
Athira P V, Ramesh S R / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp. 324-330

324 | P a g e

An Approach towards Logic Synthesis by Functional

Decomposition

Athira P V*, Ramesh S R**
*(PG Student, Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham

University, Coimbatore)

** (Assistant Professor, Department of Electronics and Communication Engineering, Amrita Vishwa

Vidyapeetham University, Coimbatore)

ABSTRACT
This paper surveys some of the basic principles behind

logic synthesis. A few methods of logic synthesis are also

discussed. Functional decomposition is an efficient

technique for synthesis of logic circuits targeted on Look

Up Table based FPGAs. It decomposes any circuit into a

network of sub circuits. A method of functional

decomposition for single output XOR based circuits is

presented. It utilizes Gauss Jordan elimination, a method

based on linearity, to decompose the circuits. The method

was tested on a set of MCNC benchmark circuits in Blif

format, and was successful in decomposing circuits

efficiently. In case of XOR based circuits, the XOR

relationship between the different sub circuits can be

exposed by this method. A reduction in area was

obtained due to this in case of large XOR based circuits

and hence can be used for area driven logic synthesis.

Keywords – Decomposition chart, Field

Programmable Gate Arrays, functional Decomposition,

Gauss Jordan elimination, logic synthesis.

1. Introduction
Field Programmable Gate Arrays (FPGAs) are

programmable logic devices capable of implementing any

logic circuit. When compared to the Application Specific

Integrated Circuits (ASIC), the FPGAs offer high flexibility

and low cost but have high power consumption. Despite this

drawback, they are heavily used in low and medium volume

applications due to their generality. FPGAs are available in

different architectures out of which the Look Up Table

(LUT) based FPGAs are the most popular and widely used

due to their flexibility. The basic element in an LUT based

FPGA is a K-input LUT (K-LUT). A K input LUT is an

SRAM cell which can implement any logic function of K

variables or less. It consists of 2
K
 memory cells and a K

input multiplexer. The typical values of K are 4, 5 or 6. Fig.

1 shows a 2 input LUT. It takes two inputs: x1 and x2 and

returns the output bit F depending on the correct

combination of inputs. A K input LUT is capable of

implementing 2
n
 different functions where n = 2

K
.

 Many approaches have been adapted to the synthesis of

logic circuits for LUT based FPGAs. Synthesis is a step

prior to implementation and it helps in modifying the circuit

netlist into an equivalent netlist that can be implemented on

the available FPGA architecture while optimizing

parameters such as area, power, delay etc. Synthesizing a

logic circuit involves two steps [1]: logic optimization which

is technology independent and the technology mapping.

Logic optimization involves changing the circuit structure by

methods such as network simplification and node

decomposition whereas technology mapping involves

mapping a gate level netlist into a netlist of standard cells

available in the library. For LUT based FPGAs, the given

netlist is mapped into a network of LUTs. This paper

describes a logic optimization technique for synthesis. It is

based on functional decomposition, one of the node

decomposition techniques.

Fig. 1 A two input LUT.

Synthesis is usually addressed using different methods

such as AND/OR based decomposition, XOR based

decomposition, multiplexer based decomposition etc. Each

of these types of decomposition has their own properties that

make them effectively decompose circuits that consist of that

type of logic. The XOR based circuits are widely used in

arithmetic, error correction and communication based

circuits. But the decomposition of these circuits is difficult

and time consuming because there are seven different classes

of XOR logic functions [2] each having its own properties.

In this paper we present an XOR based functional

decomposition technique that can decompose any XOR

based function. The distinct advantage of this method is that

it can be used in area and delay driven FPGA architectures.

In this paper, a comprehensive description of the

synthesis process is given as follows: Section 2 contains the

background required to understand the paper. Section 3

describes some of the existing methods of decomposition.

