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Abstract 
 In this paper, sensitivity analysis of supply and demand parameters of an interval transportation problem is 

presented. A new solution method namely, upper-lower method is proposed to determine the ranges of 

supply and demand parameters in an interval transportation problem such that its optimal basis is invariant. 

To illustrate the proposed method a numerical example is solved. Then, the upper-lower method is 

extended to fuzzy transportation problems. The study of sensitivity by the proposed method can be served 

as an important tool for the decision makers for taking appropriate decision when they are handling various 

types of logistic problems having imprecise parameters.  
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1.Introduction  
            The transportation problem is one of the earliest applications of linear programming problems. 

Transportation models play an important role in logistics and supply-chain management for reducing cost 

and improving service. Some previous studies have devised solution procedure for the transportation 

problem with precise supply and demand parameters. Efficient algorithms have been developed for solving 

the transportation problem when the cost coefficients and the supply and demand quantities are known 

exactly. In real world applications, the supply and demand quantities in the transportation problem are 

sometimes hardly specified precisely because of changing economic conditions. Hence in order to reduce 

information costs and also to construct a real model, the use of interval and fuzzy transportation problems 

are more appropriate. Interval transportation problem is a relevant tool to address the intrinsic uncertainty 

in models of real-world problems. In an interval (or fuzzy) transportation problem, information about the 

range of variation of some (or all) of the parameters is available, which allows to specify a model with 

intervals (or fuzzy numbers). Interval and fuzzy transportation problems have been studied by various 

authors [ 9, 15, 18, 19, 20].    

            
            Now a days, most of research papers are concentrated how to solve transportation problems 

efficiently, but only few papers are focused on sensitivity analysis. Sensitivity analysis is one of the most 

interesting and preoccupying areas in optimization. Many attempts are made to investigate the problem’s 

behavior when the input data changes. Usually, variation occurs in the right hand side of the constraints 

and/or the objective function coefficients. Sensitivity analysis is to analyze the effect of the changes of the 

objective function coefficients and the effect of changes of the right hand side constraints on the optimal 

value of the objective function as well as the validity ranges of these effects. Most of sensitivity analysis of 

a transportation problem is based on the assumption of optimal solution of a transportation problem. Gal 

[10] discussed post optimality analysis, parametric programming and related topics. Srinivasan and 

Thompson [21], Intrator and Paroush [12]  and  Arsham [2]  studied  the conventional sensitivity analysis 

of  a transportation problem and some interesting results were derived. Adlakha and Arsham [1] proposed a 

pivotal algorithm for dealing with sensitivity analysis of  a transportation  problem without using  any extra 

variables. Intrator and Engelberg [13] considered sensitivity analysis of a transportation problem by 

reducing the dimensionality of associated tableau.  Doustdargholi et al. [8] studied the sensitivity analysis 

of right-hand-side parameter in a transportation problem. Badra [3] introduced sensitivity analysis of 

multiobjective transportation problems. Kang-Ting Ma and Ue-Pyng Wen [14] presented support set 

invariant sensitivity analysis in a degenerate transportation problem. Chi-Jen Lin and Ue-Pyng Wen [4,5] 



K. Kavitha, P. Pandian / International Journal of Engineering Research and Applications 

(IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.1900-1910 

1901 | P a g e  

 

studied sensitivity analysis of an assignment problem.  Lucia Cabulea [16] discussed  the sensitivity 

analysis of costs in a transportation problem. Chi-Jen Lin [7] has presented two types of sensitivity range 

for an assignment problem. Chi-Jen Lin et al.[6] have studied three types of sensitivity analysis of a fuzzy 

assignment problem  using labeling algorithm. 

 

            In this paper, we propose a new method namely, upper-lower method to develop the sensitivity 

analysis of supply and demand parameters in an interval transportation problem.  So, we will show that the 

basis to the interval transportation problem remains optimal when the interval supply and demand vary 

between the interval limits. An illustrative example is presented to clarify the idea of the upper-lower 

method. Then, we extend the proposed method to fully fuzzy transportation problems. The proposed 

method provides an applicable information which helps the decision makers while they are handling 

various types of logistic problems having imprecise parameters.  

 

2. Preliminaries 
            We need the following definitions of the basic arithmetic operators and partial ordering on closed 

bounded intervals  which can be found in [11,17].  

