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ABSTRACT  
In shallow water passive sonar, the received signal is 

characterized by multipath effects due to short distance 

between surface and bottom surfaces. Furthermore, 

interference noise makes the shallow water environment 

very difficult for target detection. To nullify the effects 

of multipath and noise, cepstrum based approach is 

used here. This approach takes the advantage of the fact 

that the underwater channel multipath effect occupies 

higher cepstral coefficients, while the signal remains 

concentrated at lower cepstral coefficients. The 

objective of this work is to recover the radiated sonar 

signal from the received signal, which is corrupted by 

multipath effects and interference noise. 

Key words: Cepstral liftering, SONAR, homomorphic, 

cepstrum. 

1. INTRODUCTION: 
  Recovering a signal that has been distorted both in 

frequency and in time caused by the multipath effects and 

noise is a common problem mainly encountered in shallow 

water environments. Multipath effects are due to one or 

more reflecting surfaces in between the target and the 

receiver. In shallow water channels the received signal is 

modeled as sum of the original signal and its multipath 

effects because of the nearness of the surface and the 

bottom surfaces. It is difficult to remove these multipath 

effects (delayed components), by using inverse filtering 

because of its inexactness. So in this work we have used 

cepstral processing which separates the signal components 

form the multipath effects. Further we recover the original 

radiated signal form the received signal with different SNR 

levels and notice how well Cepstral liftering (analogous to 

time domain filtering) nullifies  multipath and noise effects. 

  

2. HOMOMORPHIC SIGNAL PROCESSING: 
   We use linear filtering to split signals that have 

been additively combined. The principle advantage with 

linear filtering when applied to added signals, is that if the 

behavior of the filter for each of the signal components are 

separately know, then the behavior for the sum is the sum 

of the responses which satisfies the superposition principle.    

 

 

 

In contrast, when determining a filtering procedure to 

separate signals that have been non- additively combined, 

such as through multiplication or convolution, it is usually 

more difficult to separate, and in many cases it is less 

meaningful to use a linear system. This leads to model a 

new class of system. By considering the system inputs as 

vectors in a vector space with the rule “o” corresponds to 

vector addition and the system transformation Φ as an 

algebraically linear transformation on that space.  

 𝑠 𝑛 = 𝑠1(𝑛)𝑜𝑠2(𝑛)                       (2.1) 

𝛷[𝑠1(𝑛)𝑜𝑠2(𝑛)] = 𝛷 𝑠1 𝑛  + 𝛷[𝑠2 𝑛 ]         (2.2) 

We confine the operation o so that it satisfies the 

algebraic assumption of vector addition and associate with 

the set of inputs a rule for combining inputs with scalars, 

which we will call scalar multiplication and denote by “:” 

To generalize the notion of linear filtering, then, we require 

that the class of systems, in addition to satisfying (2.2), also 

have the property that 

 𝛷[c:𝑠1(𝑛)]=c:𝛷[𝑠1(𝑛)]                         (2.3)  

When the rule “o” equivalent to addition of the 

functions and the rule “:”equivalent to the product of the 

input with the scalar, then equation (2.2) and (2.3) reduce to 

satisfy the principle of superposition as it applies to linear 

systems. The systems satisfying above equations (2.2) and 

(2.3) in general are called homomorphic systems[1][2]. 

 3. SIGNAL RECOVERY WITH CEPSTRAL 

PROCESSING: 
   In shallow water channels we assume that 

received signal contains radiated signal and its delayed 

versions due to channel multipath effects. To explain how 

cepstral processing separates signal and multipath effects 

we take two functions which are convolved. One function 

represents the radiated signal and the other function 

represents time delayed multipath effects [3].  

