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ABSTRACT 
In this paper the differential equations for torsional-

distortional analysis of  mono symmetric box girder 

structure were derived using Vlasov’s theory. The 

application of the derived equations was demonstrated using 

a single cell mono symmetric box girder structure.  

    The evaluation of the coefficients (Vlasov’s coefficients) 

of the governing equations of equilibrium which form a 

major part of the work was accomplished using the strain 

mode diagrams and Morh’s integral for displacement 

computation. Torsional-distortional equations of equilibrium 

for the analysis of the single cell mono symmetric box girder 

structure were obtained by substituting the Vlasov’s 

coefficients into the generalized differential equations of 

equilibrium. A single span simply supported mono 

symmetric box girder structure was  considered in the 

analysis.  

     The derived equations are fourth order coupled ordinary 

differential equations of equilibrium which were integrated 

by method of trigonometric series with accelerated 

convergence. The coupling of the equations show that there 

is  strong interaction between torsional strain mode and 

distortional strain mode such that torsional analysis of a 

mono symmetric box girder structure can not be carried out 

independent of distortional analysis without introducing 

errors in the analysis. 

 

Keywords: Box girder, distortion, mono- symmetric, 

torsion, Vlasov’s theory. 

 

1. Introduction 
A thin-walled structure is one which is made from thin 

plates joined along their edges. The plate thickness however 

is small compared to other cross sectional dimensions which 

are in turn often small compared with the overall length of 

the member or structure. Thin walled structures have gained 

special importance and notably increased application in 

recent years. The wide use of these thin walled structures is 

due to their great carrying capability and reliability and to 

the economic advantage they have over solid (column and 

beam) structures. 

      Initially design of box girder bridges is related to the 

design of plate girder bridges. However, such design 

knowledge does not contain important primary conditions of 

cross sectional deformations such as warping torsion and 

distortion. The application of cross sectional deformation 

equations formulated by Vlasov [1],  Dabrowski [2], and 

Varbanov [3], has opened a new way to analyze the 

torsional and distortional effects of loads on such girders.  

     The objectives of this study are to derive a set of 

differential equations governing the torsional-distortional 

behaviour of thin-walled mono symmetric box girder 

structures on the basis of Vlasov’s theory and to apply the 

obtained differential equations in the analysis of single cell 

mono symmetric box girder section to obtain torsional and 

distortional deformations.  

     Generally, a thin walled structure can be of open cross 

section e.g., channel and prismatic sections, or a closed 

cross section such as rectangular and trapezoidal sections. 

Thin walled structures of closed sections are generally 

referred to as ‘box structures’. Thus a girder structure 

cellular in section can be called box girder structure. These 

find their uses in different fields of civil engineering such 

as box culverts, and box girders in highway and bridge 

engineering. 

     Thin walled structures of open cross section are 

subjected only to bending stresses, no axial load or torsion, 

Heins [4]. Because of their thin wall thicknesses, the 

shearing resistances are constant across the thickness of 

the plate. On the other hand thin walled box structures may 

be subjected to bending, torsional and distortional stresses. 

Distortion alters the geometry of the cross section and 

generates some additional stresses thereby reducing the 

bearing capability of the box structural component. 

 

2. Review of Past Work       
The curvilinear nature of box girder bridges along with 

their complex deformation patterns and stress fields have 

led designers to adopt approximate and conservative 

methods for their analysis and design. Recent literatures: 

Hsu et al [5], Fan and Helwig [6], Sennah and Kennedy 

[7], on straight and curved box girder bridges, deal with 

analytical formulations to better understand the behaviour 

of these complex structural systems. Few authors: Okil and 

El-tawil [8], Sennah and Kennedy [7], have undertaken 

experimental studies to investigate the accuracy of existing 

methods. Before the advent of Vlasov’s theory of thin-

walled beams [1], the conventional method of predicting 
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warping and distortional stresses is by beam on elastic 

foundation (BEF) analogy. This analogy ignores the effect of 

shear deformations and takes no account of the cross 

sectional deformations which are likely to occur in a thin 

walled box girder structure 

     Several investigators; Bazant and El-Nimeiri [9], Zhang 

and Lyons [10], Boswell and Zhang [11], Usuki [12], 

Waldron [13], Paavola [14], Razaqpur and Li [15], Fu and 

Hsu [16], Tesar [17], have combined thin-walled beam 

theory of Vlasov and the finite element technique to develop 

a thin walled box element programs for elastic analysis of 

straight and curved cellular bridges.  

      Thus, various theories were postulated by different 

authors examining methods of analysis, both classical and 

numerical. A few others however carried out tests on 

prototype models to verify the authenticity of the theories. 

