
Ms. Laxmi S. Patil, Prof. M. S. Bewoor, Dr. S. H. Patil / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2617-2620

2617 | P a g e

Ms. Laxmi S. Patil
1
, Prof. M. S. Bewoor

2
 and Dr. S. H. Patil

3

Department of Computer Engineering, Bharati Vidyapeeth Deemed University

 College of Engineering, Pune, India.
1
(M.Tech Student)

2
 (Asst. Professor,)

3
(Head, Computer Engineering Department.)

ABSTRACT
The idea of Data Mining has become very popular in

recent years. Data Mining is the notion of all methods

and techniques, which allow analyzing very large data

sets to extract and discover previously unknown

structures and relations out of such huge heaps of

details. Data clustering is an important technique for

exploratory data analysis. Clustering is a data mining

(machine learning) technique used to place data

elements into related groups without advance

knowledge of the group definitions. Clustering is

nothing but Grouping of objects into different sets, or

the partitioning of a data set into subsets (clusters), In

this paper we provides in depth explanation of

implementation adopted for ROCK (RObust Clustering

using linKs) clustering algorithm. We propose a novel

concept of links to measure the similarity/proximity

between a pair of data points. We develop a robust

hierarchical clustering algorithm ROCK that employs

links and not distances when merging clusters.

Keywords - Document graph, NLP- Natural Language

Processing, Query-specific document summary,

ROCK(RObust Clustering using linKs).

I. INTRODUCTION

1. Overview

Over time, there have been various approaches to automatic

text summarization. One of the techniques of document

summarization is summarization through various clustering

algorithms. Again these clustering algorithms are classified

in two categories as a) Query-Based Text Summarization

System uses standard retrieval methods to map a query

against a document collection and to create a summary & b)

The second system, the Concept-Based Text Summarization

System, creates a query-independent document summer [2].

The ROCK algorithm which we are going to implement is

of first type i.e. it creates query-specific document summary.

The main aim of this research work is to combine both

approaches of document clustering and query dependent

summarization with natural language processing (NLP)

based. This mainly includes applying different clustering

algorithms on a text document. Create a weighted document

graph of the resulting graph based on the keywords. And

obtain the optimal tree to get the summary of the document

[4]. Fig. 1 shows the architecture diagram of the system. As

shown in figure there are four main blocks: a block for

uploading and processing text file and making document

graph, a block for clustering and making clustered graph, a

block for making weighted clustered document graph, the

last block for generating summary for fired query.

 Fig 1 Architecture Diagram

Block 1: Processing input file and generating document

graph:

This block is needed to accept the text file only. It is

responsible to upload text file, to process the file i.e. to form

nodes for every newline contents. It is also responsible for

generating weight from each node to very other node

Block 2. Clustering node and building clustered graph: This

block is responsible for choosing a clustering algorithm out

of two. It also accepts the threshold, so that can check the

similarity between the clusters up to that level. It is

responsible for making clusters. [6,7]

Block 3. Creating weighted document clustered graph: This

block is responsible to accept the fired query. It is

responsible to check the similarities between the query a

contents and the contents in the clusters. It then build

weighted clustered document graph.

Block 4. Summary generation: This block is responsible for

generating the summary of the clusters we formed, as a

response for fired query. It generated the minimal clusters

and after finding the weight of the node for fired query, it

gives top most summaries.

Query Specific ROCK Clustering Algorithm for Text

Summarization

Ms. Laxmi S. Patil, Prof. M. S. Bewoor, Dr. S. H. Patil / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2617-2620

2618 | P a g e

2. Goal

The goal is to use ROCK clustering algorithm for query

dependent clustering of nodes in text document, and finding

query dependent summary. The summary will be compared

and best algorithm will be suggested for query dependent

clustering using different clustering techniques. This

technique will help end users to prepare query dependent

summary of text documents in which they are interested.

-The proposed work will be mainly focused on

summarization of text files (i.e. .txt) with NLP.

-The proposed work will be limited to clustering of text files

of standard files related to the topic popular amongst

researchers will be used.

-Only ROCK clustering algorithm methods are considered

for generating cluster based graph.

II. SYSTEM IMPLENETATION

Implementation is very important phase; the most critical

stage in achieving a successful new system so that the new

system will work is effective. After the system is

implemented the testing can be done. This method also

offers the greatest security since the old system can take

over if the errors are found or inability to handle certain type

of transactions while using the new system. [5, 6, 7].