Section 4 discusses the motivation towards the work. In

section 5, the methodology used in the presented work is

described. In section 6, the area and depth results obtained

Athira P V, Ramesh S R / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp. 324-330

325 | P a g e

from this work are presented. The obtained results are also

compared with those from other tools like ABC and BDS-

PGA 2.0. The paper is concluded and the topics of future

work are discussed in Section 7.

2. Background
In this section, the basics of logic synthesis will be

discussed. Some of the terminologies required to understand

this paper will also be discussed.

2.1 Logic Synthesis

It is the process of transforming a gate level netlist of a

multilevel circuit into a netlist of LUTs in which each LUT

has at most K inputs. It involves two major steps: logic

optimization and technology mapping.

2.1.1 Logic Optimization

Logic optimization transforms a network of logic gates

into another set of logic gates in such a way that the final

netlist is more optimized and suitable for mapping. The most

important criterion while optimizing the gate level netlist is

that every node should have a K feasible cone. A cone for

any node (gate) is a combination of that node and some of its

predecessors with the criterion that all the predecessors

should have a path from it to that node. The main goals of

logic optimization are to reduce the number of gates, reduce

the logic depth, reduce the gate complexity or reduce the

number of interconnections. But for an LUT based FPGA,

reducing the gate count will not produce an optimized circuit

but rather the objective is to reduce the number of literals

that are present at the input. Some of the methods commonly

used for logic optimization are

1. Combine a set of gates into a single gate

2. Duplicate a gate and redistribute its outputs

3. Decompose a gate into set of gates

4. Add a wire

5. Delete a wire

6. Delete unconnected gates

These methods can be broadly classified into two:

network simplification and node decomposition.

In network simplification, the one or more nodes are

simplified and the corresponding interconnections are also

modified. The resulting network should be simpler with less

number of gates and less dense interconnections. These

results produce a reduction in the total area occupied by the

circuitry. Simplification can be based on support reduction

or by don’t care simplification. Also there can be local

simplifications or more efficient global simplifications with

no range limit. BDDs and Karnaugh maps are tools that aid

such simplification.

In node decomposition, the sub functions that represent

a particular network/function are extracted. These new sub

functions when combined together will form the original

function. In effect the functionality should remain

unchanged for the entire network. For LUT based synthesis,

decomposition is an efficient method since the original

circuit may not be mappable. If a particular node has more

than K inputs then it cannot be mapped into a single K input

LUT. So it has to be decomposed into two or more nodes so

that each of them is K feasible. Thus decomposition can

result in a mapping that is independent of the complexity of

the function being implemented.

Node decomposition techniques can be divided into

three depending on their optimization objectives: structural

decompositions that are applied to simple gates or certain

simple-gate networks, symbolic decompositions that are

applied to complex gates based on symbolic operations on a

given form of functional representation, and Boolean

decompositions.

Boolean decomposition is a generalized technique that

exploits the full functionality of the circuit. Here a Boolean

equivalence exists between the original and the decomposed

function. Some methods of Boolean decomposition are co

factoring and functional decomposition. Co factoring

involves decomposing the circuit in terms of Shannon’s

expansions, Davio expansions etc.

Functional decomposition [3] is an efficient method of

expressing a function of n variables as a function of

functions of fewer variables so that the functionality of the

original network remains unchanged. For example, function

F(X) can be decomposed into functions G and H, such that

F(X) = G(H(A), B) where X is the set of inputs and A and B

are proper subsets of X, such that 𝑋 = 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵 = ∅.

Such a decomposition is called disjoint decomposition. If

𝐴 ∩ 𝐵 ≠ ∅, then it is called a non-disjoint decomposition.

The whole of this paper deals with disjoint functional

decomposition. Fig. 2 shows an example for functional

decomposition where F(X) = G(H(A), B) and 𝐴 ∪ 𝐵 = 𝑋,

the set of inputs. The set of variables in B = {S, T} are called

the free variables and the set of variables in A = {P, Q, R}

are called the bound variables.

