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ABSTRACT 
With the growing trend toward remote security 

verification procedures for telephone banking, 

biometric security measures and similar applications, 

automatic speaker verification (ASV) has received a 

lot of attention in recent years. The complexity of ASV 

system and its verification time depends on the 

number of feature vectors, their dimensionality, the 

complexity of the speaker models and the number of 

speakers. At present there are several methods for 

feature selection in ASV systems. To improve 

performance of ASV system we present another 

method that is based on ant colony optimization 

(ACO) algorithm. After feature reduction phase, 

feature vectors are applied to a Gaussian mixture 

model universal back-ground model (GMM-UBM) 

which is a text-independent speaker verification 

model. The results of experiments indicate that with 

the optimized feature set, the performance of the ASV 

system is improved. Moreover, the speed of 

verification is significantly increased since by use of 

ACO, number of features is reduced over 80% which 

consequently decrease the complexity of our ASV 

system. 

 

Keywords – Ant colony optimization (ACO), Gaussian 

mixture model universal background model (GMM-

UBM), Genetic algorithm (GA), Feature selection, 

Speaker Verification. 

 

 

1. INTRODUCTION 
Automatic speaker recognition (ASR) system are 

generally divided into two categories, namely: automatic 

speaker identification (ASI) system which are designed to 

answer the question “who is the speaker?” or automatic 

speaker verification (ASV) systems that aim to answer the 

question “is the speaker who they claim to be?” 

  

ASV refers to the task of verifying speaker‟s identity 

using speaker-specific information contained in speech 

signal. Speaker verification methods are totally divided 

into text-dependent and text-independent applications. 

When the same text is used for both training and testing, 

the system is called to be text-dependent while the text-

independent operation, the text is used to train and test of 

the ASV system is completely unconstrained. Text-

independent speaker verification requires no restrictions 

on the type of input speech. In contrast, text-independent  

 

 

 

speaker verification usually gives less performance then 

text-dependent verification, which requires text input to be 

the same sentence as training data. (Xiang & Berger, 

2003). 

Application of speaker verification can be found in 

biometric person authentication such as an additional 

identity check during credit card payments over the 

internet while, the potential application of speaker 

identification can be found in multi-user systems.  

The objective of FS is to simplify a dataset by reducing 

its dimensionality and identifying relevant underlying 

features without sacrificing predictive accuracy.  

In real world problems, FS is a must sue to the abundance 

of noisy, irrelevant or misleading features. Selected 

feature should have high inter-class variance and low 

inter class variability. Ideally they should also be as 

independent of each other as possible in order to 

minimize the redundancy. 

Among too many methods that are proposed for FS, 

population based optimization algorithm such as genetics 

algorithm (GA)-based method and ant colony 

optimization (ACO)-based method have attracted a lot of 

attention. These methods attempt to achieve better 

solutions by application of knowledge from previous 

iterations. 

 

Genetic algorithm is optimization techniques based on the 

mechanism of natural selection. They used operation 

found in natural genetics to guide itself through the paths 

in the search space (Siedlecki & Skansky, 1989). Because 

of their advantages, recently, Gas have been widely used 

as tool for feature selection in data mining (Srinivas & 

Patnik, 1994). 

 

In our previous work, we have proposed an ACO 

algorithm for feature selection in GMM-based ASV 

system. In this paper we propose some modification to 

the algorithm and apply it to larger feature vectors 

containing mel-frequency cepstrail coefficient (MFSSs) 

and their delta coefficients, two energies, further below 

The rest of this paper is organized as follows. Section 2 

presents a brief overview of ASV systems. Feature 

selection methods are described in section 3. Ant colony 

optimization is described in section 4. Section 5 explains 

the proposed feature selection algorithm. Genetic 

algorithm is described in section 6. Section 7 reports 

computational experiments. It also includes a brief 
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discussion of the results obtained and finally the 

conclusion and future works are offered in the last 

section. 

 

2. An over view of ASV system 
 

The typical process is most proposed ASV system 

involves some forms of processing of the data (silence 

removal) and feature extractions, followed by some form 

of speaker modelling to estimate class dependent feature 

distributions (see fig. 1). A comprehensive over view can 

be found in Camp-bell (1997). Adopting this strategy the 

ASV problem can be further divided into the two problem 

domains of:  

1) Pre-processing, feature generation and selection 

2) Speaker modelling and matching. 

2.1 Feature extraction 

 

The original signal, the speech waveform, contains all 

information about the speaker, and each step i the 

extraction process can only reduce the mutual information 

or leave it unchanged. The objective of the feature 

extraction is to reduce the dimension of the extracted 

vectors and thereby reduce the complexity of the system. 