 

 Let D denote the set of all closed bounded intervals on the real line R.  

That is, babaD  ],,{[  and a and b are in R} .  

 

Definition 2.1:  Let  ],[ baA   and ],[ dcB    be in D. Then,  

     (i)  BA ],[ dbca  ;  

     (ii) BA ],[ cbda  ;  

    (iii) kA ],[ kbka  if  k is a positive real number ; 

    (iv)  kA ],[ kakb  if  k is a negative  real number   and  

     (v) BA ],[ qp   where },,,.{min bdbcadacp   and  },,,.{max bdbcadacq  . 

 

 Definition 2.2:  Let  ],[ baA   and ],[ dcB   be in  D. Then,  

   (i)   BA   if  ca   and  db    ; 

   (ii)  BA   if AB  , that is,    ca   and db      and  

   (iii) BA   if BA   and AB  , that is, ca   and db  . 

 

3. Fully Interval Integer Transportation Problem 
 

Consider the following fully interval integer transportation problem (IP): 

             (IP)  Minimize ],[],[],[ ijijijij

n

1j

m

1i
21 yxdczz 



  

              subject to 

                       ],[],[ iiijij

n

1j

payx 


, m1,2,...,i                                                           (1) 

],[],[ jjijij

m

1i

qbyx 


, n1,2,...,j                                                           (2) 

               0ij x , 0ij y , m1,2,...,i   and n1,2,...,j   and are  integers                           (3)                             

where   ijij   and  dc  are positive real numbers  for all  i  and  j , ii   and  pa  are positive real numbers for 

all  i  and jj   and qb  are positive real numbers for all  j. 
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Definition 3.1:  The set { ],[ ijij yx , for all m1,2,...,i   and n1,2,...,j  }  is said to be  a feasible 

solution of (IP) if they satisfy the equations (1), (2) and (3). 

 

Definition 3.2: A feasible solution { ],[ ijij yx , for m1,2,...,i   and n1,2,...,j  } of the problem (IP) 

is said to be an optimal solution of (IP) if  

],[],[ ijijijij

n

1j

m

1i

yxdc 


 ],[],[ ijijijij

n

1j

m

1i

vudc 


, 

for m1,2,...,i   and n1,2,...,j   and  for all feasible { ],[ ijij vu  for m1,2,...,i   and n1,2,...,j  }. 

 

 Now, we need the following  theorem  which finds a relation between optimal solutions of  a fully  

interval  integer transportation problem and a pair of induced transportation problems and also, is used in 

the proposed  method  which can be found in Pandian and Natarajan [18].  

 

Theorem 3.1: If the set {


ij
y , for all i and j }   is  an optimal solution of the upper bound transportation 

problem (UP) of  the problem (IP)  where  

(UP)            Minimize ijij

n

1j

m

1i
2 ydz 



  

                   subject to             

                     iij

n

1j

py 


, m1,2,...,i                                                                                    

                    jij

m

1i

qy 


, n1,2,...,j                                                                              

                   0ij y , m1,2,...,i   and n1,2,...,j   and are integers                          

and the set  {

ij

x , for all i and j } is an optimal solution of the lower bound transportation problem (LP) of 

the problem  (IP)  where  

(LP)      Minimize ijij

n

1j

m

1i
1 xcz 



  

                subject to 

                iij

n

1j

ax 


, m1,2,...,i                                                                 

                 jij

m

1i

bx 


, n1,2,...,j                                                                    

                 0ij x , m1,2,...,i   and n1,2,...,j   and are integers,                   

then   the set of intervals { ],[ ijij
 yx , for all i and j } is an optimal solution of the problem (IP) provided 


ijij

yx  , for all i and j. 
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4. Sensitivity Analysis 
 Sensitivity analysis is used to determine how “sensitive” a model is to change in the value of the 

parameters of the model and to change in the structure of the model. Parameter sensitivity allows decision 

makers to determine what level of accuracy is necessary for a parameter to make the model sufficiently 

useful and valid.  By showing how the model behavior responds to changes in parameter values, sensitivity 

analysis is a useful tool in model building as well as in model evaluation and it can also indicate which 

parameter values are reasonable to use in the model.   