Fig. 2 An example for functional decomposition

2.1.2 Technology Mapping

Technology mapping is the process of mapping a gate level

netlist into a netlist of standard cells available in the library.

In case of Look Up Table based FPGAs the library contains

Look Up Tables. Mapping is a technology dependent process

and is usually preceeded by logic optimization. The

technology mapping step can be considered as a cone

selection problem or as a node covering problem. For an

LUT based FPGA with K input LUTs available, the cones

selected should be K feasible.

Athira P V, Ramesh S R / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp. 324-330

326 | P a g e

(a) (b) (c)

Fig. 3. Technology mapping as a covering problem

(a) Initial netlist. (b) Possible covering. (c) LUT mapping.

Fig. 3 illustrates the process of mapping a two output

circuit into a set of 4 LUTs. Fig. 3(a) shows the initial gate-

level netlist, Fig. 3 (b) shows a possible covering of the

initial netlist using 4 LUTs and Fig. 3(c) shows the LUT

netlist produced by the covering. In the mapping given, the

gate labeled x is said to be duplicated since it is covered by

both LUTs. Looking at technology mapping as a cone

selection problem, the subcircuits circled in Fig. 3(b) are

examples of cones. Technology mapping attempts to find the

best set of cones that can be mapped to the current LUT

architecture. “Best” is in terms of the optimizing goals such

as area, speed, or power. Any cone with K-inputs or less can

be implemented in a K LUT and is K-feasible. Therefore, to

technology map circuits to K LUTs the circuit simply has to

be decomposed into a set of K feasible cones followed by the

direct assignment of a cone to an LUT.

2.2 Decomposition Chart

(a) (b)

Fig. 4. (a) Truth table of function F

 (b) Decomposition chart of F

Decomposition chart is a form of representation of the truth

table of any circuit. It is similar to the Karnaugh map except

that the row and column indexes of the chart are in the

binary order while that of the Karnaugh map are in the Gray

code order. Fig. 4 shows the truth table of a three variable

function F(A,B,C) and the corresponding decomposition

chart. The set of variables used to index the columns of the

decomposition chart form the bound set variables and the set

of variables used to index the rows form the free set

variables. In the example given in Fig. 4, {C} is the bound

set and {A, B} is the free set.

3. Previous Works
There exists a wealth of research on XOR based

decomposition and synthesis. One of the classical

approaches is the Ashenhurst Curtis decomposition [4], [5]

that makes use of the column multiplicity of the

decomposition chart of any network to identify the number

of unique columns in the chart. Column multiplicity is the

number of distinct columns in the chart. Each unique column

represents a compatible class and forms a min term in the

decomposed circuit. Fewer the number of distinct columns,

fewer is the number of min terms and lesser will be the area

occupied by the circuit. Ref. [6] explains a method of

encoding the compatible classes to improve the

decomposability by extracting common sub expressions for

multiple output functions. This is an efficient method of

decomposition but does not address XOR based circuits.

Some of the XOR based decompositions were approached

by positive Davio Expansions, negative Davio Expansions

and Shannon Expansions. Based on these expansions the

logic function can be represented in Reed Muller form,

Kronecker form [7] and Exclusive OR Sum of Product form.

But these methods decompose only one variable at a time,

making the technique slow. Also the XOR relationship

between non XOR functions cannot be exposed.

In BDD based methods, XOR decomposition is performed

by finding x dominators in BDDs [8] and by BDD

partitioning. An example for such an approach is given in

[9]. This is similar to the concept of column multiplicity and

is insufficient for XOR decomposition as it does not consider

the XOR relation between the distinct columns. Also they do

not consider logic simplifications with don’t care sets.

Roth-Karp decomposition [10] requires minterms of

compatible classes to be encoded with the same code. A

modified version of the same is presented in [11] where an

encoding algorithm is used to minimize the support of the

decomposition functions.