        The received signal y(n) that is the convolution of a 

radiated signal v(n) and multipath function h(n) shown in 

Fig 3.1 and is given by 
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y(n) = h(n) ∗ v(n)                                                 (3.1) 

Where „∗‟ denotes convolution. The multipath function can 

be expressed as, here N=16  

h(n) = 1 +  𝛼𝑞𝛿(𝑛 − 𝑞𝑁)𝐿
𝑞=1                              (3.2) 

y(n) = v(n)+ 𝛼𝑞𝑣(𝑛 − 𝑞𝑁)𝐿
𝑞=1                            (3.3) 

Z transform of h(n) is given by 

 H(z) = 1 +  𝛼𝑞
𝐿
𝑞=1 𝑧−𝑞𝑁                              (3.4)                                          

           =    (1 + 𝛼𝑞𝑧
−𝑁)𝐿

𝑞=1                                  (3.5) 

The radiated signal in the Z domain is defined as 

V (z) = k 
 (1+𝑎𝑘𝑧−1)

𝑁1
𝑘=1

 (1+𝑏𝑗 𝑧
−1)

𝑁2
𝑗=1

                                          (3.6) 

Received signal y(n) in the Z domain is represented as 

Y (z) = k   
 (1+𝛼𝑞𝑧−𝑁 )𝐿

𝑞=1  (1+𝑎𝑘𝑧−1)
𝑁1
𝑘=1   

 (1+𝑏𝑗 𝑧
−1)

𝑁2
𝑗=1

                (3.7) 

To make the received signal minimum phase we have 

scaled it by a constant β. 

 Let β= min {|𝑎𝑘  |−1 , |𝑏𝑗  |−1, |𝛼𝑞 |−1/𝑁 ,1+ε} - ε   (3.8) 

where ε is a small positive number, if x(n) = 𝛽𝑛𝑦 𝑛 . 

Now Z domain representation of the scaled received signal 

is  

X (z) = 𝑘
 (1+𝛼𝑞𝛽𝑁𝑧−𝑁 )𝐿

𝑞=1  (1+𝑎𝑘𝛽𝑧 −1)
𝑁1
𝑘=1   

 (1+𝑏𝑗𝑧
−1)

𝑁2
𝑗=1

        (3.9)              

𝑋 𝑧 = 𝑘
 (1+𝛼 𝑞𝑧−𝑁 )𝐿

𝑞=1  (1+𝑑𝑘𝑧−1)
𝑁1
𝑁1

  

 (1+𝑒𝑗 𝑧
−1)

𝑁2
𝑗=1

                (3.10) 

where |𝛼𝑞𝛽
𝑁|= |𝛼 𝑞 |<1, q= 1 …L; |𝑎𝑘𝛽|=|𝑑𝑘 |<1, 

k=1….. 𝑁1; |𝑏𝑘β|= |𝑒𝑗 |<1,j=1,2.... 𝑁2; Thus X(z) is a 

minimum phase signal shown in Fig 3.2. 

Applying the logarithm transform to X(Z), one obtains. 

𝑋 (z)=𝑙𝑜𝑔 𝑘+ 𝑙𝑜𝑔⁡[1 +𝐿
𝑞=1 𝛽 𝑞𝑧

−𝑁] + 𝑙𝑜𝑔⁡[1 +
𝑁1
𝑘=1 𝑑𝑘𝑧

−1] 

- 𝑙𝑜𝑔⁡[1 +
𝑁2
𝑗=1 𝑒𝑗𝑧

−1]  (3.11) 

Figure 3.1 

Where 𝑋 (z) = 𝑙𝑜𝑔(𝑋 𝑧 ). Considering logarithmic 

expansion in the above equation i.e, 

𝑙𝑜𝑔[1 + 𝑧]=  
  (−1)𝑛+1𝑧𝑛

𝑛

∞
𝑛=1 | 𝑧 | < 1                (3.12) 

Now Equation 3.11 becomes 

𝑋 (𝑧)=𝑙𝑜𝑔 𝑘 −  
  (−𝛽 𝑞 )𝑛+1𝑧−𝑚𝑛

𝑚

∞
𝑚=1

𝐿
𝑞=1 −

  
  (−𝑑𝑘 )𝑚 𝑧−𝑚

𝑚

∞
𝑚=1

𝑁1
𝑘=1 −   

  (−𝑒𝑗 )𝑚 𝑧−𝑚

𝑚

∞
𝑚=1

𝑁2
𝑗=1                                          

        (3.13) 

Taking the inverse Z transform of    𝑋 (z) is denoted by 𝑥 (n) 

and is given by 

𝑥 (n)=

 
 
 

 
 

0,                                           𝑚<0
𝑙𝑜𝑔  𝐾 ,                                𝑚=0