The main speaker-discriminating information as possible 

into as few features as possible. 

 

The choice of features in any proposed ASV system is of 

primary concern. Because if the feature set does not 

yield sufficient information then trying to estimate class 

dependent feature distributions is futile ( Basiri, 

Ghasem-Aghaee, & Aghdam, 2008). Most feature 

extraction techniques in speaker verification were 

original used in speech recognition. However, the focus 

in using these techniques was shifted to extract features 

with high variability among people. 

 

 
 

Fig. 1 Overview of the speaker- verification process 

 

Most commonly used features extraction techniques, 

such as mel-frequency cepstral coefficients (MFCCs) 

and linear prediction cepstral coefficients (LPCCs) have 

been particularly popular for ASV systems in recent 

years. This transforms give a highly compact 

representation of the spectral envelope of a sound 

(Cheung-chi, 2004). Delta-features, regardless on what 

features they are based, can be computed as a one-to-one 

function of the features themselves. Therefore, the delta-

features do not contain more information than is already 

in the features, and from the theory, no gain can be 

achieved by using them together with the features. 

However, the delta-features can be used as a simplified 

way of exploiting inter-feature dependencies in sub-

optimal schemes (Day & Nandi, 2007). 

2.2 Speaker modelling 

The speaker modelling stage of the process varies more 

in the literature. The purpose of speaker modelling is 

characterizing an individual that is enrolled into an ASV 

system with the aim of defining a model (usually feature 

distribution values). The three most popular methods in 

previous works are Gaussian mixture models (GMM) 

(Cheung-chi, 2004; Reynolds & Rose, 1995), Gaussian 

mixture models universal background model (GMM-
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UBM) (Neiberg, 2001; Reynolds, Quatieri, & Dunn, 

2000) and vector quantization (VQ) (Linde, Buzo, & 

Gray, 1980). Other techniques such as decision trees 

(Navratil, Jin, Andrews, & Campbell, 2003), support 

vector machine (SVM) (Wan, 2003) and artificial neural 

network (ANN) (Wouhaybi & Al-Alaou, 1999) have 

also applied. In this paper, GMM-UBM is used for 

speaker modelling. 

    

2.3 GMM-UMB approach 

 

GMM-UBM is the predominant approach used in 

speaker recognition systems, particularly for text-

independent task (Kanan et al., 2007). Given a segment 

of speech Y and a speaker S, the speaker verification 

task consists in determining whether Y was spoken by S 

or not. This task is often stated as basic hypothesis test 

between two hypotheses: Y is from the hypothesized 

speaker S(H0), and Y is not from the hypothesized 

speaker S(H1). A likelihood ratio (LR) between these 

two hypotheses is estimated and compared to a decision 

threshold U. The LR test is given by: 

 

 

LR(Y,HO,H1)=
𝑃(𝑌|𝐻𝑂)

𝑃(𝑌|𝐻1)
               (1) 

 

where Y is the observed speech segment, p(Y|H0) is the 

likelihood function for the hypothesis H0 evaluated for 

Y, p(Y|H1) is the likelihood function for H1 and Φ is the 

decision threshold for accepting or rejecting H0. If LR(Y, 

H0, H1) > Φ, H0 is accepted else H0 is rejected. A model 

denoted λhyp represents H0; it is learned using an extract 

of speaker S voice. The model λUBM represents the 

alternative hypothesis, H1, and is usually learned using 

data gathered from a large set of speakers. The 

likelihood ratio statistic becomes Often, the logarithm of 

this statistic is used giving the logLR (LLR): 

 

LLR(Y)=logp(Y| λhyp ) – logp(Y| λUBM )             (2)  

 

3 Feature selection approaches 

Feature selection is included in discrete optimization 

problems. The whole search space for optimization 

contains all possible subsets of features, meaning that its 

size is: 

(3) 

where n is the dimensionality (the number of features) 

and s is the size of the current feature subset 

(Mladenic´,2006). Usually FS algorithms involve 

heuristic or random search strategies in an attempt to 

avoid this prohibitive complexity. However, the degree 

of optimality of the final feature subset is often reduced 

(Jensen, 2005). 

The objectives of feature selection are manifold, the 

most important ones being: 

 To avoid over fitting and improve prediction 

performance. 

 To provide faster and more cost-effective models. 

 To gain a deeper insight into the underlying processes 

that generated the data. 