At the end of it all, the authors concluded that Vlasov’s 

theory captures all peculiarities of cross sectional 

deformations such as warping, torsion, distortion etc, and  

therefore adopted the method 

 

3. Energy Formulation of the Equilibrium 

Equations 
The longitudinal warping and transverse (distortional) 

displacements given by Vlasov [1] are: 

 ( , ) ( ) ( ), ( , ) ( ) ( )u x s U x s v x s V x s   (1)                                                                      

These displacements may be represented in series form as: 

1

1
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v x s V x s
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 (2)                                                  

where, Ui(x) and Vk(x) are unknown functions which 

express the laws governing the variation of the 

displacements along the length of the box girder frame. 

i(s) and kψ (s)  are elementary displacements of the strip 

frame, respectively out of the plane (m displacements) and 

in the plane (n displacements). These displacements are 

chosen among all displacements possible, and are called the 

generalized strain coordinates of a strip frame. 

     From the theory of elasticity the strains in the 

longitudinal and transverse directions are given by:   
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The expression for shear strain is:  ( , )
u v

x s
s x


 

 
 

    or      

 
1 1

'( ) ( ) ( ) '( ),
m n

i i k k

i k

s U x s V xx s 
 

     (4) 

Using 
i iand   displacement fields, and basic stress-

strain relationships of the theory of elasticity the 

expressions for normal and shear stresses become: 

  

1
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and  ( , ) ( , )x s G x s   
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Transverse bending moment generated in the box structure 

due to distortion is given by: 

 
1

, ( ) ( )
n

k k

k

M x s M s V x


                                    (7)                                                                                                         

where Mk(s) = bending moment generated in the cross 

sectional frame of unit with due to a unit distortion, V(x) = 

1 

     The potential energy of the box structure under the 

action of a distortional load of intensity q is given by:  

EU W                           (8)                                                                                                                     

where, 

  = the total potential energy of the box structure, 

U = Strain energy, 

EW  = External potential or work done by the external 

loads. 

From strength of material, the strain energy of the box 

structure is given by 

2 2 2
1 ( , ) ( , ) ( , )

( )
2

( )

x s x s M x s
U t s dxds

E G EIL S s

 
   

  
  
    

                                                                            (9) 

The work done by external load is given by; 

( , )EW qv x s dxds   

= ( ) ( )h h

s x

q V x s dsdx   

 = h h

x

q V dx                                                 (10) 

 Substituting eqns.(9 and 10) into eqn.(8) we obtain: 
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   (11)                                   

where, 

( , )x s = Normal stress 

( , )x s = Shear stress 

( , )M x s = Transverse distortional bending moment 

q = Line load per unit area applied in the plane of the plate  

3

2

( )

12(1- )
s

t s
I


 = Moment of inertia                                                                                        

E = Modulus of elasticity 

G = Shear modulus 

  = poisson ratio 

t = thickness of plate 

     Substituting eqns (1), (5), (6) and (7) into eqn.(11), and 

simplifying noting that ( )t s ds dA , we obtain the 

potential energy of the box structure as follows: 
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2

hk k h

E
s V x V x dx - h hq V dx   (12)                   

where the (Vlasov’s) coefficients are defined as follows. 
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The governing equations of torsional-distortional 

equilibrium are obtained by minimizing the energy 

functional eqn.(12), with respect to its functional variables 

u(x) and v(x) using Euler Lagrange technique, Elgolts 

[18].  

Minimizing with respect to u(x) we obtain: 

 ''( ) - ( ) - '( ) 0
1 1 1

m m n
k a U x b U x c V xij i ij i kj ki i k

  
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 (14)                                                                              

Minimizing with respect to v(x) we have: 

'( ) ( )c U x s V xiih hk k    

1
''( ) 0r V x qkh k h

G
                                    (15)                                                 

 where  2(1 )
E

G
                           

Equations (14) and (15) are Vlasov’s generalized 

differential equations of distortional equilibrium for a box 

girder. They  are presented in matrix notation as eqns.[16 

(a) and (b)]. 
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4. Generation of Strain Modes and Evaluation of 

Vlasov’s Coefficients 
From the energy formulation of the equilibrium equation 

we noted that   and   represent generalized warping 

and distortional strain modes respectively, and that 

 i s and ( )k s  are elementary displacements of the 

strip frame out of the plane (m displacements) and in the 

plane (n displacements) respectively. Thus, Vlasov’s 

coefficients of differential equations of equilibrium, 

eqn.(13), which involve a combination of these elementary 
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displacements and their derivatives may be obtained by 

consideration of the box girder cross section as  a strip 

frame, and then applying unit displacement one after the 

other at the nodal points of the frame in longitudinal 

direction, to determine the corresponding out of plane 

displacement of every joint regarded as fixed) on the frame. 

By applying another set of unit displacements at the joints in 

n possible transverse directions, the corresponding 

transverse (in-plane) displacements can also be obtained. 

