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Abstract-- This paper introducing a novel technique 

called as redundant binary booth algorithm. The 

redundant binary in the design of high-speed digital 

multipliers is beneficial due to its high modularity and 

carry-free addition. Generally, in a high radix modified 

Booth encoding algorithm the partial products are 

reduced in multiplication process. But it yields 

complexity in producing in generation of hard multiples. 

Therefore booth encoding scheme along with redundant 

binary scheme solve this problem by using Booth 

encoder, RB partial product generator, RB partial 

product accumulator, RB to NB converter stages. In this 

process after booth encoding the two booths encoded 

digits are polarized in to differential pair to restore the 

effective RB partial product reduction rate without the 

NB to RB conversion over head. A new Booth encoding 

algorithm is presented in this project to simplify the 

generation of hard multiples and reduce the number of 

RB partial products without introducing any form of 

correction vector. The proposed algorithm binds two 

adjacent Booth encoders to compose an RB partial 

product by exploiting the RB coding. The common bit of 

the two adjacent Booth encoders is used as an enabler for 

the polarization of two equally weighted partial product 

bits. As the formation of an RB partial product digit is 

analogous to the charge sharing of two oppositely 

charged atoms in a covalent bond, we name the 

algorithm the covalent redundant binary Booth encoding. 

IndexTerms—Arithmetic circuit,  Booth  encoding  
algorithm, digital multiplier, energy-delay product, redundant 
binary adder (RBA). 

I.  INTRODUCTION 
The digital multiplier is a ubiquitous arithmetic unit in 

microprocessors, digital signal processors, and emerging 

media processors [1]–[4]. It is also a kernel operator in 

application- specific data path of ideo and audio codecs, 

digital filters, computer graphics, and embedded systems 

[5]–[8]. Compared with many other arithmetic operations, 

multiplication is time-consuming and power hungry. The 

critical paths dominated by digital multipliers often impose a 

speed limit on the entire design. Hence, VLSI design of 

high-speed multipliers, with low energy dissipation, is still a 

popular research subject. Redundant binary (RB) 

representation is one of the signed digit representations first 

introduced by Avizienis [9] in 1961 for fast parallel 

arithmetic .This new arithmetic was applied for fast  

 

 

multiplication by Takagi et al. [10] and implemented in 

VLSI by Edamatsu et al. [11]. The RB addition is carry-free, 

making it a promising substitute for two‟s complement 

multi-operand addition in a tree-structured multiplier [12]. 

Similar to a normal binary (NB) multiplier, an RB multiplier 

is anatomized into three stages and consists of four modules: 

the Booth encoder, RB partial product generator (also known 

as decoder), RB partial product accumulator, and RB-to-NB 

converter [11], [13]–[17]. The latter is required mainly for 

communicating the result to the peripheral devices which are 

largely designed based on the NB number system. The 

communications among RB adders across different stages of 

RB partial product summing tree are simpler than those of 

the full adders in a carry-save adder tree. In addition, the 

reduction rate of the redundant binary adder (RBA) summing 

tree is binary logarithmic to the number of RB partial 

products, which is particular beneficial to the generic power-

of-two word size in computing. Booth encoder and partial 

product generator affect the efficiency of the partial product 

generation. The number of partial products that can be saved 

by this stage impacts the cost, performance, and power 

consumption of the RB summing tree and the multiplier as a 

whole. Although the number of partial products can be 

reduced with a high-radix Booth encoder, the number of hard 

multiples that are expensive to generate also increases 

simultaneously [12]. In conventional RB multiplier design, a 

modified Booth encoding algorithm in NB regime is 

employed to reduce the number of partial products, and then 

pairs of NB partial products are encoded to form RB partial 

products. In this process, an additional constant binary vector 

is introduced to compensate for the aggregate errors resulting 

from both the RB and Booth encodings [13], [14], [16]. This 

correction vector incurs hardware overhead in the RB 

summing tree and, to a certain extent, offsets the regularity 

of the layout and increases switching activities. As 8-, 16-, 

32-, and 64-b operands are pervasively used in application-

specific data paths and multimedia and very long instruction 

word(VLIW) processors which focuses on power-of-two 

word-length RB multipliers to exploit the binary logarithmic 

partial product reduction rate of the RBA summing tree. In 

order to overcome the overheads of existing Booth encoding 

algorithms, covalent redundant binary Booth encoding was 

used. The covalent redundant binary Booth multiplier 

circuits have been enhanced with a different RB coding and 

more efficient converter. The proposed method overcomes 

the hard multiple generation problem of NB Booth encoders 

without incurring any correction vector. Compared with the 
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RB Booth encoder, CRBBE generates the RB partial 

products more efficiently by consuming two RB digits 

for every RB partial product it generated. Consequently, 

encoder and decoder are less complex for the same  radix the 

algorithm used for Booth encoder and decoder . 