 

4 Ant colony optimization (ACO) 

 

In the early 1990s, ant colony optimization was 

introduced by Dorigo and colleagues as a novel nature-

inspired meta-heuristic for the solution of hard 

combinatorial optimization (CO) problems. An ant 

colony optimization algorithm (ACO) is essentially a 

system based on agents which simulate the natural 

behaviour of ants, including mechanisms of cooperation 

and adaptation. The inspiring source of ACO is the 

foraging behaviour of real ants (Dorigo & Blum, 2005). 

 

The first ACO algorithm developed was the ant system 

(AS) (Dorigo, 1992), and since then several 

improvements of the AS have been devised 

(Gambardella & Dorigo, 1995, 1996; Stützle & Hoos, 

1997). The ACO algorithm is based on a computational 

paradigm inspired by real ant colonies and the way they 

function. The underlying idea was to use several 

constructive computational agents (simulating real ants). 

A dynamic memory structure incorporating information 

on the effectiveness of previous choices based on the 

obtained results, guides the construction process of each 

agent. 

 

 
 

Fig.2. ACO problem representation for FS. 

 

In order to exchange information about which path 

should be followed, ants communicate with each other 

by means of a chemical substance called pheromone. As 

ants move, a certain amount of pheromone is dropped on 

the ground, creating a pheromone trail. The more ants 

follow a given trail, the more attractive that trail 

becomes to be followed by other ants. 

 

4.1. Ant colony optimization for feature selection 

As mentioned earlier given a feature set of size n, the FS 

problem is to find a minimal feature subset of size s(s < 

n) while retaining a suitably high accuracy in 

representing the original features. Therefore, there is no 
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concept of path. A partial solution does not define any 

ordering among the components of the solution, and the 

next component to be selected is not necessarily 

influenced by the last component added to the partial 

solution (Blum & Dorigo, 2004; Leguizamon & 

Michalewicz, 1999). Furthermore, solutions to an FS 

problem are not necessarily of the same size. To apply 

an ACO algorithm to solve a feature selection problem, 

these aspects need to be addressed. The first problem is 

addressed by redefining the way that the representation 

graph is used. 4.1.1. Graph representation The feature 

selection problem may be reformulated into an ACO-

suitable problem. The main idea of ACO is to model a 

problem as the search for a minimum cost path in a 

graph. Here nodes represent features, with the edges 

between them denoting the choice  of the next feature. 

The search for the optimal feature subset is then an ant 

traversal through the graph where a minimum number of 

nodes are visited that satisfies the traversal stopping 

criterion. Fig. 2 illustrates this setup. Nodes are fully 

connected to allow any feature to be selected next. The 

ant is currently at node f1 and has a choice of which 

feature to add next to its path (dotted lines). It chooses 

feature f2 next based on the transition rule, then f3 and 

then f4. Upon arrival at f4, the current subset {f1, f2, f3, 

f4} is determined to satisfy the traversal stopping 

criterion (e.g. suitably high classification accuracy has 

been achieved with this subset). 

The ant terminates its traversal and outputs this feature 

subset as a candidate for data reduction (Basiri et al., 

2008). Based on this reformulation of the graph 

representation, the transition rules and pheromone 

update rules of standard ACO algorithms can be applied. 

In this case, pheromone and heuristic value are not 

associated with links. Instead, each feature has its own 

pheromone value and heuristic value. 

4.1.2.    Heuristic desirability. 

 The basic ingredient of any ACO algorithm is a 

constructive heuristic for probabilistically constructing 

solutions. A constructive heuristic assembles solutions 

as sequences of elements from the finite set of solution 

components. A solution construction starts with an 

empty partial solution. Then, at each construction step, 

the current partial solution is extended by adding a 

feasible solution component from the set of solution 

components (Dorigo & Blum, 2005). A suitable 

heuristic desirability of traversing between features 

could be any subset evaluation function for example, an 

entropy-based measure (Jensen, 2005) or rough set 

dependency measure (Pawlak, 1991). In proposed 

algorithm, classifier performance is mentioned as 

heuristic information for feature selection. The heuristic 

desirability of traversal and node pheromone levels are 

combined to form the so-called probabilistic transition 

rule, denoting the probability that ant k will include 

feature i in its solution at time step t: 

   (4) 

 

where j
k
 is the set of feasible features that can be added 

to the partial solution;  τi and ηi are respectively, the 

pheromone value and heuristic desirability associated 

with feature i. α and β are two parameters that 

determine the relative importance of the pheromone 

value and heuristic information.  

