
Krishna Mohan, Surekha Alokam,
 
MHM Krishna Prasad

  
/ International Journal of Engineering Research and 

Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.1401-1405 

1401 | P a g e  

 

An Efficient Decision Tree For Uncertain Data

Krishna Mohan
*1

, Surekha Alokam 
#1

,
 
MHM Krishna Prasad

 #2  

1,2 
Associate professor, Dept. of Computer Science Jawaharlal Nehru Technological University 

*1
Kakinada, 

#2
Vijayanagaram, Andhra Pradesh. 

#1 
M.Tech, Computer Science Department, JNTU Kakinada, Andhra Pradesh. 

 

 

 
Abstract: To handle known values and data we have 

traditional decision trees. Decision tree is used for 

classification technique. We propose a decision tree based 

classification for uncertain data. Data uncertainty is commonly 

exists in many applications during data collection, such as 

measurement/quantisation errors, data staleness, and multiple 

repeated measurements. With the use of uncertainty value of 

data is not represented by single value, but by multiple values 

forming a probability distribution. In this paper we extend 

traditional decision tree algorithms to handle both certain data 

and uncertain datasets. Here the uncertainty is handled by 

considering the probability density function (pdf). The 

resulting classifiers are more accurate than the traditional one. 

we can use these algorithms for handling both categorical data 

as well as numerical data also.   

 

Keywords: Uncertain Data, Decision tree, Classification, Data 

Mining 

 

I. Introduction.  
       Decision trees are a simple yet widely used method for 

classification and predictive modeling. A decision tree 

partitions data into smaller segments called terminal nodes. 

Each terminal node is assigned a class label[2,6,10]. The non-

terminal nodes, which include the root and other internal 

nodes, contain attribute test conditions to differentiate each 

record from others that have different characteristics. This 

process terminates when the subsets cannot be partitioned 

further. In this paper we study how to control data uncertainty 

by using decision tree classification. A simple way to handle 

data uncertainty is to abstract probability distribution by 

means and variances. This approach is called Averaging.  Here 

we have another approach also that is called Distribution 

based approach in this complete information is utilized. In this 

paper the Decision tree can handle both numerical and 

categorical data, while many other techniques are usually 

specialized in analyzing datasets that have only one type data. 

Our goals are 1) To invent an algorithm for building decision 

trees for uncertain data using Distribution based approach. 

2) To check whether the Distribution approach could lead to 

higher accuracy when compared with averaging. 

 

 

 

 

 

 

3) Pruning techniques are derived to significantly improve the 

computational efficiency of Distribution based algorithm. 

Data uncertainty arises basically in many applications due to 

various reasons. We have three categories here: measurement 

errors, data staleness, and repeated measurements. 

  1) Measurement Errors: Data obtained from measurements 

by physical devices are often not precise due to measurement 

errors. For example, thermometer measures body temperature 

by measuring the temperature of the ear drum via an infrared 

sensor. It is having some calibration error.  

2) Data Staleness: In some of the applications, data values are 

no longer fresh that means the values are continuously 

changing. Example for this is location based tracking system. 

3) Repeated Measurements: Basically the most common 

uncertainty comes from repeated measurements. Example for 

this is a patient’s body temperature could be taken multiple 

times during a day. 

 

II. Handling Uncertainty 

Under our uncertainty model, a feature value is represented 

not by a single value, vi,j , but by a pdf, fi,j. A decision tree 

under our uncertainty model resembles that of the point-data 

model. The difference lies in the way the tree is employed to 

classify unseen test tuples. Similar to the training tuples, a test 

tuple t0 contains uncertain attributes. Its feature vector is thus a 

vector of pdf’s (f0,1,,,,,,,,f0,k).A classification model is thus a 

function M that maps such a feature vector to a probability 

distribution P over C. The probabilities for P are calculated as 

follows. During these calculations, we associate each 

intermediate tuple tx with a weight wx є [0,1]. Further, we 

recursively define the quantity øn(c; tx,wx), which can be 

interpreted as the conditional probability that tx has class label 

c, when the sub tree rooted at n is used as an uncertain decision 

tree to classify tuple tx with weight wx.  