 

 

4.1. Sensitivity Analysis for Interval supply and demand parameters 

 

          Consider the sensitivity analysis of an interval supply and demand in an interval  transportation 

problem. Observe that this change maintains a balanced interval transportation problem. As per the 

Theorem 3.1., for  analyzing  the sensitivity analysis of  supply and demand parameters of  an  interval 

transportation problem, we enough to do the sensitivity analysis of  supply and demand parameters of  

upper bound transportation problem (UP) and  the lower bound transportation problem (LP)  of  the  

interval transportation problem (IP). 

             

          Now, to analyze the sensitivity of the supply and demand values in the problem (UP), we consider 

the allotment table for the upper bound transportation problem obtained by the zero point method. Let 

},....,,.{max 21 mt pppp   and },....,,.{max 21 nk qqqq  . Now, we replace ip by iip  , 

i=1,2,..., m; ti   and tp  by i

m

ti
ii

tp 




   and also, we replace jq by jjq  , j=1,2,...,n; kj   and 

kq  by j

n

kj
ij

kq 




  We compute the values of ji  , , for all i and j such that the optimal basis is 

invariant. That is,  the allotment conditions of the zero point method  should be satisfied. 

Therefore, using  allotment conditions of  the zero point method, we can compute  the ranges of each 

ji qp , , for all i and j, to maintain the current optimal basis . 

 

          Similarly, we can determine the ranges of all supply and demand value in the problem (LP) to 

maintain the current optimal basis. 

 

          Finally, we obtain the ranges of all supply and demand values in the interval transportation problems 

to maintain the current optimal basis by joining the results of the problems (LP) and (UP). 

 

 

4.2. Upper-Lower Method 

          We, now introduce a new method namely, upper-lower method to study the sensitivity analysis of 

supply and demand in interval  transportation problems.  

 

          The upper-lower method proceeds as follows. 

 

Step 1.  Construct the  upper  bound  and  lower bound  transportation problems  for  the  

             given interval  transportation problem. 

 

Step 2.  Determine the optimal solution of the upper bound interval transportation problem. Say,  

n}1,2,...,j and  ,...,2,1i,{  myij


 . 
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Step 3.  Now, to analyze the sensitivity in upper bound interval transportation problem, after obtaining the 

optimal solution. Let },....,,.{max 21 mt pppp   and },....,,.{max 21 nk qqqq  . In the allotment 

table of the upper bound interval transportation problem,  we replace ip by iip  , i=1,2,..., m; ti   

and tp  by i

m

ti
ii

tp 




   and also, we replace jq by jjq  , i=1,2,...,n; kj   and kq  by 

j

n

kj
ij

kq 




 . 

Step  4.  Compute the minimum and maximum values of ji    and   ,for all i and j using the  allotment 

conditions of zero point method to maintain  the current optimal basis. Then, find the ranges of supply and 

demand values in the upper transportation problem.  

 

Step 5. Apply the Step 2. to the Step 4. to the lower bound interval transportation problem and compute the 

ranges of supply and demand values in the lower bound interval  transportation problem to maintain the 

current  optimal basis.   

  

Step 6.  From the  Step 4.  and  the Step 5.,  we obtain the interval ranges of the supply and demand interval 

in the interval transportation problem to maintain the current  optimal basis. 

 

          The upper-lower method is illustrated with help of the following numerical example. 

 

  Example 4.1. Consider the fully interval transportation problem: 

 

 

 

 

 

 

 

 

 

 

 

Now, the lower bound and upper bound transportation problems of the given interval transportation 

problem are given below: 

 

 

 

 

 

 

 

 

 and 

 

 

 

 

 

 
1D  2D  3D  

Supply 

1S  
[2,6] [3,5] [2,4] [40,60] 

2S  
[1,3] [3,6] [2,4] [25,35] 

Demand [20,30] [15,25] [30,40] [65,95] 

 LD1  
LD2  

LD3  
Supply 

LS1  
2 3 2 40 

LS2  
1 3 2 25 

Demand 20 15 30 65 
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where ],[ U
i

L
ii SSS  , i =1,2   and ],[ U

i
L
ii DDD  , j =1,2,3.  