The transition probability used by ACO is a balance 

between pheromone intensity (i.e. history of previous 

successful moves), τi, and heuristic information 

(expressing desirability of the move), ηi. This 

effectively balances the exploitation-exploration trade-

off. The best balance between exploitation and 

exploration is achieved through proper selection of the 

parameters α and β. If a = 0, no pheromone information 

is used, i.e. previous search experience is neglected. 

The search then degrades to a stochastic greedy search. 

If β = 0, the attractiveness (or potential benefit) of 

moves is neglected. 

4.1.3.    Pheromone update rule 

After all ants have completed their solutions, 

pheromone evaporation on all nodes is triggered, and 

then according to Eq. (7) each ant k deposits a quantity 

of pheromone, ∆τi
k
(t) on each node that it has used. 

 

  (5) 

 

where S
k
(t) is the feature subset found by ant k at 

iteration t, and |S
k
(t)| is its length. The pheromone is 

updated according to both the measure of the classifier 

performance, ϒ(S
k
(t)), and feature subset length. Ф € 

[0, 1] and 𝜑 = 1-ф are two parameters that control the 

relative weight of classifier performance and feature 

subset    

 

 
 

Fig. 3. Overall process of Aco feature selection for ASV. 

 

length. This formula means that the classifier 

performance and feature subset length have different 

significance for feature selection task. In our 

experiment we assume that classifier performance is 
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more important than subset length, so they were set as ∅ 

= 0.8, 𝜑 = 0.2. 

In practice, the addition of new pheromone by ants and 

pheromone vaporation are implemented by the 

following rule applied to all the nodes: 

 

(6) 

 

where m is the number of ants at each iteration and 

p𝜖(0,1) is the pheromone trail decay coefficient. The 

main role of pheromone evaporation is to avoid 

stagnation, that is, the situation in which all ants 

constructing the same solution. g indicates the best ant 

at each iteration. All ants can update the pheromone 

according to Eq. (8) and the best ant deposits additional 

pheromone on nodes of the best solution. This leads to 

the exploration of ants around the optimal solution in 

next iterations. 

 

4.1.4. Proposed feature selection algorithm 

Typically, an ASV system consists of several essential 

parts including feature extraction and feature selection. 

After pre-processing of speech signals, feature 

extraction is used to transform the input signals into a 

feature set (feature vector). Feature selection is applied 

to the feature set to reduce the dimensionality of it. This 

process is shown in Fig. 3. ACO is used to explore the 

space of all subsets of given feature set. The 

performance of selected feature subsets is measured by 

invoking an evaluation function with the corresponding 

reduced feature space and measuring the specified 

classification result. The best feature subset found is 

then output as the recommended set of features to be 

used in the actual design of the classification system. 

The main steps of proposed feature selection algorithm 

are as follows: 

 

1. Initialization. 

 Determine the population of ants. 

 Set the intensity of pheromone trial associated with     

any feature. 

 Determine the maximum of allowed iterations. 

2. Solution generation and evaluation of ants. 

 Assign any ant randomly to one feature and visiting 

features, each ant builds solutions completely. In this 

step, the evaluation criterion is equal error rate (EER) of 

the classifier. If an ant is not able to decrease the MSE of 

the classifier in 10 successive steps, it will finish its work 

and exit.      

3. Evaluation of the selected subsets. 

 Sort selected subsets according to classifier 

performance and their length. Then, select the best subset. 

4. Check the stop criterion. 

 Exit, if the number of iterations is more than the 

maximum allowed iteration, otherwise continue. 

5. Pheromone updating. 

Decrease pheromone concentrations of nodes then, all 

ants deposit the quantity of pheromone on graph. 

Finally, allow the best ant to deposit additional 

pheromone on nodes. 

6. Generation of new ants. 

 In this step, previous ants are removed and new ants 

are generated. 

7. Go to 2 and continue. 

The process begins by generating a number of ants that 

are then placed randomly on the graph i.e. each ant 

starts with one random feature. Alternatively, the 

number of ants to place on the graph may be set equal 

to the number of features within the data; each ant starts 

path construction at a different feature. From these 

initial positions, they traverse nodes probabilistically 

until a traversal stopping criterion is satisfied. The 

resulting subsets are gathered and then evaluated. If an 

optimal subset has been found or the algorithm has 

executed a certain number of times, then the process 

halts and outputs the best feature subset encountered. If 

none of these conditions hold, then the pheromone is 

updated, a new set of ants are created and the process 

iterates once more.  