The approach used in this work retains the advantages of

the above methods: it has the ability to decompose networks

using Shannon’s Expansions and Davio Expansions by using

only one variable in the free set. Thus they turn out to be the

special cases of the decomposition method used here. Also it

is able to expose relationships between the columns of a

decomposition chart without using the concept of column

multiplicity and x dominators.

4. Motivation
This section describes how the functional decomposition will

result in area optimization of the circuit. As far as an LUT

based FPGA is considered, the area occupied by a circuit on

the FPGA is given in terms of the number of LUTs to which

the circuit is mapped. Consider an FPGA architecture that

consists of K-LUTs. Each LUT consists of 2
K
 memory

elements and is capable of implementing any logic function

of K or fewer inputs. While implementing a network of n

inputs on an FPGA, there can be three possibilities:

Athira P V, Ramesh S R / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp. 324-330

327 | P a g e

1. n < K: If the number of inputs is less than the value of K,

then the circuit can be implemented on a single LUT. Not

all memory locations of that LUT will be occupied.

2. n = K: If the number of inputs is equal to the value of K,

then the circuit can be implemented on a single LUT by

occupying all the memory bits of the LUT.

3. n > K: If the number of inputs is greater than the value of

K, then the circuit cannot be implemented on a single

LUT. If an n input LUT was available, then a single LUT

was sufficient. In case of K-LUTs, a minimum of 2
n
/2

K

LUTs are required to map the circuit onto the FPGA. If

the value of n is very large (say, n = 256) and K = 6, then

the number of LUTs required = 2
256

/2
6
 = 2

250
. An FPGA

has limited number of LUTs. So such a circuit with large

number of inputs cannot be implemented on an FPGA.

From the above example it can be concluded that

reduction in number of literals (input variables) [12] is

required to minimize the area occupied by the circuit on an

LUT based FPGA, rather than reducing the gate count. The

following example shows how functional decomposition

helps in reducing the literal count. Consider a network with 6

inputs and a single output, G. Fig. 5(a) shows the original

network and Fig. 5(b) shows the network functionally

decomposed [13], [14]. The corresponding reduction in

number of LUTs can also be seen. If 4-LUT architecture is

used, four 4-LUTs are required to implement the network

without decomposition, and none of these LUTs are fully

utilized whereas in the decomposed circuit, only two LUTs

are required one of which is fully utilized. Thus using

functional decomposition the LUT count is reduced.

(a) (b)

Fig. 5. (a) Without decomposition, four 4 LUTs

 (b) With decomposition, two 4 LUTs

For XOR intensive circuits, area minimization is achieved

in a different manner. Here the number of min terms

(product terms) is reduced by using the AND/XOR

implementation rather than going for the conventional

AND/OR implementation. Consider a function, f which is

dependent on four variables. The AND/OR implementation

consists of 4 min terms and is given by

 (1)

If 3-LUTs are used, then each min term will be mapped to

one LUT. This requires four LUTs in total for all the min

terms. Also the four input OR gate cannot be implemented in

a single LUT and has to be decomposed. The decomposed

circuit is shown in Fig. 6(a).

The corresponding XOR implementation is given by

 (2)

There are only two min terms with each min term having 2

inputs. One min term can be mapped into one LUT and the

other min term along with the XOR gate can be mapped into

the second LUT as shown in Fig. 6(b). The total number of

LUTs required is 2 whereas it is 6 in the former case.

(a) (b)

Fig. 6. Function f implemented using

(a) AND/OR logic

 (b) AND/XOR logic

The speed of operation is another important factor for any

circuit. The interconnection length between the primary

input and primary output determines the propagation delay

and hence the speed. For an LUT based FPGA, speed is

determined by the number of LUTs along the critical path

and is termed as logic circuit depth. By reducing the logic

depth, the speed increases.