II. ISSUES OF BOOTH  ENCODING 

ALGORITHMS FOR RB       MULTIPLICATION 

In fast digital multiplier design, modified Booth encoding 

algorithm is an efficient way to reduce the number of partial 

products by grouping consecutive bits in one of the two 

operands to form the signed multiples [21]. The operand that 

is Booth encoded is called the multiplier and the other 

operand is called the multiplicand. In this section, two major 

issues on using the modified Booth encoding algorithm for 

RB multiplication and some existing solutions are discussed. 

A. Hard Multiples Problem 

When modified Booth encoding [21] is applied to two‟s 

complement number, it is known as normal binary Booth 

Encoding (NBBE). In radix-r Booth-k encoding(r=2
k
), a 

signed digit ci is generated from adjacent binary bits Yk(i+1)-1 

Yk(i+1)-2………..yki+1yki and a borrow bit yki-1 as follows: 

ci= - 2
k-1

  yk(i+1)-1 

      +  2
k-j

 yk(i+1)-j + yki-1, 

    for i = 0, 1, 2, …..  

where k is an integer, denotes the smallest integer value 

larger than or equal to α ,N  is the word length of the 

multiplier Y and y-1=0. 

As the radix number r of Booth-k encoder increases, the 

number of Booth encoded digits and hence the number of 

partial products decreases to approximately 1/k of the 

original number. However, as the number of multiples 

increases with the radix to 2
k
 +1 , the number of hard 

multiples also increases simultaneously. A hard multiple 

refers to a multiple that is not a power of two and thus 

cannot be obtained easily by simple shifting and/or 

complementation. 

The multiplier is partitioned into 4-b groups with an 

overlapping borrow bit between two adjacent groups. Each 

group is encoded in parallel to generate a select signal from 

the set { 4M, , 0}. ciM refers to the 

select signal for the partial product ciX, where X  is the 

multiplicand. The partial product 3X is a hard multiple, 

which can only be obtained by adding X and 2X and by a 

carry propagation adder (CPA). The existence of hard 

multiple increases the latency of the multiplier as a whole 

because the generation of the partial products will not be 

accomplished until all the hard multiples are produced. 

Therefore, the advantage of using Booth encoding of radix-

8 and above has been greatly offset because of the 

criticality of generating the hard multiples and the 

complexity of the decoding logic. 

 

 
 

Table : Radix-8 normal binary booth encoding (NBBE-3) 

To speed up the generation of hard multiples in high-radix 

Booth encoding, a partially redundant biased Booth encoding 

(PRBBE) algorithm was used. The following figure depicts 

the generation and negation of 3X hard multiple. It is 

generated in a partially redundant form by using a series of 

small length adders (4-b). The carry bit of each small length 

adder is not propagated but brought forward to the partial 

product summing tree. However, when the 3X multiple is 

negated, both the sum and the carry vectors need to be 

complemented and a “1” is added at the least significant bit 

(LSB) position. Therefore, the long strings of zeros between 

carries become strings of ones in the negative multiple. A 

properly selected biasing constant is introduced to revert the 

strings of one‟s into strings of zeros. The “1”s can be 

combined with the carry and sum bits to form a single 

compensation vector. The biasing constant of each such 

partial product introduces an extra compensation vector to 

the partial product summing tree.[4] 

 

 
                          

 Figure: 3X hard multiple generation and negation in 

partially redundant form 

B. Negative Multiples and NB-to-RB Partial Products 

Conversion Problem: 