5. Genetic algorithm (GA) 

The GAs are stochastic global search methods that 

mimic the metaphor of natural biological evolution 

(Srinivas & Patnik, 1994). These algorithms are 

general-purpose optimization algorithms with a 

probabilistic component that provide a means to search 

poorly understood, irregular spaces. Instead of working 

with a single point, GAs work with a population of 

points. Each point is a vector in hyperspace 

representing one potential (or candidate) solution to the 

optimization problem. A population is, thus, just an 

ensemble or set of hyperspace vectors. Each vector is 

called a chromosome in the population. The number of 

elements in each vector (chromosome) depends on the 

number of parameters in the optimization problem and 

the way to represent the problem. How to represent the 

problem as a string of elements is one of the critical 

factors in successfully applying a GA (or other 

evolutionary algorithm) to a problem. 

5.1. Genetic algorithm for feature selection 
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Several approaches exist for using GAs for feature 

subset selection. The two main methods that have been 

widely used in the past are as follow. First is due to 

Siedlecki and Sklansky (1989), of finding an optimal 

binary vector in which each bit corresponds to a feature 

(Binary vector optimization (BVO) method). A „1‟ or 

„0‟ suggests that the feature is selected or dropped, 

respectively. The aim is to find the binary vector with 

the smallest number of 1‟s such that the classifier 

performance is maximized. This criterion is often 

modified to reduce the dimensionality of the feature 

vector at the same time (Yang & Honavar, 1998). The 

second and more refined technique uses an m-ary vector 

to assign weights to features instead of abruptly 

dropping or including them as in the binary case 

(Punch, Goodman, Pei, Hovland, & Enbody, 1993). 

This gives a better search resolution in the 

multidimensional space (Raymer, Punch, Goodman, 

Kuhn, & Jain, 2000). 

6. Experimental results 

A series of experiments was conducted to show the 

utility of proposed feature selection algorithm. All 

experiments have been run on a machine with 3.0 GHz 

CPU and 512 MB of RAM. We implement proposed 

ACO algorithm and GA-based feature selection 

algorithm in Matlab R2006a. The operating system was 

Windows XP Professional. The following sections 

describe TIMIT dataset and implementation results. 

6.1. TIMIT dataset 

The TIMIT corpus (Garofolo et al., 1990) is used in this 

paper This corpus contains 630 speakers (438 male and 

192 female) representing eight major dialect regions of 

the United States, each speaking ten sentences. There 

are two sentences that are spoken by all speakers and 

the remaining eight are selected randomly from a large 

database.  

The speech signal is recorded through a high quality 

microphone with a sampling frequency of 16 kHz in a 

quiet environment, with no session interval between 

recordings. Eight sentences (SX, SI) were used to 

develop each speaker model, and the remaining 2 SA 

sentences were used to test each speaker. The 40 

speakers included in both the test and train directories 

were used during the TIMIT (40) trials. 

6.2. Evaluation measure 

The evaluation of the speaker verification system is 

based on detection error tradeoff (DET) curves, which 

show the tradeoff between false alarm (FA) and false 

rejection (FR) errors. Typically equal error rate (EER), 

which is the point on the curve where FA = FR, is 

chosen as evaluation measure. We also used detection 

cost function (DCF) defined as (Reynolds & Rose, 

1995):   

 (7) 

6.3. Experimental setup 

Various values were tested for the parameters of 

proposed algorithm. The experiments show that the 

highest performance is achieved by setting the 

parameters to values shown in Table 1. Experiments 

were conducted on a subset of TIMIT corpora consist of 

24 male and 16 female speakers of different accent that 

were selected randomly. Data were processed in 20 ms 

frames (320 samples) with 50% overlaps. Frames were 

segmented by Hamming window and pre-emphasized 

with α = 0.97 to compensate the effect of microphone‟s 

low pass filter. At first, feature vector was created by 

extracting MFCCs from silence-removed data for each 

frame. In the next step, delta coefficients were 

calculated based on the MFCCs and appended to 

existing feature vector. Furthermore, two energies were 

applied to input vectors as described earlier. Then we 

consider the LPCCs and their delta coefficients 

respectively and append them to the feature vector. The 

final feature set contains F = 50 features. Table 2 shows 

the overall set of features. 

Finally, verification process was performed using the 

GMMUBM approach. The performance criterion is due 

to EER and DCF according to an adopted decision 

threshold strategy. A single 2048 GMM was trained by 

pooling all the training data together. 

6.4. Results and discussion 

The verification quality and feature subset length are 

two criteria that are considered to assess the 

performance of algorithms. Comparing the first 

criterion, we noted that both ACO-based and GA-based 

algorithms reduce the dimensionality of feature space. 

Furthermore, the ACO-based algorithm selects a 

smaller subset of features than the GA-based algorithm. 