 

Now, using the zero point method the optimal solution to the upper bound transportation problem is   

 

 

 

 

 

 

 

 

 

 

Now, using the zero point method, the optimal solution to the lower bound transportation problem is  given 

below: 

  

 

 

 

 

 

 

 

 

The optimal solution of the fully interval transportation problem is 

 

 

 

 

 

 

 

 

 

 

Now, we study  the sensitivity of the  supply and demand  parameters in the upper bound transportation 

problem: 

 

Now, the allotment table for the upper bound transportation problem  is given below:  

 

 

 

 

 

 

 UD1  
UD2  

UD3  
Supply 

US1  
6 5 4 60 

US2  
3 6 4 35 

Demand 30 25 40 95 

 UD1  
UD2  

UD3  
Supply 

US1  
6 5 

25 

4 

35 

60 

US2  
3 

30 

6 4 

5 

35 

Demand 30 25 40 95 

 LD1  
LD2  

LD3  
Supply 

LS1  
2 3 

15 

2 

25 

40 

LS2  
1 

20 

3 2 

5 

25 

Demand 20 15 30 65 

 

1D  2D  3D  
Supply 

1S  
[2,6] [3,5]                

     [15,25] 

[2,4] 

[25,35] 

[40,60] 

2S  
[1,3] 

[20,30] 

[3,6] [2,4] 

[5,5] 

[25,35] 

Demand [20,30] [15,25] [30,40] [65,95] 



K. Kavitha, P. Pandian / International Journal of Engineering Research and Applications 

(IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.1900-1910 

1906 | P a g e  

 

 

 

 

 

 

 

 

 

Now, using the Step 3. of  the  upper-lower method, we  have the following: 

 

 

 

 

 

 

 

 

 

Now, using the allotment conditions of the zero point method  related to supply,  we have 

    11 6560      and  21 7035    (or)
  

      
11 6560      and  21 7035   . 

Now, using the allotment conditions of the zero point method  related to demand,  we have
 

                   11 3530   ,  12 6025      and 9540 21   (or) 

 11 3530   ,  12 6025      and 9540 21   (or) 

 11 3530   ,  12 6025      and 9540 21   . 

  

Now, using the allotment conditions of the zero point method  related to both supply and demand,  we have 

the following:
 

               511              

                                  3512   and            

                        4055 21   .                                                                                               (4) 

 

Now, since  availability at each supply point and the requirement at each demand point are non-negative, 

we  have  the following: 

                                   6035 1          (5) 

   130         (6) 

   225                     (7) 

                                       4021   .                                (8) 

 

Now, from equations (4) ,(6), (7) and (8), we have 

 

                          6530 1  
 
           (9) 

              and 
     

7025 2   .                     (10) 

         

Now, from (5), we have 950 1  US   and  950 2  US  

Now, from (9) and (10), we have 700 1  UD , 650 2  UD  and 950 3  UD . 

 

 UD1  
UD2  

UD3  
Supply 

US1  
3 0 0 60 

US2  
0 1 0 35 

Demand 30 25 40 95 

 UD1  
UD2  

UD3  
Supply 

US1  
3 0 0 

160   

US2  
0 1 0 

135   

Demand 
130   225   2140    95 
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Now, the allotment table for the lower bound transportation problem: 

 

 

 

 

 

 

 

 

 

Now, using the Step 3. of  the  upper-lower method, we  have the following: 

 

 

 

 

 

 

 

 

 

 

 

 

Now, using the allotment conditions of the zero point method and non-negativity conditions of the 

availability at each supply point  and the requirement at each demand point, we have the following: 

4025 1   , 3020 1   , 3015 2     and  3035 21   . 

 This implies that  650 1  LS  and 650 2  LS , 500 1  LD ,  450 2  LD  and 

650 3  LD . 

 

Now, the ranges of all supply and demand in the given interval transportation problem such that its optimal 

basis is invariant, are given in the following table: 

 

 Minimum limit Original  value Maximum limit 

Supply 1,  1S  [0,  0] [40, 60] [65, 95] 

Supply 2, 2S  [0, 0] [25, 35] [65, 95] 

Demand 1, 1D  
[0, 0] [20, 30] [50, 70] 

Demand 2, 2D  
[0, 0] [15, 25] [45, 65] 

Demand 3, 3D  
[0, 0] [30, 40] [65, 95] 

 

 

