
Sushant.S.Sakhalkar, Parth Gala, Divya Mohan / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1694-1698

1694 | P a g e

Embedded Gaming

Sushant.S.Sakhalkar*, Parth Gala**, ***Divya Mohan
*(Department of Electronics, MUMBAI University, Mumbai-88)

** (Department of Electronics, MUMBAI University, Mumbai-88)

Abstract- Playing games is everyone’s favorite

childhood memory. Whether it be Tic-Tac-Toe,

Pacman, Mario, Dave or even the latest craze-

Angry Birds, we all have at one point or another

dreamt about personalizing and tampering with the

controls to create our very own gaming experience.

Toying around with this thought, we decided to

finally implement a gaming system with elementary

concepts of embedded systems and real-time

programming. In the paper we have presented a

system developed using C programming on Code

Blocks IDE. Our minimalistic embedded hardware

platform includes AVR 64 microcontroller, USB

programmer, joystick, Jtag port. The hardware also

doubles up as our human interface and is pre-

programmed to enable the user to have a unique

gaming experience.

Keywords – Sdl Code –Blocks, UniBoard,

MMA7361L, AVR 64,

1. Introduction
Embedded systems have a vast amount of useful

applications throughout the world. This has provided a

new fillip to many technical enthusiasts for exploring

the amazing field of embedded technology. Tailor-

made features are incorporated carefully by

programming the system. The video games which we

play on TV also comprise of embedded systems that are

programmed a priority to improve the user’s real- time

interaction with the system. The controllers of PS2,

Microsoft X-box, and Nintendo Wii, all have

sophisticated embedded systems running them. This

spurred us to develop our very own gaming system by

perusing various bibliographic resources-both

electronic and otherwise as also guidance from various

knowledgeable personnel. Developing small embedded

system presents several challenges, due to size and

weight constraints. Size reduction implies the use of

small microprocessors with limited memory and

processing power, which represents a severe constraint

for the software, which must be carefully designed to

be efficiently exploiting the available resources.

Moreover, if the system is powered by batteries,

energy management policies must be applied at

different levels of the architecture to reduce power

.consumption and prolong the system lifetime as much

as possible. The operating system has a crucial role in

guaranteeing the application performance; because the

timing behavior of the application strictly depends on

task scheduling, interrupt handling, synchronization

protocols, and resource management algorithms. The

simplest way for enforcing timing constraints to the

application is through a static schedule implemented

by a cyclic executive. However, this solution is not

flexible to changes and is very fragile under overload

conditions. Hence, a priority-based kernel is more

suitable to support dynamic control applications with

variable computational requirements [1].

There are several real-time operating systems

available in the market, both free and proprietary,

but very few of them are suitable for small

embedded microcontrollers with limited processing

resources. VxWorks and QNX Neutrino are two

examples of commercial kernels commonly used in

real-time control applications. Another real-time kernel

widely used in the industry is Micro C/OS[2], which

is a preemptive real-time kernel written in C, available

for more than twenty different microprocessors.

Among the open source kernels related to Linux,

RTLinux[3] and RTAI use a small real-time

executive as a base and execute Linux as a thread in

this executive, whereas Linux-RK directly

modifies the Linux internals. Most of these kernels,

however, do not implement the state-of-the-art features

derived from the real- time scientific literature, and

are not easy to modify. More flexible kernels are

MarteOS (written in ADA), allowing the user to

specify the scheduler at the application level, and

Shark) (written in C), which is a modular kernel

handling tasks with different criticality and allowing

the user to select the algorithms for task scheduling

and shared resource management. However, all the

kernels mentioned above are designed for medium

size applications and are not suited for small

microcontrollers. On the other hand, very small

kernels have limited real-time features. For example,

TinyOS is widely used in sensor networks to support

the tasks running on the Motes, but it uses a FIFO

queue for task scheduling and it cannot handle

timing constraints.

 This system employs Mu Cos II kernel [2] which

Sushant.S.Sakhalkar, Parth Gala, Divya Mohan / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1694-1698

1695 | P a g e

is developed by Micrium technology. Then the coding

part is done in code blocks software language I used

for coding. For advanced gaming features chipmunk’s

physics engine is used which has been optimized for

giving real physics functionality to game objects.

 The paper is organized as follows: Section II

introduces the hardware system, including the

microcontroller, accelerometer, rtc, joystick, and the

real-time kernel; Section III deals with the software

part; Section IV deals with conclusion.

2. Hardware System
The controller board is illustrated in Figure 1. It

performs interfacing functions with the game; it

provides us with joystick and accelerometer by which

we can control the game.

2.1 Controller Board

 The controller board is UniBoard, which consists of

AVR 64 microcontroller. It is 8 bit microcontroller.