Table 3 shows the number of selected 
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 features by ACO-based and GA-based approaches. 

As we can see in Table 3, ACO can degrade 

dimensionality of features over 80%. 

 

 

The second performance criterion is due to EER and 

DCF according to an adopted decision threshold 

strategy. The EER and DCF for ACO-based and 

GMM-based algorithms with different number of 

Gaussian (16, 32 and 64) were shown in Table 4.  

 

Ideally the number of mixtures, M, should 

approximate the number of natural classes in data. If 

M is less than the number of natural classes, closely 

placed clusters will fuse to form larger clusters whose 

variance is higher. This results in a larger percentage 

of frames, both the true speaker and imposter, getting 

average scores. The performance goes down because 

these frames cannot be discriminated. This is a case of 

trying to under-fit training data. When M is more than 

the number of natural classes, larger clusters are 

broken up into smaller sub-clusters or spurious frames 

get represented as separate clusters. The new clusters 

will have lower variance. This would lead to increase 

in average and low scoring frames and hence would 

lead to lower performance. This is a case of trying to 

over-fit training data. As could be seen in Table 4, 

speaker verification performance is found to increase 

as M is increased but begins to drop after a point at 

which over-fitting starts taking place. 

DET curves for GA-based and ACO-based algorithms 

with 16, 32 and 64 Gaussians are shown in Figs. 4–6. 

From the results, it can be seen that ACO-GMM 

yields a significant improvement in speed  than the 

baseline GMM approach. The improvement is due to 

the selection of optimal feature set by ACO algorithm. 

To further highlight the search process, we graph 

percent selected features of every ant‟s current 

iteration (horizontal coordinate) against classifier 

performance (vertical coordinate). Each point in the 

figure is an ant. The process of the ant colony 

searching for optimal solutions for TIMIT dataset with 

32 Gaussian (best results obtained with 32 Gaussian) 

is given in Figs. 7a–7k. 

From the results and figures, we can see that, 

compared with GA, ACO is quicker in locating the 

optimal solution. In general, it can find the optimal 

solution within tens of iterations. If exhaustive search 

is used to find the optimal feature subset in the TIMIT 

dataset, there will be tens of billiards of candidate 

subsets, which is impossible to execute. But with 

ACO, at the 100th iteration the optimal solution is 

found. 

ACO has powerful exploration ability; it is a gradual 

searching process that approaches optimal solutions. 

The running time of ACO is affected more by the 

problem dimension (feature numbers), and the size of 

data. For some datasets with more features, after 

finding a sub-optimal solution, the GA cannot find a 

better one. However, ACO can search in the feature 

space until the optimal solution is found. Number of 

features greatly affects the GA. 

ACO comprises a very simple concept, and the ideas 

can be implemented in a few lines of computer code.  

  

Fig.4. DEsT curves for GMM-UBM,ACO-GMM-

UBM and GA with 16 Guassians. 
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fig.5. DET curves for GMM-UBM,ACO-GMM-UBM 

and GA with 32 Guassians. 

 

Fig.6. DET curves for GMM-UMB,ACO-GMM-UMB 

and GA with 64 Gaussians. 

 

Fig.7.a.  iteration 1 of ACO on TIMIT dateset. 

 

 

Fig.7b.  iteration 10 of ACO on TIMIT dateset. 

 

 

Fig.7c. iteration 20 of aco on TIMIT dataset 

 

 

Fig.7d. iteration 30 of ACO on TIMIT dataset 
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Fig.7e. iteration 40 of ACO on TIMIT dataset 

 

 

Fig.7f. iteration 50 of ACO on TIMIT datase 

 

Fig.7g. iteration 60 of ACO on TIMIT dataset 

 

Fig.7h. iteration 60 of ACO on TIMIT dataset 

 

 

Fig.7i. iteration 70 of ACO on TIMIT dataset 

 

Fig.7j. iteration 80 of ACO on TIMIT dataset 

This optimization technique does not suffer, however, 

from some of the difficulties of GAs; interaction in the 

colony enhances rather than detracts from progress 

toward the solution. Further, an ant colony system has 

memory, which the genetic algorithm does not have. 
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Changes in genetic populations result in the 

destruction of previous knowledge of the problem. In 

ant colony optimization, ants that past optima are 

tugged to return towards them; all ants retain 

knowledge of good solutions. 