5. Methodology
The method employed here is based on the property of

linearity [15]. Any Boolean network can be decomposed by

functional linearity which is described as

f(X) =∑Gi(Y)Hi(X-Y) (3)

where X is the set of input variables and 𝑌 ⊆ 𝑋. In equation

(3), the function f is represented as a weighted sum of

functions Gi, called the basis functions. The weighting

factors are defined by functions Hi, called the selector

functions. Here the summation represents an XOR operation.

This definition exposes the XOR relationship between

different logic functions.

The hardware required for implementation can be reduced

by deriving the logic sub functions that can be reused in a

logic expression. To find out such sub functions a technique

in linear algebra is used. All the operations are done in a

Galois Field, GF(2) where there are only two symbols 1 and

0. In this field, addition is represented using XOR operation

and multiplication using AND operation.

Consider a k input logic function represented using a truth

table of 2
m
 rows and 2

n
 columns (m + n = k). The truth table

is equivalent to a two dimensional matrix of 2
m
 rows and 2

n

columns. Viewing the matrix as a set of columns, a set of

independent columns called basis have to be found out such

that all other columns can be represented using these

columns. For this the method of Gaussian elimination [16] is

used. The Gaussian elimination converts the matrix into a

dbcbcadbadcaf 

adbcf 

i

Athira P V, Ramesh S R / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp. 324-330

328 | P a g e

row echelon form by applying a series of elementary row

transformations. To illustrate the method consider a 4

variable function f whose decomposition chart is given in

Fig. 7. Initially the rows of the matrix are swapped such that

the rows are ordered from top to bottom depending on the

column index of the respective leading one entries. A

leading one is the first occurrence of 1 in a row of the truth

table. Thus if any two successive rows do not consist entirely

of zeros, the leading 1 in the lower row occurs farther to the

right than the leading 1 in the higher row. Next if a column

contains a leading 1 then all the occurrences of 1 below that

leading one is made a 0 by XORing the two columns.

Fig. 7 Decomposition chart for the function f in the example

For the decomposition chart in Fig. 7 the set of

operations to be performed are given in Fig. 8. Initially the

rows are arranged depending on the column index of their

leading one entries. Now row 1 has a leading one entry at

position 2. All the other rows are checked for a 1 entry in the

same position as that of the leading one. Since there is a 1 in

the corresponding position in row 2 also, row 1 and row 2

are XORed and row 2 is replaced with this value. Since there

are no one’s in rows 3 and 4 below the leading one, we swap

the rows again depending on the column index of leading 1

entries. The next occurrence of leading one is now checked

and the process is continued. Finally rows 3 and 4 are

entirely sets of zeros. This completes the Gaussian

elimination and the matrix is reduced to row echelon form.

Now the columns which contain leading one are selected.

The corresponding columns in the original matrix

correspond to the basis vectors. The basis vectors are

G1 = [0 0 1 1] and G2 = [0 1 0 1].

The corresponding basis functions are

G1 = a, and G2 = b.

Fig. 8. Gaussian elimination applied to the example in Fig.7.

To obtain the selector, Gauss Jordan elimination is

applied. This is an extension to the Gaussian elimination

method and it converts the matrix to reduced row echelon

form. In this form, the columns containing leading ones

should have only one nonzero entry. For finding the reduced

row echelon form, the row echelon form is considered and

each column is checked for the presence of a leading one. If

it is found then all the 1’s above that leading 1 (if there exists

any) is made 0 by XORing the corresponding rows and

replacing the latter with the same. For the example in Fig. 7

the reduced row echelon form can be obtained by replacing

row 1 by the XOR of row 1 and row 2 as shown in Fig. 9.

The rows of the reduced row echelon matrix that contains

leading ones correspond to the selector vectors. The selector

vectors are

H1 = [0 1 0 1] and H2 = [0 0 1 1]

The corresponding selector functions are
H1 = d and H2 = c

The circuit is thus decomposed as:

 (4)

Fig. 9. Gauss Jordan elimination applied to the example

in Fig. 7.