5. Fully Fuzzy Transportation Problem 
 

Consider the following fuzzy  integer transportation problem (FFITP) where 

(FFITP)    Minimize     ijij
1j1i

~ ~ ~ xcz
nm




 

                subject to 

 LD1  
LD2  

LD3  
Supply 

LS1  
1 0 0 40 

LS2  
0 0 0 25 

Demand 20 15 30 65 

 LD1  
LD2  

LD3  
Supply 

LS1  
1 0 0 

140   

LS2  
0 0 0 

125   

Demand 
120   215   2130    65 
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                        iij

n

1j

~~ ax 


, m1,2,...,i                                                                                

               jij

m

1i

~~ bx 


, n1,2,...,j                                                                               

               0
~~

ij x ,  m1,2,...,i   and n1,2,...,j   and  are  integers                           

 where   m = the number of supply points ;  n  = the number of demand points ; ij
~x  is  the uncertain  

number of units shipped from supply point i to demand point j ; ij
~c  is  the uncertain cost of shipping one 

unit from supply point i to the   demand point j which is non-negative ; i
~a   is  the uncertain supply at 

supply point i  and  j
~
b   is  the uncertain demand at demand point j. 

 

             A trapezoidal fuzzy number ),,,( dcba  can be represented as an interval number form as follows. 

               ])(,)([),,,(  cddabadcba   ; .10                                      (11) 

 

            Using the relation (11), we can convert the given fuzzy transportation problem into an interval 

transportation problem. Using the upper-lower method, we obtain the ranges of all supply and demand in 

the interval transportation problem such that its optimal basis is invariant. Then, again using the relation 

(11), we can find the ranges of all supply and demand in the given fuzzy transportation problem. 

 

           The solution procedure is illustrated with the following example 

 

Example 5.1: Consider the following fully fuzzy transportation problem 

 

 

Now, the fully interval transportation problem corresponding to  the above problem is given below: 

 

 

Now using the upper-lower method, the sensitivity analysis of all supply and demand in the given interval 

transportation problem such that its optimal basis is invariant, is given in the following table.    

 

 Minimum limit Original  value Maximum limit 

Supply 1,  1S  [0,0] [40+5 ,60-5 ] [65+10 ,95-10 ] 

Supply 2, 2S  [0,0] [25+5 , 35-5 ] [65+10 ,95-10 ] 

 

1

~
D  2

~
D  3

~
D  

Supply 

1

~
S  

(2,3,5,6) (3,4,4,5) (2,3,3,4) (40,45,55,60) 

2

~
S  

(1,2,2,3) (3,4,5,6) (2,3,3,4) (25,30,30,35) 

Demand (20,23,27,30) (15,18,22,25) (30,34,36,40)  

 

1D  2D  3D  
Supply 

1S  
[2+ ,6-  ] [3+ ,5- ] [2+ ,4- ] [40+5 ,60-5 ] 

2S  
[1+ ,3- ] [3+ ,6- ] [2+ ,4- ] [25+5 , 35-5 ] 

Demand [20+3 ,30-3 ] [15+3 ,25-3 ] [30+4 ,40-4 ]  
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Demand 1, 1D  
[0,0] [20+3 ,30-3 ] [50+7 ,70-7 ] 

Demand 2, 2D  
[0,0] [15+3 ,25-3 ] [45+7 ,65-7 ] 

Demand 3, 3D  
[0,0] [30+4 ,40-4 ] [65+10 ,95-10 ] 

 

Now, using the relation (11), the ranges of  fuzzy supply and demand of the given fuzzy transportation 

problem such that its optimal basis is invariant, are given in the following table: 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion  
                   

           We discuss the sensitivity analysis of  supply and demand in the interval transportation problem in 

this paper. We propose a method namely, upper-lower method for finding a critical region of the supply 

and demand parameters at which any change inside the ranges of the region does not affect the optimal 

basis, while, any change outside their ranges will affect the optimal basis. In general, an information of 

sensitivity analysis in a transportation problem is usually more important than the optimal solution itself. 

The proposed method is extended to  fuzzy transportation problems. The sensitivity analysis of supply and 

demand parameters in an interval transportation problem by the proposed method can help the decision 

makers to know in what range of variation of sources in the market they can keep the installed production 

lines active, and only production’s levels would change when they are handling distribution problems 

having imprecise parameters. 
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