7. Conclusion and future research 

In this paper, we have addressed the problem of 

optimizing the acoustic feature set by ACO technique 

for text-independent speaker verification system based 

on GMM-UBM. In our previous work we have 

proposed an ACO algorithm for feature selection in 

GMM-based ASV systems (Nemati et al., 2008). In 

this paper we propose some modifications to the 

algorithm and apply it to larger feature vectors 

containing MFCCs and their delta coefficients, two 

energies, LPCCs and their delta coefficients. ACO 

selected the most relevant features among all features 

in order to increase the performance of our ASV 

system. We compare its performance with another 

prominent population-based feature selection method, 

genetic algorithm. The experimental results on a 

subset of TIMIT database showed that ACO is able to 

select the more informative features without loosing 

the performance than GA. The feature vectors size 

reduced over 80% that led to a less complexity of our 

ASV system. Moreover, verification process in the test 

phase speed up because less complexity is achieved by 

the proposed system in comparison with current ASV 

systems. 

For future work, the authors plan to investigate the 

performance of proposed ASV system by taking 

advantage of using VQ and other models instead of 

GMM-UBM. We also, intend to take the advantage of 

other swarm intelligence techniques like Particle 

swarm optimization (PSO) algorithm in ASV systems. 

Finally, another research direction will involve 

experiments with different datasets. 

REFERENCES 

[1]  Aghdam, M. H., Ghasem-Aghaee, N., & Basiri, 

M. E. (2009). Text feature selection using ant 

colony optimization. Expert Systems with 

Applications, 36, 6843–6853. 

[2]  Ani, A. A. (2005). Ant colony optimization for 

feature subset selection. Transaction on 

Engineering, Computing and Technology, 4, 3–

35. 

[3]  Basiri, M. E., Ghasem-Aghaee, N., & Aghdam, 

M. H. (2008). Using ant colony optimization-

based selected features for predicting post-

synaptic activity in proteins. EvoLNCS. LNCS 

(vol. 4973). Heidelberg: Springer-Verlag. pp. 

12–23. 

[4]  Bins, J. (2000). Feature selection from huge 

feature sets in the context of computer vision. 

Ph.D. dissertation, Department Computer 

Science, Colorado Stat University. 

[5]  Blum, C., & Dorigo, M. (2004). The hyper-cube 

framework for ant colony optimization. IEEE 

Transactions on Systems, Man, and Cybernetics 

– Part B 34(2), 1161–1172. 

[6]  Campbell, J. P. (1997). Speaker recognition: A 

tutorial. Proceedings of IEEE, 85(9), 1437–

1462. 

[7]  Cheung-chi, L. (2004). GMM-based speaker 

recognition for mobile embedded systems  

Ph.D. thesis, University of Hong Kong. 

[8]  Cohen, A., & Zigel, Y. (2002). On feature 

selection for speaker verification. In 

Proceedings of COST 275 workshop on the 

advent of biometrics on the Internet. 

[9]  Day, P., & Nandi, A. K. (2007). Robust text-

independent speaker verification using genetic 

programming. IEEE Transactions on Audio, 

Speech, and Language Processing, 15(1), 285–

295. 

[10]  Dorigo, M. (1992). Optimization, learning and 

natural algorithms. Ph.D. dissertation, 

Dipartimento di Electtronica, Politecnico di 

Milano, Italy. 

[11]  Dorigo, M., & Caro, G. D. (1999). Ant colony 

optimization: A new meta-heuristic. In 

Proceedings of the congress on evolutionary 

computing. 

[12]  Dorigo, M., & Blum, C. (2005). Ant colony 

optimization theory: A survey. Theoretical 

Computer Science, 243–278. 

[13]  Dorigo, M., Maniezzo, V., & Colorni, A. 

(1996). Ant system: Optimization by a colony f 

cooperating agents. IEEE Transaction on 

Systems, Man, and Cybernetics – Part B, 26(1), 

29–41. 

[14]  Duda, R. O., & Hart, P. E. (1973). Pattern 

classification and scene analysis. Chichester: 

John Wiley & Sons. 

[15]  Gambardella, L. M., & Dorigo, M. (1995). Ant-

Q: A reinforcement learning approach to the 

TSP. In Proceedings of the twelfth international 

conference on machin learning (pp. 252–260). 

[16]  Gambardella, L. M., & Dorigo, M. (1996). 

Solving symmetric and asymmetric TSPs by ant 



Hunny Pahuja, Jitender Chhabra, Ajay Khokhar / International Journal of Engineering Research 

and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.1466-1476 

1476 | P a g e  
 

colonies. In Proceedings of IEEE international 

conference on evolutionary computation (pp. 

622–627). 