 
  (−𝑒𝑗 )𝑚

𝑚

𝑁2
𝑗=1 − 

  (−𝑑𝑘 )𝑚

𝑚

𝑁1
𝑘=1   ,𝑚>0,𝑚≠𝑖𝑁

   
  (−𝑒𝑗 )𝑖𝑁

𝑖𝑁

𝑁2
𝑗=1

−   
  (−𝛽 𝑞)𝑖

𝑚
𝐿
𝑘=1 − 

  (−𝑑𝑘)𝑖𝑁 ,

𝑖𝑁
𝑚>0,𝑚=𝑖𝑁

𝑁1
𝑘=1

          

         (3.14) 

Where „i‟ is real positive integer  

        Equation (3.14) represents the signal x(n) in the 

cepstral domain. It is clear that cepstrum of the signal 

occupies lower indices (𝑚 > 0, 𝑚 ≠ 𝑖𝑁) and the multipath 

function occupies (𝑚 > 0, 𝑚 = 𝑖𝑁). To filter out the 

multipath effects we take a comb filter. 

  𝐶 (m) = [1- 𝛿(𝑚 − 𝑖𝑁)∞
𝑞=1 ]                            (3.15)  

Then the resulting output is, shown in Fig.3.2 

 𝑦  𝑣(𝑚)  = 𝐶 (m) 𝑥 (m)                                         (3.16)  
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Figure 3.2 

Now for m= iN.  

𝑦 𝑣(𝑖𝑁)=0                                                            (3.17)  

One way of obtaining sums for  𝑦 𝑣(𝑚) with known 

functional forms is to express    𝑦 𝑣(𝑖𝑁) as  

 𝑦 𝑣(𝑚 = 𝑖𝑁) =− 
  (−𝑑𝑘 )𝑚

𝑚

𝑁1
𝑘=1 +  

  (−𝑑𝑘 )𝑚

𝑚

𝑁1
𝑘=1 +

 
  (−𝑒𝑗 )𝑚

𝑚

𝑁2
𝑗=1 −  

  (−𝑒𝑗 )𝑚

𝑚

𝑁2
𝑗=1                                 (3.18) now 

to recover the original signal inverse cepstral processing is 

has to be performed where the z-transform of 𝑦  𝑣 𝑚  is, 

 

𝑦 𝑣(𝑧) =𝑙𝑜𝑔 𝑘 −   
  (−𝑑𝑘)𝑚 𝑧−𝑚

𝑚

∞
𝑚=1

𝑁1
𝑘=1 +

  
  (−𝑑𝑘 )𝑖𝑁 𝑧−𝑖𝑁

𝑖𝑁

∞
𝑚=1

𝑁1
𝑘=1 +   

  (−𝑒𝑗 )𝑚 𝑧−𝑚

𝑚

∞
𝑚=1

𝑁2
𝑗 =1 −

  
  (−𝑒𝑗 )𝑖𝑁 𝑧−𝑖𝑁

𝑖𝑁

∞
𝑚=1

𝑁1
𝑘=1                                        (3.19) 

and by taking inverse logarithm of 𝑦 𝑣(𝑧), one can obtains 

the new signal in terms of the original signal v(n). 

𝑦𝑣(𝑧) = 𝑉 (𝑧)  [1 − (−𝑒𝑗 𝑧
−1)𝑁]1/𝑁  

𝑁1
𝑘=1 ˟  [1 −

𝑁1
𝑘=1

(−𝑒𝑗𝑧−1)𝑁]−1/𝑁                                                  (3.20) 

where 𝑉 (𝑧)  = 𝑉(𝛽−1𝑧).A direct comparison of  𝑌(𝑧) to 

𝑉 (𝑧) can be made using (3.20). The binomial series in 

(3.20) can be expressed as 

[1 − (𝑟)𝑁]−1/𝑁=1 ±
(𝑟)𝑁

𝑁
±

 𝑁±1 (𝑟)2𝑁

2!𝑁2 ±
 𝑁±1  2𝑁±1 (𝑟)2𝑁

3!𝑁3                                                   

(3.21) 

