 0.00248 | 0.00202 | 0.00197
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Continued Table 2

Method of estimations
(51,50 4y, £ True MLE | MME | PCE LSE | WLSE | BESL | BELL
Ris i | (mm, my, 72)

(30,30,50) | 0.00324 | 0.00294 | 0.00202 | 0.00297 | 0.00261 | 0.00393 | 0.00317
0.00146 | 0.00572 | 0.00174 | 0.00193 | 0.00174 | 0.00141 | 0.00139

(50,50,10) | 0.00027 | 0.03486 | 0.02404 | 0.00232 | 0.00391 | 0.01635 | 0.01367
(1222) | 0.146 0.00429 | 0.01580 | 0.00645 | 0.00552 | 0.00540 | 0.00465 | 0.00441
(50,50,30) | 0.00191 | 0.01083 | 0.00850 | 0.00355 | 0.00340 | 0.00622 | 0.00530
0.00172 | 0.00655 | 0.00237 | 0.00227 | 0.00208 | 0.00174 | 0.00171

(50,50,50) | 0.00244 | 0.00490 | 0.00282 | 0.00289 | 0.00270 | 0.00433 | 0.00370
0.00124 | 0.00480 | 0.00156 | 0.00161 | 0.00148 | 0.00123 | 0.00121

(10,10,10) | 0.00993 | 0.02825 | 0.01123 | 0.02079 | 0.01927 | 0.02077 | 0.01946
0.00240 | 0.01257 | 0.00278 | 0.00858 | 0.00781 | 0.00293 | 0.00275

(10,10,30) | 0.00980 | 0.01416 | 0.00220 | 0.02016 | 0.01782 | 0.01273 | 0.01209
0.00159 | 0.00780 | 0.00142 | 0.00777 | 0.00703 | 0.00162 | 0.00156

(10,10,50) | 0.00961 | 0.01129 | 0.00086 | 0.01926 | 0.01689 | 0.01099 | 0.01046
0.00140 | 0.00679 | 0.00115 | 0.00753 | 0.00678 | 0.00137 | 0.00132

(30,30,10) | 0.00436 | 0.02892 | 0.01431 | 0.00598 | 0.00638 | 0.01579 | 0.01486
0.00136 | 0.00834 | 0.00217 | 0.00173 | 0.00165 | 0.00181 | 0.00172

(30,30,30) | 0.00387 | 0.01357 | 0.00453 | 0.00511 | 0.00471 | 0.00744 | 0.00710
(2122) | 0.061 0.00066 | 0.00415 | 0.00083 | 0.00090 | 0.00082 | 0.00073 | 0.00071
(30,30,50) | 0.00351 | 0.00998 | 0.00132 | 0.00382 | 0.00346 | 0.00556 | 0.00531
0.00049 | 0.00336 | 0.00056 | 0.00066 | 0.00059 | 0.00051 | 0.00051

(50,50,10) | 0.00291 | 0.02936 | 0.01580 | 0.00478 | 0.00539 | 0.01435 | 0.01350
0.00121 | 0.00739 | 0.00211 | 0.00156 | 0.00153 | 0.00163 | 0.00155

(50,50,30) | 0.00230 | 0.01218 | 0.00598 | 0.00363 | 0.00338 | 0.00594 | 0.00566
0.00050 | 0.00300 | 0.00074 | 0.00069 | 0.00063 | 0.00056 | 0.00055

(50,50,50) | 0.00223 | 0.00854 | 0.00267 | 0.00292 | 0.00267 | 0.00436 | 0.00417
0.00036 | 0.00234 | 0.00046 | 0.00049 | 0.00044 | 0.00038 | 0.00038

(10,10,10) | 0.00838 | 0.02205 | 0.00948 | 0.01428 | 0.01338 | 0.01749 | 0.01661
0.00150 | 0.00752 | 0.00176 | 0.00346 | 0.00331 | 0.00188 | 0.00178

(10,10,30) | 0.00747 | 0.00848 | 0.00109 | 0.01245 | 0.01092 | 0.00907 | 0.00871
0.00089 | 0.00386 | 0.00078 | 0.00273 | 0.00261 | 0.00088 | 0.00085

(10,10,50) | 0.00712 | 0.00568 | 0.00163 | 0.01146 | 0.00993 | 0.00729 | 0.00701
0.00075 | 0.00315 | 0.00059 | 0.00254 | 0.00242 | 0.00070 | 0.00068

(30,30,10) | 0.00435 | 0.02557 | 0.01297 | 0.00607 | 0.00635 | 0.01500 | 0.01431
0.00093 | 0.00564 | 0.00159 | 0.00116 | 0.00112 | 0.00133 | 0.00127

(30,30,30) | 0.00320 | 0.01054 | 0.00373 | 0.00428 | 0.00394 | 0.00621 | 0.00600
(2222) | 0041 0.00041 | 0.00226 | 0.00052 | 0.00056 | 0.00051 | 0.00046 | 0.00045
(30,30,50) | 0.00270 | 0.00706 | 0.00080 | 0.00295 | 0.00266 | 0.00426 | 0.00412
0.00029 | 0.00172 | 0.00033 | 0.00039 | 0.00035 | 0.00030 | 0.00030

(50,50,10) | 0.00342 | 0.02712 | 0.01471 | 0.00531 | 0.00582 | 0.01429 | 0.01363
0.00086 | 0.00549 | 0.00162 | 0.00108 | 0.00108 | 0.00126 | 0.00120

(50,50,30) | 0.00213 | 0.01030 | 0.00533 | 0.00327 | 0.00305 | 0.00539 | 0.00521
0.00033 | 0.00180 | 0.00050 | 0.00045 | 0.00041 | 0.00038 | 0.00037

(50,50,50) | 0.00193 | 0.00667 | 0.00233 | 0.00248 | 0.00227 | 0.00374 | 0.00362
0.00023 | 0.00128 | 0.00029 | 0.00031 | 0.00028 | 0.00024 | 0.00024

Note: The first entry is the simulated about absolute biases.

The second entry is the simulated about MSE’s.
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APPENDIEX A
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given, respectively, in equations (21).
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