The total workflow is divided into following modules:

Module 1: Processing the input text file and creating the

document graph.

The system accepts input text file. The file is read and stored

into a string. The string is then split by the newline keyword.

The split file is assigned to the string array as the split

function returns the string array. The array contains

paragraphs which are further treated as nodes.

The next stage is to find the similarity between the nodes

that means finding the similarity edges between nodes and

finding their similarity or weight. Each paragraph becomes a

node in the document graph.

 The document graph G (V, E) of a document d is defined as

follows:

d is split to a set of non-overlapping nodes t (v), v V.

An edge e (u, v)E is added between nodes u, v V if

there is an association between t (u) and t (v) in d. Hence,

we can view G as an equivalent representation of d, where

the associations between text fragments of d are depicted.

Module 2: Adding Weighted Edges to Document Graph

(Note: Adding weighted edge is query independent)

A weighted edge is added to the document graph between

two nodes if they either correspond to adjacent node or if

they are semantically related, and the weight of an edge

denotes the degree of the relationship. Here two nodes are

considered to be related if they share common words (not

stop words) and the degree of relationship is calculated by

“Semantic parsing”. Also notice that the edge weights are

query-independent, so they can be pre-computed. [2,8,9]

The following input parameters are required at the pre

computation stage to create the document graph:

 1. Threshold for edge weights: Only edges with weight not

below threshold will be created in the Adding weighted edge

is the next step after generating document graph. Here for

each pair of nodes u, v we compute the association degree

between them, that is, the score (weight) EScore (e) of the

edge e (u, v). If Score (e) ≥ threshold, then e is added to E.

The score of edge e (u, v) where nodes u, v have text

fragments t(u), t(v) respectively is:

Where t f (d, w) is the number of occurrences of w in d,

id f (w) is the inverse of the number of documents

containing w, and

size(d) is the size of the document (in words).That is, for

every word w appearing in both text fragments we add a

quantity equal to the tfidf score of w. Notice that stop

words are ignored.

If EScore >= Threshold, the edge is added to the document

graph.

The graph is stored into tabular form as shown below

First_Node Second_Node Edge Weight

1 2 0.5

1 3 0.8

.

.

.

.

.

.

15 16 0.6

15 17 0.7

Table 1. Nodes and Node weights

Module 3: Document Clustering

Clustering is grouping of similar nodes (The nodes which

shows degree of closure greater than or equal to the Cluster

Threshold specified by the user) into a group. The clustering

algorithm used is ROCK (RObust Clustering using LinKs).

Algorithm for Rock:

The steps involved in clustering using ROCK are described

in Fig 2. After drawing a random sample from the database,

a hierarchical clustering algorithm that employs links is

applied to the sampled points. Finally, the clusters involving

only the sampled points are used to assign the remaining

data points on disk to the appropriate clusters. In the

following subsections, we first describe the steps performed

by ROCK in greater detail

Fig. 2 Steps performed by ROCK

Algorithm:

1. Obtain random sample of data

  ((tf(t(u),w + tf(t(v),w)).idf(w)

 EScore= ---

 size(t(u)) +size(t(v))

Ms. Laxmi S. Patil, Prof. M. S. Bewoor, Dr. S. H. Patil / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2617-2620

2619 | P a g e

2. Cluster data using link based agglomerative technique.

Use a 'goodness' measure to determine which points are

merged

3. Using these clusters, merge with remaining data.

Fig. 3 represents ROCK`s hierarchical clustering algorithm.

It accepts as input the set S of N sampled points to be

clustered (that are drawn randomly from the original data

set), and the number of desired clusters k. The procedure

begins by computing the number of links between pairs of

points in Step 1. Initially, each point is separate cluster. For

each cluster i, we build a local heap q[i] and maintain the

heap during the execution of the algorithm. q[i] contains

every cluster j such that link[i,j] is non-zero. The clusters j

in q[i] are ordered in the decreasing order of the goodness

measure with respect to i, g(i,j).