Negation in two‟s complement arithmetic requires carry 

propagation addition, negative partial product is more 

efficiently generated by the bit inversion of the multiplicand 

followed by the insertion of a “1” at its LSB position in the 

partial product summing tree. Therefore, one additional 

partial product row is generated to complete the two‟s 

complement negation of partial products for the negative 

multiples. Furthermore, to accumulate the partial products in 

an RBA summing tree, the NB partial products generated by 
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NBBE and PRBBE need to be converted to RB partial 

products. An NB number can be encoded into RB 

representation using either sign magnitude, positive-

negative, or positive-negative-complement codings. Positive-

negative-complement coding is adopted here, but it is also 

valid for other binary coding of signed digit set since the 

architecture designed for one code converter can be easily 

adapted to the other. In RB multiplication, the summation of 

two n-bit NB partial products A= (an-1 an-2 ……….…. a0)2 

and B= (bn-1 bn-2 ……….…. b0)2 can be combined into a 

single -digit RB number R by                                                                                     

R=A+B=A-(-B) 

 

 
                    

 
Table : Positive-Negative-complement coding 

 

As shown in Table, an RB digit r can be encoded with two 

binary bits r
+
 and r

-
 by 

   

  
  

  
Therefore, according to above equation, the 

terms can be encoded as   ri= (ai, bi). To eliminate 

the hardware required for sign extension, the most significant 

digit term can be simply negated as - (an-1, bn-1).   

  

  
Since the positive-negative-complement coding is 

symmetric, r
+
 and r

-
 is commutative and 

      
Therefore, R can be coded as follows: 

 

 
From the above equation, it is clear that every RB partial 

product row thus composed requires one correction constant 

to be added by an RBA at its LSB position. All 

of the correction constants generated from the RB partial 

products, together with those constants from the negative 

multiples, can be accumulated to form a new RB partial 

product, collectively called the RB correction vector. 

             

 

Figure : Illustration of the correction vector generation 

on an 8*8-b multiplication with    NBBE-2. 

 

From the above figure, it can be seen that NBBE-2 (radix-4 

NB Booth encoding) generates three instead of two RB 

partial products for an 8*8-b multiplication. Owing to the 

absence of hard multiples, NBBE-2 is attractive especially 

for the short operand length multiplication. The additional 

delay required to add an extra partial product row critically 

slows down the short operand length multiplier due to the 

relatively lower number of adder stages in its partial product 

summing tree. 

 

The RB correction vector incurs additional hardware for its 

accumulation. It can even increase the number of stages of 

the summing tree, if the word length of the multiplier is 

exactly 2
n
, such as the 8-b and 16-b multipliers in 

application-specific data paths of multimedia and wireless 

applications and the multipliers for single extended and 

double extended floating point numbers, whose effective 

mantissa are 32 and 64 b, respectively. Consequently, the 

power dissipation and worst case delay are also degraded by 

the inclusion of this correction vector.[5] 

 

C. Two’s Complementation Method (TCM): 

TCM is used to resolve the extra correction vector problem 

associated with the NBBE-2 algorithm. The TCM algorithm 

uses a divide-and-conquer approach to perform the two‟s 

complement conversion so that five signed partial products 

{ 1X, } are originated for selection. In this way, 

the correction vector due to the negative multiples in two‟s 

complement arithmetic can be eliminated.  

If TCM is used for the design of RB multiplier, the RB 

coding induced compensation constants can also be similarly 

circumvented. With TCM algorithm, the RB multiplier 

achieves exactly  RB partial products as opposed to 

 in NBBE-2 multiplier. Besides, the multiplier 

is modular and more regularly structured. However, the 

worst case delay of the TCM algorithm is logarithmically 

proportional to the operand lengths (OlogN).Comparing with 

the constant delay time of conventional Booth encoding 
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algorithms, the dependency of speed on word length of TCM 

algorithm is a limiting factor for large integer 

multiplication.[6] 

 

 

D. RB Booth Encoding (RBBE): 

Hard multiples could be obtained from the differences of two 

simple power-of-two multiples. In radix-16 RB Booth 

encoding, the multiplier bits are y4i+3y4i+2y4i+1 y4iy4i-1 and each 

of the original hard multiples selected 

by are replaced by 

respect

ively. The partial products generated in this way conform to 

the format of the RB coding. The only exception is that, 

 
 

                            

Figure:Radix-16 RBBE and its partial productgenerator. 

hard multiples selected by  Cannot be readily generated 

in this manner, a simple carry-free RB adder is used to add 

4X and X. The advantage of this method is the correction 

vector due to the two‟s complement arithmetic and the RB 

coding has been completely eliminated. Comparing with 

NBBE, the ease of generating the hard multiples by RBBE, 

to a certain extent has been offset by its complex circuitry. 