 

III. Algorithms 

   In this section, we discuss two approaches for handling 

uncertain data. The first approach, called ―Averaging‖, 

transforms an uncertain dataset to a point-valued one by 

replacing each pdf with its mean value. A decision tree can 

then be built by applying a traditional tree construction 

algorithm. To exploit the full information carried by the pdf’s, 

our second approach, called ―Distribution-based‖, considers 

all the sample points that constitute each pdf. 
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A. Relative Averaging 

  We simply replace each pdf with its expected value, thus 

effectively converting the data tuples to point-valued tuples. 

This reduces the problem back to that for point valued data, 

and hence C4.5 [3] (with pre-pruning and post pruning) can be 

reused. We call this approach AVG (for ―averaging‖). 

 

  AVG is a greedy algorithm that builds a tree top-down. 

When processing a node, we examine a set of tuples S. The 

algorithm starts with the root node and with S being the set of 

all training tuples. At each node n, we first check if all the 

tuples in S have the same class label c. If so, we make n a leaf 

node and set Pn(c) = 1, Pn(c΄) = 0 for all c΄≠ c. Otherwise, we 

select an attribute Ajn and a split point zn and divide the tuples 

into two subsets: ―left‖ and ―right‖. All tuples with vi,jn≤zn are 

put in the ―left‖ subset L; the rest go to the ―right‖ subset R. If 

either L or R is empty (even after exhausting all possible 

choices of Ajn and zn), it is impossible to use the available 

attributes to further discern the tuples in S. In that case, we 

make n a leaf node. Moreover, the population of the tuples in 

S for each class label induces the probability distribution Pn. In 

particular, for each class label c єC, we assign to Pn(c) the 

fraction of tuples in S that are labelled c. If neither L nor R is 

empty, we make n an internal node and create child nodes for 

it. We recursively invoke the algorithm on the ―left‖ child and 

the ―right‖ child, passing to them the sets L and R, 

respectively.  

 

    To build a good decision tree, the choice of Ajn and zn is 

crucial. At this point, we may assume that this selection is 

performed by a black box algorithm Best Split, which takes a 

set of tuples as parameter, and returns the best choice of 

attribute and split point for those tuples. We will examine this 

black box in details. Typically, Best Split is designed to select 

the attribute and split point that minimizes the degree of 

dispersion. The degree of dispersion can be measured in many 

ways, such as entropy (from information theory) or Gini index 

[4]. The choice of dispersion function affects the structure of 

the resulting decision tree. In this paper we assume that 

entropy is used as the measure since it is predominantly used 

for building decision trees. The minimizations is taken over 

the set of all possible attributes Aj (j = 1,…….,k), considering 

all possible split points in dom(Aj). Given a set S = {t1,……., 

tm} of m tuples with point values, there are only m-1 ways to 

partition S into two non-empty L and R sets. For each attribute 

Aj , the split points to consider are given by the set of values 

of the tuples under attribute Aj , i.e., {v1,j ,….,vm,j}. Among 

these values, all but the largest one give valid split points. 

 

 
                           TABLE 1 

 
(a) Relative Averaging         (b) Distribution-based 

Fig.1. Decision tree built from Example 

 

B. Distubution-based Approach  

For finding uncertain data, we adopt the same decision tree 

building framework as described above for handling point 

data. After an attribute Ajn and a split point zn has been chosen 

for a node n, we have to split the set of tuples S into two 

subsets L and R. The major difference from the point-data 

case lies in the way the set S is split. Recall that the pdf of a 

tuple ti є S under attribute Ajn spans the interval [ai,jn, bi,jn]. If 

bi,jn ≤zn, the pdf of ti lies completely on the left of the split 

point and thus ti is assigned to L. Similarly, we assign ti to R if 

zn < ai,jn. If the pdf properly contains the split point, i.e., 

Ai,jn≤zn < bi,jn, we split ti into two fractional tuples tL and tR in 

the same way as described in previous Section and add them 

to L and R, respectively. 

   The key to building a good decision tree is a good choice of 

an attribute Ajn and a split point zn for each node n. With 

uncertain data, however, the number of choices of a split point 

given an attribute is not limited to m-1 point values. This is 

because a tuple ti’s pdf spans a continuous range [ai,j , bi,j]. 