Where |x| < 1 Hence (3.22) can be written as 

Figure 3.3 

𝑌𝑣(𝑧)=𝑉 (𝑧)  [1  ±
 −𝑒𝑗  

𝑁

𝑁
𝑧−𝑁  ±

 𝑁−1  −𝑒𝑗  
2𝑁

2!𝑁2 𝑧−2𝑁   ±
𝑁2
𝑗 =1

𝑁±12𝑁±1−𝑒𝑗2𝑁3!𝑁3𝑧−3𝑁−….] 𝑘=1𝑁1[1  
±−𝑑𝑘𝑁𝑁𝑧−𝑁 ±𝑁−1−𝑑𝑘2𝑁2!𝑁2𝑧−2𝑁 
±𝑁±12𝑁±1−𝑑𝑘2𝑁3!𝑁3𝑧−3𝑁−….]                          (3.22) 

𝑣 𝑛  and 𝑌𝑣(𝑧) can be compared when the product of all 

binomial series in (3.22) be generated and then truncated at 

some index𝑁0, and above equation is expressed as  

𝑌𝑣(𝑧)=𝑉 (𝑧)+ 𝑔𝑘𝑧
−𝑘𝑁𝑁0

𝑘=1 𝑉 (𝑧)                        (3.23) 

This leads to the following representation for 𝑦𝑣(𝑛)  

𝑦𝑣 𝑛 =𝑣 (𝑛)+ 𝑔𝑘𝛽
−𝑛𝑁0

𝑘=1 𝑣 (𝑛 − 𝑘𝑁)               (3.24)  

where  𝑣 (𝑛) = 𝛽𝑛𝑣 𝑛 . this is to make the signal minimum 

phase by moving the poles inside the unit circle, 𝑦𝑣 𝑛 is 

scaled by 𝛽−𝑛 , 𝛽−𝑛𝑦𝑣 𝑛 in order to obtain recovered 

waveform, 𝑣𝑟 𝑛 (shown in Fig.3.3). 

𝑣𝑟 𝑛  = 𝑣 𝑛 +  𝑔𝑘𝛽
−𝐾𝑁𝑁0

𝑘=1 𝑣(𝑛 − 𝑘𝑁)          (3.25)          

 By calculating this sum, we can obtain 𝑣𝑟 𝑛  to 

some accuracy. These derivations are taken from [3]. 

4. SIGNAL DETECTION IN PRESENCE OF 

NOISE: 
     Till now we have considered only the multipath 

noise and seen how cepstral processing successfully 

separated the radiated signal from the multipath noise.  In 

this section we further consider the interference noise and 

its effect in the cepstral processing. 

4.1 NOISE: 

    Interference noise is assumed to be white 

Gaussian noise with zero mean and variance equal to σw
2
. 
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Each noise sample is assumed to be uncorrelated with the 

radiated signal and channel multipaths [4]. 

           Now we will analyze the effect of added noise to 

signal in cepstral processing. Noise addition to the received 

signal in time domain does not map to a convenient 

function in the cepstral domain. So we add noise after 

convolution of x(t) and h(t). 

Y(t) =[x(t) ∗ h(t)]+ n(t)          (4.1) 

 When we take logarithm of the magnitude of the frequency 

response, 

𝑙𝑜𝑔 𝑌(𝜔) = 𝑙𝑜𝑔 𝑋 𝜔 𝐻 𝜔 + 𝑁(𝜔)        (4.2) 

               = 𝑙𝑜𝑔 𝑋 𝜔 𝐻 𝜔 (1 + 𝐾(𝜔)        (4.3) 

where, 

𝐾 𝜔  = 
𝑁(𝜔)

𝑋 𝜔 𝐻 𝜔 
        (4.4) 

Therefore, 

𝑙𝑜𝑔 |𝑌 𝜔 |=𝑙𝑜𝑔 𝑋 𝜔 | + 𝑙𝑜𝑔|𝐻 𝜔 |  +  𝑙𝑜𝑔⁡|1 + 𝐾(𝜔) 
           (4.5) 

𝑙𝑜𝑔 |𝑌 𝜔 |=𝑙𝑜𝑔 𝑋 𝜔 | + 𝑙𝑜𝑔 |𝐻 𝜔  + 𝑁"(𝜔) (4.6) 

 When the inverse Fourier transform is performed 

on the above equation (4.6), the last term 𝑁"(𝜔) can be 

concluded as noise effect in the cepstral domain 𝑛 "(𝜏).  