Mapping this circuit into a set of LUTs will require

smaller number of LUTs when compared with the AND/OR

implementation as explained in Section 4. Thus this method

will efficiently decompose the given network and produce a

netlist optimized in both area and speed.

6. Experimental Results

This section contains a discussion on the results obtained.

The methodology used in the work, comparison of results

with those obtained from other state of the art tools and

discussion on individual circuits will be presented.

The efficiency of the technique was tested on a set of

MCNC circuits in BLIF format [17]. The benchmark circuits

were read and the truth table for each network was extracted

from it. The basis and selector vectors were found out by

implementing the algorithms for Gaussian elimination and

Gauss Jordan elimination. The decomposed network

corresponding to these vectors were obtained by running the

read_dsd command in the mapping tool, ABC [18],[19]. The

LUT mapping was done using the ABC’s if –K 4 command.

The area results obtained by doing so are given in column 3

of Table 1. Area is given in terms of the number of LUTs

consumed by each circuit. The delay results are given in

column 3 of Table 2. Delay is given in terms of the logic

depth on the critical path i.e., the number of LUTs on the

longest path from input to output.

To find the results with ABC, the original circuit was

strashed using ABC and then mapped into 4-LUTs. The area

and delay results obtained from ABC are given in column 4

ab

011011

101010

110001

000000

11100100

cd

bcadf 

211 RRR 

0000

0000

1100

0110

0000

0000

1100

1010

0110

1010

1100

0000

212 RRR 

0000

1100

1010

0110

323 RRR 

0000

1100

1100

0110

0000

0000

1100

0110

Athira P V, Ramesh S R / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp. 324-330

329 | P a g e

of Table 1 and Table 2 respectively. Column 2 represents

the number of inputs for each circuit.

Table 1. Area results obtained from various tools

Name Inputs
Linearity

Approach
ABC

BDS-

PGA2.0

9sym 9 27 157 58

9symml 9 13 78 19

t481 16 314 355 524

xor5 5 3 2 2

majority 5 4 3 3

parity 16 5 5 5

cm152a 11 10 10 10

To find the results with BDS-PGA 2.0 [20], the command

bds –options <circuit.blif> is run on BDS-PGA 2.0. The

decomposed network is mapped using ABC technology

mapper. The options can be sharing, xhardcore or heuristic.

Column 5 gives the results obtained from BDS-PGA 2.0.

Table 2. Delay results obtained from various tools

Name Inputs
Linearity

Approach
ABC

BDS-

PGA2.0

9sym 9 4 5 6

9symml 9 4 6 6

t481 16 7 7 6

xor5 5 2 2 2

majority 5 2 2 3

parity 16 2 2 2

cm152a 11 3 3 3

6.1 Discussion of Individual Circuits

As can be seen in Table 1, area savings were not obtained for

circuits like xor5 and majority. xor5 is a circuit with 5 inputs

and a single output. The output is the XOR of all the 5

inputs. The decomposition chart for the circuit is given in

Fig. 10.

The reduced row echelon form for the decomposition

chart is given in Fig. 11. There are only two basis and

selector pairs for this circuit. The synthesized circuit

corresponding to this decomposition is as shown in Fig. 12.

Each dashed box show the functionality realized by an LUT.

The circuit requires 3 LUTs when mapped into a set of 4-

LUTs. The logic depth is 2. When compared with ABC and

BDS-PGA 2.0, FLDS produces an increase of 1 in the

number of LUTs. This can be reduced to 2 by further

optimizing the basis and selector pairs obtained. The actual

advantage of the method can be known more evidently in

case of large circuits like t481.