Moving the split point from ai,j to bi,j continuously changes the 

probability pL =∫
Zn

ai,jn Fi,jn(x) dx (and likewise for pR). This 

changes the fractional tuples tL and tR, and thus changes the 

resulting tree. If we model a pdf [9,13] by s sample values, we 

are approximating the pdf by a discrete distribution of s points. 

In this case, as the split point moves from one end-point ai,j to 

another end-point bi,j of the interval, the probability pL changes 

in s steps. With m tuples, there are in total ms sample points. 

So, there are at most ms-1 possible split points to consider. 

Considering all k attributes, to determine the best (attribute, 

split-point) pair thus require us to examine k(ms -1) 

combinations of attributes and split points. Comparing to 

AVG, UDT is s time more expensive. Note that splitting a 
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tuple into two fractional tuples involves a calculation of the 

probability pL, which requires an integration. We remark that 

by storing the pdf in the form of a cumulative distribution, the 

integration can be done by simply subtracting two cumulative 

probabilities. Let us re-examine the example tuples in Table I 

to see how the distribution-based algorithm can improve 

classification accuracy. By taking into account the probability 

distribution, UDT builds the tree shown in Figure 3 before 

pre-pruning and post-pruning are applied. This tree is much 

more elaborate than the tree shown in Figure 1(a), because we 

are using more information and hence there are more choices 

of split points. The tree in Figure 3 turns out to have a 100% 

classification accuracy! After post-pruning, we get the tree in 

Figure 1(b). Now, let us use the 6 tuples in Table I as testing 

tuples4 to test the tree in Figure 1(b). For instance, the 

classification result of tuple 3 gives P(A) = 5/8*0.80 + 3/8 * 

0.212 = 0.5795 and P(B) = 5/8 * 0.20 + 3/8 * 0.788 = 0.4205. 

Since the probability for ―A‖ is higher, we conclude that tuple 

3 belongs to class ―A‖. All the other tuples are handled 

similarly, using the label of the highest probability as the final 

classification result. It turns out that all 6 tuples are classified 

correctly. This hand-crafted example thus illustrates that by 

considering probability distributions rather than just expected 

values, we can potentially build a more accurate decision tree. 

 

 

 

 

 
 

 

Fig.2.    Example tree before post pruning 

m=number of tuples, and s = number of samples per pdf. For 

each such candidate attribute Aj and split point z, an entropy 

H(z,Aj) has to be computed . Entropy calculations are the most 

computation-intensive part of UDT. Our approach to 

developing more efficient algorithms is to come up with 

strategies for pruning candidate split points and entropy 

calculations. Note that we are considering safe pruning here. 

We are only pruning away candidate split points that give sub-

optimal entropy values. So, even after pruning, we are still 

finding optimal split points. Therefore, the pruning algorithms 

do not affect the resulting decision tree, which we have 

verified in our experiments. It only eliminates sub-optimal 

candidates from consideration, thereby speeding up the tree 

building process. 

C. Algorithm for Both Certain And Uncertain Data 

Input: The training dataset D; the set of candidate attributes 

att-list 

Output: An uncertain decision tree 

Begin 

1: create a node N; 

2: if (D are all of the same class, C) then 

3: return N as a leaf node labeled with the class C; 

4: else if (attribute-list is empty) then 

5: return N as a leaf node labeled with the highest weight class 

in D; 

6: end if; 

7: select a test-attribute with the highest probabilistic 

information gain ratio to label node N; 

8: if (test-attribute is numeric or uncertain numeric or 

categorical data) then 

9: binary split the data from the selected position y; 

10: for (each instance Rj) do 

11: if (test-attribute ≤y) then 

12: put it into Dl with weight Rj .w; 

13: else if (test-attribute > y) then 

14: put it into Dr with weight Rj .w; 

15: else 

16: put it into Dl with weight Rj .w *∫
y

x1f(x)dx; 

17: put it into Dr with weight Rj .w *∫
x2

yf(x)dx; 

18: end if; 

19: end for; 

20: else 

21: for (each value ai(i = 1, . . . , n) of the attribute) do 

22: grow a branch Di for it; 

23: end for; 

24: for (each instance Rj) do 

25: if (test-attribute is uncertain) then 

26: put it into Di with Rj .ai.w*Rj .w weight; 

27: else 

28: put it into a certain Di with weight Rj .w; 

29: end if 

30: end for; 

31: end if; 

32: for each Di  do 

33: attach the node returned by DTU(Di, att-list); 

34: end for; 

End 

         VI. DISS CUSSIONS 

a) Uncetainity model  

   In our discussion, uncertainty models of attributes have been 

assumed known by some external means. In practice, finding a 

good model is an application-dependent endeavor. 