The first order derivatives of these displacement functions 

may be obtained by numerical differentiation and used for 

computation of the coefficients with the aid of Morh’s 

integral for displacement computations. 

     A consideration of the single cell mono-symmetric strip 

frame in Fig.1(a) shows that it has four degrees of freedom 

in the longitudinal direction and four in the transverse 

direction. From eqn.(2), where in this case m = 4 and n = 4, 

it follows that we have sixteen  displacement quantities to 

compute and hence, sixteen differential equations of 

distortional equilibrium will be required. For multi-celled 

profiles the number of degrees of freedom will increase and 

hence the number of independent displacement quantities (m 

+ n) will require 2(m x n) differential equations to solve for 

the displacement quantities and this can be quite 

cumbersome. The application of Vlasovs generalized strain 

modes as modified by Varbanov [3], reduces the number of 

displacement quantities and hence the differential equations  

of equilibrium required to solve for them to seven, 

irrespective of the number of degrees of freedom possessed 

by the structure.  

   In the generalized strain modes, there are three strain fields 

in the longitudinal direction, 1 2,  and 3  and four, 

1 2 3ψ ,  ψ ,  ψ , 4ψ  in the transverse direction. Thus, from 

eqn (2) we have, 

1 1 2 2( , ) ( ) ( ) ( ) ( )u x s U x s U x s                                                

+ 3 3( ) ( )U x s                                                    (17) 

( , )v x s 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( )V x s V x s V x s                                                                       

+ 4 4( ) ( )V x s                                                    (18) 

where   

1 = o ut of plane displacement parameter when the load is 

acting (vertically) normal to the top flange of the girder, i.e., 

bending is about horizontal axis. 

2  = out of plane displacement parameter when the load is 

acting tangential to the plane of the flanges, i.e., bending is 

about vertical axis. 

3  = out of plane displacement parameter due to distortion 

of the cros section, i.e., the warping function .  

1ψ  = in-plane displacement parameter due to the load giving 

rise to  1  

2ψ  = in-plane displacement parameter due to the load 

giving rise to 2  

3ψ  = in-plane displacement parameter due to the 

distortion of the cross section, i.e., non uniform torsion. 

4ψ  = in-plane displacement function due to pure rotation 

or Saint Venant  torsion of the cross section. 

 

5. Strain Mode Diagrams 

Considering a simply supported girder loaded as shown in 

Fig.1(a), if we assume the normal beam theory, i.e., neutral 

axis remaining neutral before and after bending, then the 

distortion angle of the cross section will be as shown in 

Fig.1(b) where,   is the distortion angle (rotation of the 

vertical axis). The displacement φ1 (strain mode 1)  at any 

distance R, from the centroid is given by 1 R  . If we 

assume a unit rotation of the vertical (z) axis then 1 R  , 

at any point on the cross section. Thus, 1   is a property of 

the cross section obtained by plotting the displacement of 

the members of the cross section when the vertical (z-z) 

axis is rotated through a unit radian. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 Similarly, if the load is acting in       horizontal (y- y) 

direction, normal to the x-z plane then the bending is in x-z 

plane and y axis is rotated through angle θ2 giving rise to 

2  (strain mode 2) displacement out of plane. The values 

of 2  are obtained for the members of the cross section by 

plotting the displacement of the cross section when y-axis 

is rotated through a unit radian. The warping function 3  

(strain mode 3), of the beam cross section is the out of 

plane displacement of the cross section when the beam is 

twisted about its axis through the pole, one radian per unit 

length without bending in either z or y direction and 

without longitudinal extension. ψ1 and ψ2 are in-plane 

Fig. 1 Simply supported girder and 

          cross section distortion 

 

+ 

- 

θ 

(b) Cross section distortion 

       angle 

y x 

y 

(a) Simply supported girder 

 under vertical line load 
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displacements of the cross section in x-z and x-y planes 

respectively while ψ3  is  the distortion of the cross section.  

      In an un published work the authors have shown that 

these in-plane displacement quantities ψ1, ψ2 and ψ3 are the 

same as the derivatives of their corresponding out of plane 

displacements. Consequently, ψ1, ψ2 and ψ3 are obtained by 

numerical differentiation of 1 , 2   and 3   diagrams 

respectively. In strain mode 4, ψ4 is the displacement 

diagram of the beam cross section when the section is 

rotated one radian in say, a clockwise direction, about its 

centroidal axis. Thus, ψ4 is directly proportional to the 

perpendicular distance  ( radius of rotation) from the 

centroidal axis to the members of the cross section. It is 

assumed to be positive if the member moves in the positive 

directions of the coordinate axis and negative otherwise. 

     Fig.2 shows a single cell mono symmetric box girder 

section and its strain mode diagrams used for numerical 

example. The coefficients , , ,ij ij kj iha b c c and khr , of the 

governing equations of equilibrium  are computed with the 

aid of Morh’s integral chart using the strain mode diagrams.  