2.2 Advanced RISC Architecture

It has 130 Powerful Instructions, most of them having a

single clock cycle execution. It is also packed with 32 x

8 General Purpose Working Registers as well as

Peripheral Control Registers. It has fully static

Operation up to 16 MIPS Throughput at 16 MHz.It has

on-chip 2-cycle Multiplier.

 Fig. 1 Pin Diagram of AVR 64

2.3 JTAG (IEEE std. 1149.1 Compliant) interface

 Boundary-scan Capabilities According to the JTAG

Standard. It has Extensive On-chip Debug Support

Programming of Flash, EEPROM, Fuses, and Lock Bits

are through the JTAG Interface.

2.4 Peripheral Components

It has Two 8-bit Timer/Counters with Separate

Prescalers and Compare Modes. Also available are two

Expanded 16-bit Timer/Counters with Separate

Prescaler, Compare Mode, and Capture Mode, Real

Time Counter with a Separate Oscillator. It has two 8-

bit PWM Channels with Byte-oriented Two-wire Serial

Interface. Dual Programmable Serial USARTs and

Master/Slave SPI Serial Interface with Programmable

Watchdog Timer with On-chip Oscillator and On-chip

Analog Comparator are additional attractive

components.

2.5 Special microcontroller Features

Some of these are - Power-on Reset, Programmable

Brown-out Detection, internal calibrated RC external

oscillator, Internal Interrupt Sources with Six Sleep

Modes: Idle, ADC Noise Reduction, Power-save,

Power-down, Standby and Extended Standby. It has

Software Selectable Clock Frequency. The feature of

ATmega103 Compatibility Mode Selected by a Fuse

with Global Pull-up Disable Differential Channels with

Programmable Gain (1x, 10x, 200x).Also Byte-oriented

Two-wire Serial Interface and Dual Programmable

Serial USARTs and Master/Slave SPI Serial Interface.

Programmable Watchdog Timer with On-chip

Oscillator and On-chip Analog Comparator are

additional provisions.

 Fig.2 UniBoard

2.6 Real time kernel

Ucos II is a kernel developed by Micrium and Jean

Labrosse [2]. Also it is optimized for Linux and

Windows operating systems it has a portable kernel

Sushant.S.Sakhalkar, Parth Gala, Divya Mohan / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1694-1698

1696 | P a g e

code which generally a code is written in ANSI C

which can be ported to any platform fulfilling certain

requirements like memory footprint, computational

power, number of registers etc. BSP or port files are

specific to an architecture, so for every architecture /

board there is a unique BSP / port files.

Configuration files can be used to optimize the kernel

and reduce the memory footprint of the kernel image

based on what features of the kernel would be used by

any application program. Finally the application

programme is generally written on top of the kernel

code and utilizes kernel API’s and functions exported

by the OS for the users of the RTOS.

 Fig.3 uCos II Architecture

2.7 SPI

There are two programs given for SPI, one for Master

and another for Slave. You can communicate between

two uNiBoard by connecting wires on SPI lines and

making ground common of both the boards. The Output

is debugged using the serial terminal whatever

character typed on master’s serial terminal is

transferred to the slave’s serial terminal using SPI.

2.8 (RTC)

The DS1307 is the RTC (Real Time Clock) chip

interfaced on the I2C lines of the controller. The API’s

can be used for reading the date and time from RTC.

Before reading you need to call this API

Update_RTC_variables () which actually updates local

variables that data and time API’s returns. You can also

set date and time for RTC using Write_RTC () API and

date and time values for writing to RTC registers are

taken from RTC_def_cfg.h.The output can be seen on

the UART.

 Fig.4 RTC Interfacing

2.9 Joystick and VT library

The Joystick (analog joystick of PS2 fame) is used as a

mouse on the serial window in this sample example.

The Joystick X axis is connected to the on-chip ADC

channel 1 and Y axis to channel 2. The ADC is

configured such that it gives an interrupt after the

conversion is over. Since only one ADC channel

conversion is done at a time so we need to reconfigure

it for other channel. The ADC conversion value is

stored in ADC’s data register. The VT 100 is video

terminal made by DEC. It became a de facto standard

used by terminal emulators. Digital’s first ANSI-

compliant terminal, introduced in August 1978. The

VT100 was more of architecture than a simple terminal.

There are two display formats: 80 columns by 24 lines

and 132 columns by 14 lines. A separate advanced

video option was required to display 24 lines in 132-

column mode. This was

The standard specified for VT102 and VT131.We will

use the same VT102 commands for serial terminal. The

header file contains API’s which uses VT102 standard

sequence characters for changing the configurations of

the serial terminal. The cursor on the hyper terminal /

Gtkterm can be controlled using the joystick and the

joystick sensitivity/cursor speed can also be changed by

pressing SW4. There are 3 different speeds

programmed.