[17] Ganchev, T., Zervas, P., Fakotakis, N., & 

Kokkinakis, G. (2006). Benchmarking feature 

selection techniques on the speaker verification 

task. In Fifth international symposium on 

communication systems, networks and digital 

signal processing, CSNDSP‟06 (pp. 314–318). 

[18] Garofolo, J. et al. (1990). DARPA TIMIT 

acoustic–phonetic continuous speech corpus 

CDROM. National Institute of Standards and 

Technology. 

[19] Jensen, R. (2005). Combining rough and fuzzy 

sets for feature selection. Ph.D. thesis, 

University of Edinburgh. 

[20]  Kanan, H. R., Faez, K., & Hosseinzadeh, M. 

(2007). Face recognition system using ant 

colony optimization-based selected features. In 

Proceedings of the first IEEE symposium on 

computational intelligence in security and 

defense applications, CISDA 2007 (pp. 57–62). 

USA:  IEEE Press. 

[21]  Kwon, S., & Narayanan, S. (2002). Speaker 

change detection using a new weighted distance 

measure. In Proceedings of international 

conference on spoken language processing 

(ICSLP 2002), Denver, CO (pp. 2537–2540). 

[22] Lapidot, I., Guterman, H., & Cohen, A. (2002). 

Unsupervised speaker recognition based on 

competition between self-organizing maps. 

IEEE Transactions on Neural Networks, 13(2), 

877–887. 

[23] Leguizamon, G., & Michalewicz, Z. (1999). A 

new version of ant system for subset problems. 

In Proceedings of IEEE congress on 

evolutionary computation (pp. 1458– 1465). 

[24]  Linde, Y., Buzo, A., & Gray, R. M. (1980). An 

algorithm for vector quantizer design. IEEE 

Transactions on Communications, 28, 84–95. 

[25]  Liu, B., Abbass, H. A., & McKay, B. (2004). 

Classification rule discovery with ant colony 

optimization. IEEE Computational Intelligence 

Bulletin, 3(1), 31–35. 

[26]  Liu, D., & Kubala, F., (1999). Fast speaker 

change detection for broadcast news 

transcription and indexing. In Proceedings of 

6th European conference speech communication 

and technology (Eurospeech 1999), Budapest, 

Hungary (pp. 1031– 1034). 

[27] Maniezzo, V., & Colorni, A. (1999). The ant 

system applied to the quadratic assignment 

problem. IEEE Transaction on Knowledge and 

Data Engineering, 11(5), 769–778. 

[28]  Nemati, S., Boostani, R., & Jazi, M. D. (2008). 

A novel text-independent speaker verification 

system using ant colony optimization algorithm. 

In ICISP2008. LNCS (vol. 5099, pp. 421–429). 

Berlin, Heidelberg: Springer-Verlag.  

[29]  Pandit, M., & Kittkr, J. (1998). Feature 

selection for a DTW-based speaker verification 

system. IEEE, 796–799. 

 [30]  Raymer, M., Punch, W., Goodman, E., Kuhn, 

L., & Jain, A. K. (2000). Dimensionality 

reduction using genetic algorithms. IEEE 

Transactions on Evolutionary Computing, 4, 

164–171. 

[31]  Reynolds, A., Quatieri, F., & Dunn, R. (2000). 

Speaker verification using adapted Gaussian 

mixture models. Digital Signal Processing, 10, 

19–41. 

[32]  Reynolds, D. A., & Rose, R. C. (1995). Robust 

text-independent speaker identification using 

Gaussian mixture speaker models. IEEE 

Transactions on Speech and Audio Processing, 

3(1), 72–83. 

 [33] Srinivas, M., & Patnik, L. M. (1994). Genetic 

algorithms: A survey. Los lamitos: IEEE 

Computer Society Press. 

[34]  Stützle, T., & Hoos, H. H. (1997). MAX–MIN 

ant system and local search for the traveling 

salesman problem. In Proceedings of IEEE 

international conference on evolutionary 

computation (pp. 309–314). 

[35]  Susmaga, R. (1998). Parallel computation of 

reducts. In Proceedings of the first international 

conference on rough sets and current trends in 

computing (pp. 450–457). Springer-Verlag. 

[36]  Wouhaybi, R., & Al-Alaou, M. A. (1999). 

Comparison of neural networks for speaker 

recognition. In Proceedings of 6th IEEE 

international conference electronics, circuits 

systems (ICECS) (Vol. 1, pp. 125–128). 

[37]  Xiang, B., & Berger, T. (2003). Efficient text-

independent speaker verification with structural 

Gaussian mixture models and neural network. 

IEEE Transactions on Speech and Audio 

Processing, 11(5). 

 