 

6. Formulation of Differential Equations of 

Equilibrium for Mono Symmetric Box Girder 

Structure   
The relevant coefficients for torsional-distortional 

equilibrium (strain modes 3 and 4),    are  a33,  b33,  c33, c34,  

r33, r34, r44 and s33.  Substituting these into the matrix notation 

eqns.(16a)  and (16b) and multiplying out we obtain: 

33 3 33 3 33 3 34 4''- - '- ' 0ka U b U c V c V                         (19) 

3
33 3 33 3 33 3 34 4'- '' '' -

q
c U ks V r V r V

G
                      (20) 

4
43 3 43 3 44 4' '' '' -

q
c U r V r V

G
                                 (21) 

Simplifying further we obtain the coupled differential 

equations of torsional-distortional equilibrium for mono 

symmetric sections as follow: 

1 4 1 3 1

3 2 4 2 4 2

''- ( )

- '' ( )iv iv

V V K a

V V V K b

 

 



 
                            (22) 

where, 44
2

43

,
r

c
  1 34 43 33 44-r c c r  ;      (23) 

33 44 34 43
2

33 43

-
,

b r c c

ka c
   1 43 33c ks  ;                        (24)   

 
34

1 33 43-
qq

K c c
G G

 ; 
33 4

2

33 43

b q
K

ka c G

 
  
 

            (25) 

       

 

7. Torsional-Distortional Analysis of Mono 

Symmetric Box Girder Structure 
In this section the solutions of the differential equations of 

equilibrium eqns.[16(a) and (b)] are obtained for the single 

cell mono symmetric box girder section shown in Fig.2(a). 

Live loads are considered according to AASHTO-LRFD 

[19], following the HL-93 loading. Uniform lane load of 

9.3N/mm distributed over a 3m width plus tandem load of 

two 110 KN axles. The loads are positioned at the 

outermost possible location to generate the maximum 

torsional effects. A three span simply supported bridge 

deck structure, 50m per span, was considered.  

 The obtained torsional loads are as follows; 

3 4157.16 , 1446.505q KN q KN  .  

 The governing equations of equilibrium are  

1 4 1 3 1

1 3 2 4 2 4 2

''-

- ''iv iv

V V K

V V V K

 

  



 
                                 (26) 

The values of the relevant coefficients  are,    

33 33 33 33

34 43 34 43 44

0.750; 1.407

1.265; 14.616

a b c r

c c r r r

   

    

  

  
 

-4 -4

33 0.261*6.9712*10 1.8195*10s     

The parameters for the governing equations are, 

2 33 44 27.405ka r    

1 34 43 33 44- -18.964r c c r    

2 33 44 34 43- 18.964b r c c    

-4

1 43 33 5.503*10c ks    

 
-434

1 33 43- 1.9163*10
qq

K c c
G G

   

-433 4
2

33 43

2.120*10
b q

K
ka c G

 
  
 

 

9 2 9 2
24*10 / , 9.6*10 / , 2.5E N m G N m k   Subs

tituting these parameters into eqn.(26 ) we obtain: 

-4 -4
-18.964 - 5.503*10 1.9163*10

4 3

-6
2.371 27.405 -18.963 '' 2.120*10

3 4 4

iv
V V

iv iv
V V V



 

(27)                                                                                                                                

Integrating by method of trigonometric series with 

accelerated convergence we have 
-2

3( ) 3.268*10 ( /50)V x Sin x                        

-3

4( ) 2.80*10 ( /50)V x Sin x                (28) 
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8. Discussion of Results 
The governing differential equations of torsional-distortional 

equilibrium for mono symmetric box girder structures are 

given by eqn.(22). They are applicable to both single cell 

and multi-cell mono symmetric profiles. For the single cell 

mono symmetric box girder section, the torsional and 

distortional deformations obtained by integration of eqn.(27) 

are given by eqn.(28) and graphically presented in Fig.3. 

The maximum (mid span) torsional displacement was 3mm 

while the mid span deformation was 33mm. Thus, the 

maximum distortional deformation is eleven times that of  

torsional deformation.  
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(e)Longitudinal Strain Mode Diagram         

(Bending about z-z axis) 
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9. Conclusions 
The obtained governing differential equations of 

torsional-distortional equilibrium are fourth order 

coupled linear differential equations.  

     The coupling of the equations of torsional-distortional 

equilibrium reveal a strong interaction between torsional 

strain mode and distortional strain mode such that 

torsional analysis of a mono symmetric box girder 

structure can not be carried out independent of 

distortional analysis without introducing errors in the 

analysis. 

     The derived equations of equilibrium are suitable for 

torsional-distortional analysis of all mono symmetric 

thin-walled box girder structures with single cell or 

multiple cell profiles.  
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