For example, manufacturers of some measuring instruments 

do specify in instruction manuals the error of the devices, 

which can be used as a source of information for modeling 

error distributions. In some other cases, repeated 

measurements can be taken and the resulting histogram can be 

used to approximate the pdf .In the case of random noise, for 
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example, one could fit a Gaussian distribution5 using the 

sample mean and variance, thanks to the Central Limit 

Theorem. During the search for datasets appropriate for our 

experiments, we have hit a big obstacle: There are few 

datasets with complete uncertainty information. Although 

many datasets with numerical attributes have been collected 

via repeated measurements, very often the raw data has 

already been processed and replaced by aggregate values, 
such as the mean. The pdf information is thus not available to 

us. One example 

is the ―Breast Cancer‖ dataset (see Table II) from the UCI 

repository. This dataset actually contains 10 uncertain 

numerical features collected over an unspecified number of 

repeated measurements. However, when the dataset is 

deposited into the repository, each of these 10 features is 

replaced by 3 attribute values, giving the mean, the standard 

score and the mean of the three largest measured values. With 

these 3 aggregate values, we are unable to recover the 

distribution of each feature. Even modeling a Gaussian 

distribution is impossible. These 3 aggregate values are 

insufficient for us to estimate the variance. Had the people 

preparing this dataset provided the raw measured values, we 

would be able to model the pdf’s from these values directly, 

instead of injecting synthetic uncertainty and repeating this for 

different parameter values for w. Now that we have 

established in this work that using uncertainty information 

modeled by pdf’s can help us construct more accurate 

classifiers, it is highly advisable that data collectors preserve 

and provide complete raw data, instead of a few aggregate 

values, given that storage is nowadays very affordable.  

 

b)  Handling Categorical Attributes 

We have been focusing on processing uncertain numerical 

attributes in this paper. How about uncertain categorical 

attributes? Like their numerical counterparts, uncertainty can 

arise in categorical attributes due to ambiguities, data 

staleness, and repeated measurements. For example, to cluster 

users based on access logs of HTTP proxy servers using 

(besides other attributes such as age) the top-level domain 

names (e.g. ―.com‖, ―.edu‖, ―.org‖, ―.jp‖, ―.de‖, ―.ca‖) as an 

attribute, we obtain repeated ―measurements‖ of this attribute 

from the multiple log entries generated by each user. The 

multiple values collected from these entries form a discrete 

distribution, which naturally describes the uncertainty 

embedded in this categorical attribute. The colour of a traffic 

light signal, which is green at the time of recording, could 

have changed to yellow or even red in 5 seconds, with 

probabilities following the programmed pattern of the signal. 

This is an example of uncertainty arising from data staleness. 

Colours of flowers recorded in a survey may divide human-

visible colours into a number of categories, which may 

overlap with one another. Such ambiguities could be recorded 

as a distribution, e.g. 80% yellow and 20% pink. In all these 

cases, using a distribution to record the possible values (with 

corresponding probabilities) is a richer representation than 

merely recording the most likely value. 

For a tuple ti with uncertain categorical attribute Aj , the value 

uncertainty can be modeled by a discrete probability 

distribution function fi,j :dom(Aj) [0,1] satisfying Σxєdom(Aj ) 

fi,j(x) = 1. This is analogous to the case of uncertain numerical 

attribute. An internal node n in the decision tree corresponding 

to a categorical attribute Aj is not associated with a split point, 

though. Rather, n has many child nodes, each corresponding to 

a distinct value in dom(Aj). The test to perform at node n is to 

check the value of Aj , in the test tuple, and the action taken is 

to follow the branch to the child node corresponding to that 

attribute value. 