High-radix RBBE requires high fan-in gates in the partial 

product generator circuit. Since the circuit for each digit of 

the RB partial product will be duplicated in a large number, 

the overhead of high fan-in gates is more prominent in long 

operand length multipliers. Besides, as only one Booth 

encoded digit is consumed for one RB partial product, half of 

the binary bits representing an RB partial product generated 

from a simple power-of-two multiple in the RBBE are filled 

with “0”s, which is rather inefficient. 

 
 

 

 

Table: Radix-16 redundant binary booth encoding (RBBE4) 

To overcome the problem of generating hard multiples in 

high-radix Booth encoding, N. Besli et al. noticed that some 

hard multiples can be obtained by the differences of two 

simple (power-of-two) multiples. The partial products so 

generated conform to the format of positive -negative RB 

coding. This distinguishing Booth encoding logic is RB 

Booth encoding. The table illustrates the RB Booth-4 

encoding, where the original hard multiples of ±3M, ±6M 

and ±7M are replaced by ±(4M−M), ±(8M−2M) and 

±(8M−M), respectively. The only exception is the hard 

multiple 5M, which cannot be readily produced in this 

manner. Therefore, additional hardware is necessary to 

generate this 5M multiple. simple RB adder to add 4M and 

1M. It turns out that this RB adder is carry free and does not 

lie in the critical path of the RB Booth-4 encoder and PPG 

circuit. Compared to NBBE, the ease of generating the hard 

multiples in RBBE has been offset to certain extend, by its 

complex circuitry involving the use of high fan-in gates. In 

addition, the cost of high fan-in gates and their associated 

detriments are aggravated by the duplication of each digit in 

the RB partial products. 

III.COVALENT REDUNDANT BINARY BOOTH 

ENCODING (CRBBE) ALGORITHM 

Covalent redundant binary booth encoding (CRBBE) 

algorithm is used to simplify the generation of hard multiples 

and reduce the number of RB partial products without 

introducing any form of correction vector. This algorithm 

binds two adjacent Booth encoders to compose an RB partial 

product by exploiting the RB coding. The common bit of the 

two adjacent Booth encoders is used as an enabler for the 

polarization of two equally weighted partial product bits. As 

the formation of an RB partial product digit is analogous to 

the charge sharing of two oppositely charged atoms in a 

covalent bond, we name the algorithm the covalent 

redundant binary Booth encoding. 

CRBBE-4 Algorithm: 
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CRBBE-4 is composed of two adjacent radix-4 Booth 

encoders. Its gate-level implementation is represented, where 

the sign and magnitude of the radix-4 Booth encoded digit di 

are represented with three binary bits, sgni , mi
(2)

, mi
(1)

 , and 

as follows:   

di   = (-1)
sgn(i)

(mi
(2)   

+ mi
(1)

)                                                      

 
Figure : Two adjacent radix-4 Booth encoder 

The above figure shows the „l‟ th slice of a radix-16 

CRBBE-4 circuit for the generation of the control signals 

clMl. The indexes ‘i‟ and „l‟ are related by i=2l. The lower 

encoder takes three consecutive bits y2i+1y2iy2i-1 = y4l+1y4ly4l-1 

from the multiplier to generate the magnitude bits m2l
(2)

 and 

m2l
(1) 

of di Its sign bit sgni = y4l+1. The upper encoder takes 

the binary bits y2i+3y2i+2y2i+1 = y4l+3y4l+2y4l+1 and generates the 

magnitude bit m2l+1
(2)

 and m2l+1
(1)

 of di+1. Its sign bit sgni+1 = 

y4l+3. All of these output signals are mapped to the 

polarization circuit. The control signals clMl, generated are 

used to select the RB partial products correspond to the 

multiples clX. 

 
Figure : Polarization circuit 

The polarization circuit performs the mapping (di+1, di )         

( pl
+
, pl

- 
) .  

The control signals 1Ml, 2Ml, 4Ml and 8Ml   are computed as 

follows:  

                 

 
The  5M multiple is generated as 

                                        

 
The control flag, swap is used to exchange pl

+
 and pl

-
 in the 

partial product generator to negate the selected RB partial 

product. When di+1 is 0, the sign bit of di+1 is complemented 

before it is used as an active high swap flag to the RBPPG. 

Otherwise, the original sign of di+1  is used as the swap flag. 