Sushant.S.Sakhalkar, Parth Gala, Divya Mohan / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1694-1698

1697 | P a g e

 Fig.5 Joystick interface

2.10 USB programmer

 USB programmer is available on board which is

used to embed the program in the microcontroller and

also for providing power.

 Fig.6 USB Interface

3. Software System
The software part consists of two types of code. The

first part of the code was written for the controller

board and the second was the code written for gaming.

3.1 Code written for controlling game

We have to configure the board according to our game

and write the appropriate code. The code is written in C

language [5]. If any interrupts are required for example:

if have to exit a game then we can directly press the

button which will interrupt the game and exit. Also we

can glow the Led’s according to the joystick

movements. We write the code in AVR Programmers

software. We can also configure the accelerometer as

per the requirement [5]. The code is written in such a

way that according to the movement of joystick or

accelerometer we get the corresponding values on

HyperTerminal through which we are able to know

whether proper synchronizing between the game

control and our control joystick and accelerometer has

been done.

Fig.7 Flow Chart of program flow

3.2 Code written for Game

Using SDL Code Blocks software we can design

awesome games for the system [7]. Also integrating the

chipmunks’ physics engine will further enhance our

game by achieving the tasks with optimized codes.

 Mainly the game is developed by integrating and

combination of various images [6]. By Blitting the

image we can make required game. Likewise there is a

predefined library of SDL Code Blocks [7]. These can

be readily implemented by us. There are various codes

as per specific functions. Some of the methods are

described below.

 SDL_Init--Initializes SDL.

Sushant.S.Sakhalkar, Parth Gala, Divya Mohan / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.1694-1698

1698 | P a g e

 SDL_Quit--Shut down SDL.

 SDL_InitSubsystem—initializes the

subsystem.

 SDL_VideoDriverName—returns the name of

video driver.

 SDL_Flip—swaps screen buffers.

 SetVideoMode—set a video mode with

specific height, width, and bits-per-pixel.

 SDL_OpenAudio—opens required audio

parameters.

 SDL_LoadWAV-- loads a wav file.

 SDL_JoystickName---returns the joystick

name.

 SDL_JoystickIndex---returns the index of

joystick.

 SDL_JoystickOpen---opens a joystick for use.

 SDL_JoystickClose---closes a previously

opened joystick.

Fig.8 Code written in Code blocks

Fig.9 One of the racing games developed.

3. Conclusion
The process of actual implementation of the project has

given us ample exposure to the various advancements

in the field of embedded gaming. We have successfully

implemented a low-cost, low-power embedded gaming

system at the heart of which is an AVR microcontroller.

From the very basic design of gaming controllers to the

actual synchronization between the game and the

controller, every step has strengthened our basic

concepts and enhanced our programming skills. Further

scope for development includes employment of HMI

interface akin to Microsoft Kinect and Nintendo Wii.

Wi-Fi enabled gaming controllers may also be designed

to provide effortless gaming experience from a

distance. Augmented reality, which is still in the

nascent stage of its development, may also be

incorporated like in Nintendo 3DS and PlayStation Vita

to enable gaming enthusiasts to have a real-life feel

whilst playing.

ACKNOWLEDGEMENTS

 Thinklabs Technosolutions Pvt.Ltd.

References
 [1] J . Turley, ―Embedded processors,‖

ExtremeTech, http://www.extremetech.com,

January 2002.

[2] J. J. Labrosse, Micro C/OS-II: The Real-Time

Kernel. CMP Books, 2002.

[3] ―RTLinux RTOS,‖ fSMLabs Inc., URL:

http://www.fsmlabs.com.

[4] W. Kim, D. Shin, H. Yun, J. Kim, and S. Min,

―Performance comparison of dynamic voltage

scaling algorithms for hard real-time systems,‖

in Proc. 8th IEEE Real-Time and Embedded

Technology and Applications Symp., San Jose,

California, September 2002, pp. 219–228

[5] Muhammad Ali Mazidi, Janice Mazidi, Sarmad

Naimi, Avr Microcontroller and Embedded

Systems: Using Assembly and C (Prentice-Hall,

2010-1-21).

[6] Erik Yuzwa & Francois Dominic Laramee,

Learn C++ by making games (Thomson, 2010)

[7] Ernest Pazera, Andre Lamothe, Focus on SDL

Game Development, (Premier Press)

[8] http://lazyfoo.net

http://www.extremetech.com/
http://www.fsmlabs.com/