   To build a decision tree on uncertain data with a 

combination of numerical and categorical attributes, the same 

approach as described before can be followed: The tree is built 

recursively in a top-down manner, starting from the root. At 

each node, all possible attributes (numerical or categorical) are 

considered. For each attribute, the entropy of the split is 

calculated and the attribute giving the highest information gain 

is selected. The node is assigned that attribute (and split point, 

if it is a numerical attribute) and the tuples are (fractionally) 

propagated to the child nodes. Each child node is then 

processed recursively. 
 

     To evaluate the entropy of a categorical attribute Aj, we 

(fractionally) split the tuples in question into a set of buckets 

{Bv/v єdom(Aj)}. Tuple tx is copied into Bv as a new tuple ty 

with weight wy = fx,j(v) if and only if wy > 0. The pdf’sof  ty 

are inherited from tx, except for attribute Aj , which is set to 

fy,j(v) = 1 and fy,j(w) = 0 for all w≠v.The entropy for the split 

on Aj is calculated using all the buckets. As a heuristic, a 

categorical attribute that has already been chosen for splitting 

in an ancestor node of the tree need not be reconsidered, 

because it will not give any information gain if the tuples in 

question are split on that categorical attribute again. 
 

VII . Pruning  Algorithm 
      Although UDT can build a more accurate decision tree, it 

is not as efficient as AVG. As we have explained, to determine 

the best attribute and split point for a node, UDT has to 

examine k(ms -1) split points, where k = number of attributes, 

 

c) Pruning by bounding 

       To handle heterogeneous intervals, we first compute the 

entropy H(q,Aj) for all end-points q є Qj. Let Hj
*
 be the 

minimum value. Next, for each heterogeneous interval (a, b], 

we compute a lower bound, Lj, of H(z,Aj) over all z є (a, b]. If 

Lj ≥ Hj
*
, then no split points z є (a, b] can give an entropy 

smaller than Hj
*
and thus the whole interval can be pruned. 

This is the basis of our Local Pruning algorithm UDT-LP.A 

simple but effective improvement on UDT-LP is to use a 

global (across all attributes Aj) threshold H
*
 =min1≤j≤k Hj

*
for 

pruning. This gives UDT-GP. 
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d) End-point sampling 

 

       We have empirically found that UDT-GP is very effective 

in pruning intervals, reducing entropy calculation down to 

only 2.7% of that of UDT. What remains is that UDT-GP 

spends most time on computing the entropy values of end-

points of intervals. As an improvement, we use only 10% of 

the end-points to derive a pruning threshold. This threshold is 

slightly less effective, but saves a lot of entropy calculations 

for the end-points. Using these pruning techniques, we have 2  

algorithms. 

 

V .    Experiments On Efficiency 

 
The algorithms described above have been implemented in 

Java using JDK 1.6 and a series of experiments[1] were 

performed on a PC with an Intel Core 2 Duo 2.66GHz CPU. 

The data sets used are  

 

 

 
                                      Table II  

SELECTED DATA SETS FROM THE UCI MACHINE 

LEARNING REPOSITORY 

 

a) Pruning Effectiveness 

Figure shows that the pruning algorithms are very effective. 

They reduce the amount of entropy calculations—which 

dominate the execution time—tremendously, with UDT-ES 

reaching a >99% reduction ratio. 

 

b) Efficiency  

Figure shows that our algorithms are highly efficient, even 

though they are not as fast as AVG. Please be reminded that 

AVG generally builds less accurate classifiers. The execution 

time of AVG is shown in the figure for reference only. 

            
            

                   

                      Fig.3. Execution time 

 

 
                        Fig.4.Pruning effectiveness 

 

   VI.     Conclusion 
         We have extended the model of decision-tree 

classification and tree-construction algorithms to 

accommodate data tuples having numerical attributes with 

value uncertainty described by arbitrary pdf’s. Experiments 

show that exploiting data uncertainty leads to decision trees 

with remarkably higher accuracies. Performance is an issue, 

though, because of the increased amount of information to be 

processed. We have invented a series of highly effective 

pruning techniques to improve tree construction efficiency. 

Pruning by bounding and end-point sampling is novel pruning 

techniques. Although our novel techniques are primarily 

designed to handle uncertain data, they are also useful for 

building decision trees using classical algorithms when there 

are tremendous amounts of data tuples and also as a future 

analysis we can handle uncertainty that is caused by 

categorical data by using these Decision tree algorithms. 
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