Therefore, the swap signal can be generated by: 

                                          

 
 

IV. DESIGN OF CRBBE-4-BASED RB 

MULTIPLIER 

 
Figure: Block diagram of 64*64 RB multiplier  

The block diagram of 64*64 consists of 3 stages: 

(1)Booth encoder and partial product generator stage 

(BEPPG stage). 

(2)Redundant binary adder summing tree stage (RBA 

summing stage). 

(3)Redundant binary to NB conversion stage (RB-to-NB 

stage). 

A. Booth encoder and partial product generator stage 

(BEPPG stage): 

Booth encoder and partial product generator affect the 

efficiency of the partial product generation. The number of 

partial products that can be saved by this stage impacts the 

cost, performance, and power consumption of the RB 

summing tree and the multiplier as a whole. In the first stage, 

16 CRBBE-4 slices are used to generate the control signals 

from the multiplier. The hard multiple 5X is generated. The 

multiplicand bits are shifted and selected into 16 rows of RB 

partial products in 16 slices of RBPPG. 

Design architecture also eliminates the error-correction block 

used in the partial product accumulator. This will enable us 

to expand the number of bits in the multiplier to 64 bits, 

while keeping the number of adder stages to four. Similar 

methods can be followed in the design of any multiplier 

having the number of partial products as perfect Powers of 

two (64x64, 32x32, 16x16, etc). This design will 

accommodate RB encoding in such multipliers while 

enjoying the benefits of both lesser number of partial 

products with optimum number of adder stages. 
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Figure:RB partial product generator (RBPPG) of CRBBE-4. 

B. Redundant binary adder summing tree stage (RBA 

summing stage): 

In the second stage, a 4-stage RBA summing tree is used to 

sum 16 RB partial products. Each RBA block contains 64 

RB full adder (RBFA) cells and a varying number of RB half 

adder (RBHA) cells depending on where it is located. The 

RBA block in the i-th level, designated RBAi (i=1 to 4) 

contains 2
i+1

 RBHA cells in its most significant digit 

positions. Due to the positive-negative-complement coding, 

the second binary bit ppl,j
-
of the RB partial product 

generated from CRBBE-4 and RBPPG circuit should be 

inverted before it is input to the RBA. A preprocessing 

circuit is needed for each RB digit to avoid the inconsistent 

representations of “0” prior to the RBA summing tree stage. 

An important benefit of the coding format adopted in this 

design is that these preprocessing circuits can be completely 

eliminated due to its symmetry.                           

 
Figure : RB Half adder 

 
Figure : RB Full adder 

 

C. Redundant binary to NB conversion stage (RB-to-NB 

stage): 

An RB-to-NB converter converts the final accumulation 

result to NB representation. Due to the unequal delay profile 

of the final RB result bits, the conversion can be carried out 

in uneven groups of consecutive digits according to their 

arrival time. Groups of 4, 4, 8, 16 and 96 digits from the least 

significant digit position are evaluated concurrently. The first 

three groups of 4, 4, and 8 digits can be independently 

converted with ripple-carry adders to reduce the circuit 

complexity. The carry generation of the next group of 16 

digits can be evaluated with a carry-look ahead adder as they 

do not depend on the final summation results in the RBA tree 

stage.  

  

 
         Figure 5.6: 4-Bit carrylook-ahead adder 

 

The conversion speed of the RB-to-NB stage depends solely 

on the conversion time of the most significant 96-digit 

group. This group is converted with a hybrid carry-look 

ahead or carry-select adder since it is widely known as one 

of the most efficient structures for fast parallel adder design. 

 

 

 

 

 

 

 

V. Simulation result 
 64 x 64 bit Multiplier final module: 

 

VI .CONCLUSION 

Hence, a high-speed and energy-efficient RB multiplier is 

designed based on new covalent RB Booth encoding 

algorithm. The idea is to polarize two adjacent Booth-

encoded digits into a differential pair to restore the effective 

RB partial product reduction rate without the NB-to-RB 

conversion overhead. This method fully exploits the 
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characteristics of the positive–negative complement coding 

of RB number to directly generate an RB partial product 

from two adjacent Booth-encoded digits. Consequently, it 

shares the same advantages of RB Booth encoder for the 

ease of generating hard multiples and avoidance of error 

compensation vector, the two problems that are confronted 

by RB multiplier with normal binary Booth encoding. 
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