Figure 4.1 

               As we know the Fourier transform of Gaussian 

white noise 𝑁(𝜔) is a constant function in frequency 

domain. If the noise intensity increases, the magnitude of 

𝑁(𝜔) increases and hence 𝑁"(𝜔) also increases, and there 

will be no variations in shape of the signal but only a DC 

component is added to the signal. When we take inverse 

Fourier transform on 𝑁"(𝜔) the effect of noise in cepstral 

domain 𝑛 "(𝜏) can be seen. The dc component maps to the 

point 𝜏 = 0 as shown in Fig. 4.1. The figure also shows that 

for stronger noise levels, the cepstrum of the signal 

increases at 𝜏 = 0 and for τ ≠ 0, 𝑛 "(𝜏) doesn‟t have any 

variations [5]. When we perform cepstral liftering the 

received signal which contains interference noise can be 

removed. 

Now let us consider signals with different SNRs.  

In Fig. 4.2 the received signal with SNR of 9 dB is shown. 

On these received signals, we perform cepstral processing 

and later we do cepstral liftering to remove the effect of 

noise at τ=0, and also the multipath effects 

Figure 4.2 

     
Figure 4.3 
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Figure 4.4 

Fig.4.3 shows cepstrum output of the received 

signal with SNR 9 dB, where we can see the signal 

component and multipath components 

Fig. 4.4 shows the received signal with SNR 4dB. 

Similarly Fig. 4.5 shows cepstrum output of the received 

signal with SNR 4 dB. 

Through cepstrum processing, we can see that the 

original signal component and the multipaths impulses can 

be separated as seen in Fig. 4.3 and Fig.4.5. The signal 

component is captured by the lower cepstral coefficients 

and the multipath impulses are captured by the higher 

cepstral coefficients. 

Figure 4.5 

Figure 4.6 

 For our simulations, received time domain signal 

is blocked into K frames of N samples each, with adjacent 

frames spaced M samples apart. Typical values for N and 

M correspond to frames of duration 96ms, with frame shifts 

of 64 ms respectively hence adjacent frames overlap by 

32ms shown in Fig 4.6 

         Figure 4.7  

 Processing the received signal block by block and 

performing cepstrum and inverse cepstrum we can reduce 

the effect of noise for recovering the signal component. We 

observe that signal component is recovered at 4
th

 and 5
th
 

window as shown in the fig 4.7 and 4.8.   

0 200 400 600 800 1000 1200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time-ms

a
m

p
lit

u
d
e

Received Signal

 

 

SNR 4db

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

quefrency

a
m

p
lit

u
d
e

 

 

SNR 4db

Short time 
cestrum 

processing

m
ag

ni
tu

de

time

N points

N points

M points

0 200 400 600 800 1000 1200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time

Magn
itude

 (dB)

received signal

 

 

SNR 10db

K blocks

0 20 40 60 80 100 120 140
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time-ms

a
m

p
lit

u
d
e

 

 

Recovered signal



P.V.Ravi Kiran, Amit Kumar Verma, G. Appala Naidu  / International Journal of Engineering Research 

and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.1919-1924 

1924 | P a g e  
 

Figure 4.8 

 Thus the cepstral processing is useful in target 

detection in the presence of multipath effects and 

interference noise. It also recovers the signal frequency 

content. This may be used for target identification. 

5. CONCLUSION 
The study presented in this paper makes an 

observation that cepstral processing facilitates passive sonar 

target detection and identification.  The effect of multipath 

and interference noise is minimized by using cepstral 

liftering. The received signal is the convolution of the sonar 

radiated signal and the impulse response of the shallow 

water channel in the time domain. However in cepstral 

domain it is superposition of the cepstrum of signal and 

cepstrum of the impulse response. Additionally signal 

cepstrum occupies low time cepstrum, impulses occupy 

high time cepstrum and noise occupies cepstrum at t=0. 

Therefore cepstrum of the signal can be extracted by using 

appropriate filter which nullifies the effect of noise and 

multipath effects.  
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