In addition to the local heaps q[i] for each cluster i, the

algorithm also maintains an additional global heap Q that

contains all the clusters. Furthermore, the clusters in Q are

ordered in the decreasing order of their best goodness

measures. Thus, g(j,max(q[j])) is used to order the various

clusters j in Q, where max(q[j]), the max element in q[j], is

the best cluster to merge with cluster j. At each step, the

max cluster j in Q and the max cluster q[j] are the best pair

of clusters to be merged

procedure cluster(S, k)

begin

1. link := compute links(S)

2. for each s ∈ S do

3. q[s] := build local heap(link, s)

4. Q := build global heap(S, q)

5. while size(Q) > k do

6. {

7. u := extract max(Q)

8. v := max(q[u])

9. delete(Q, v)

10. w := merge(u, v)

11. for each x ∈ q[u] ∪ q[v] do

12. {

13. link[x, w] := link[x, u] + link[x, v]

14. delete(q[x], u); delete(q[x], v)

15. insert(q[x], w, g(x, w)); insert(q[w], x, g(x, w))

16. update(Q, x, q[x])

17. }

18. insert(Q, w, q[w])

19. deallocate(q[u]); deallocate(q[v])

20. }

end

Fig. 3 Rock’s hierarchical clustering algorithm

For every point, after computing a list of its neighbours, the

algorithm considers all pairs of its neighbours. For each pair,

the point contributes one link. If the process is repeated for

every point and the link count is incremented for each pair

of neighbours, then at the end, the link counts for all pairs of

points will be tained. If Mi is the size of the neighbour list

for point i, then for point i, we have to increase the link

count by one in M^2i entries. This, the complexity of the

algorithm is the sum of M^2i which is O(N * Mm * Ma),

where Ma and Mm are the average and maximum number of

the neighbours for a point, respectively. In the worst case,

the value of Mm can be n in which case the complexity of

the algorithm becomes O(Ma * N^2). In practice, we expect

Mm to be reasonably close to Ma and thus, for these cases,

the complexity of the algorithm reduces to O(M^2a * n) on

average.

procedure compute links(S)

begin

1. Compute nbrlist[i] for every point i in S

2. Set link[i, j] to be zero for all i, j

3. for i := 1 to n do

4. {

5. N := nbrlist[i]

6. for j := 1 to |N| − 1 do

7. for l := j + 1 to |N| do

8. link[N[j], N[l]] := link[N[j], N[l]] + 1

9. }

end

Fig. 4 Computation of Links

III. SUGGESTED FUTURE WORK

In this system ROCK clustering algorithms is used for

context sensitive text summarization. Likewise another

algorithm i.e. Graph Theoretic clustering algorithms can be

considered for clustering the nodes in text file and by

comparing the query dependent summary using certain

criteria, the best clustering algorithm can be suggested.

Furthermore same technique can be applied on different file

formats and best clustering algorithm can be suggested for

different file formats.

IV. CONCLUSION

In this work we presented a structure-based technique to

create query-specific summaries for text documents. In

particular, we first create the document graph of a document

to represent the hidden semantic structure of the document

and then perform keyword proximity search on this graph.

We show with a user survey that our approach performs

better than other state of the art approaches. Furthermore,

we show the feasibility of our approach with a performance

evaluation.

Ms. Laxmi S. Patil, Prof. M. S. Bewoor, Dr. S. H. Patil / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2617-2620

2620 | P a g e

REFERENCES

Journal Papers:

[1] M Ramakrishna Varadarajan, Vangelis Hristidis , “A

System for Query-Specific Document

SummarizatioSn”

[2] Mahmoud El-Haj, Udo Kruschwitz, Chris Fox,

“Experimenting with Automatic Text Summarization

for Arabic”

[3] Vishal Gupta, “A Survey of Text Summarization

Extractive Techniques”

[4] Mohamed Abdel Fattah, and Fuji Ren, “Automatic

Text Summarization”

[5] Parul Agarwal, M. Afshar Alam, anjit Biswas,

“Analyzing the agglomerative hierarchical

Clustering Algorithm for Categorical Attributes”

[6] Jie Tang, Limin Yao, and Dewei Chen , “Multi-topic

based Query-oriented Summarization”

[7] Chin-Yew Lin. 2004. Rouge: A package for

automatic evaluation of summaries. In Proceedings of

the ACL-04 Workshop: Text Summarization

Branches Out, pages 74–81, Barcelona, Spain.

[8] Luhn H. P. 1958, The automatic creation of literature

abstracts, IBM Journal, pages 159-165

Books:

[9] The complete Reference of .NET-by Matthew, Tata

MacGraw Hill Publication Edition