Fig. 10 Decomposition chart for xor5

Fig. 11 Reduced row echelon form for the decomposition

chart of xor5

Fig. 12 Decomposed circuit for xor5

7. Conclusion
A survey of literature on decomposition and synthesis of

logic circuits is presented. A logic synthesis approach for

LUT based FPGAs based on functional decomposition has

been discussed in this paper. The method is based on linear

algebra and requires only the truth table of any network as its

input. XOR relationship between the different logic sub

functions can be exposed by this method and hence is

efficient in decomposing XOR based circuits in terms of area

and delay. Further the method can be extended to decompose

multioutput networks by putting the truth tables of each

output side by side.

1001011011

0110100110

0110100101

1001011000

111110101100011010001000ab

cd

e

00000000

00000000

10010110

01101001

Athira P V, Ramesh S R / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp. 324-330

330 | P a g e

References

[1] J. Cong, and Y. Ding, Combinational Logic Synthesis

for LUT Based Field Programmable Gate Arrays, ACM

Trans. Des. Autom. Electron. Systems, 1 (2), 1996, 145-

204.

[2] T. Sasao, Switching Theory for Logic Synthesis

(Norwell, MA: Kluwer, 1999).

[3] C. Scholl, Functional Decomposition with Applications

to FPGA Synthesis. (Boston: Kluwer, 2001).

[4] R. L. Ashenhurst, The decomposition of switching

functions, Proc. Int. Symp. Theory Switching, 1957, 74-

116.

[5] M. Perkowski, and S. Grygiel, A survey of literature in

Functional Decomposition, A Final Report for Summer

Faculty Research Program, Wright Laboratory,

Washington, DC, 1994.

[6] J. -H Jiang, J. -Y. Jou, and J. -D. Huang, Unified

functional decomposition via encoding for FPGA

Technology Mapping, IEEE Trans. VLSI Syst., 9 (2),

2001, 251-260.

[7] T. Sasao, and J.T. Butler, A design method for look-up

table type FPGA by pseudo-Kronecker expansion, Proc.

24th Int. Symp. Multi-Valued Logic, 1994, 97-106.

[8] R. E. Bryant, Graph-based algorithms for Boolean

function manipulation, IEEE Trans. Comput., C-35 (8),

1986, 677–691.

[9] N. Vemuri, P. Kalla, and R,Tessier, BDD-based logic

synthesis for LUT-based FPGAs, ACM Trans. Des.

Autom. Electron. Devices, 7 (4), 2002, 501–525.

[10] J. P. Roth and R. M. Karp, Minimization over Boolean

graphs, IBM J., 1962, 227–238.

[11] J.-D. Huang, J.-Y. Jou, and W.-Z. Shen, Compatible

class encoding in Roth–Karp decomposition for two-

output LUT architecture, Proc. IEEE/ACM Int. Conf.

Computer-Aided Design, 1995, 359–363.

[12] H. Sawada, T. Suyama, and A. Nagoya, Logic synthesis

for look-up table based FPGAs using functional

decomposition and support minimization, Proc.

IEEE/ACM Int. Conf. Computer-Aided Design, 1995,

353-358.

[13] A. Sangiovanni-Vincentelli, A. El Gammal, and J. Rose,

Synthesis Methods for Field Programmable Gate

Arrays, Proc. IEEE, 81 (7), 1996, 1057–1083.

[14] S.D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic,

Field- Programmable gate Arrays. (Boston: Kluwer,

1992).

[15] T.S. Czajkowski, and S. D. Brown, Functionally linear

decomposition and synthesis of logic circuits for

FPGAs, IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., 27 (12), 2008, 2236–2249.

[16] H. Anton, and C. Rorres, Elementary Linear Algebra,

Applications Version, ninth ed., (Hoboken, NJ: John

Wiley, 1994).

[17] S. Yang, Logic synthesis and optimization benchmarks

User Guide 3.0, Microelectron. Center North Carolina,

North Carolina, 1991.

[18] R. Brayton, and A. Miskchenko, ABC: An academic

industrial-strength verification tool, Proc. CAV 2010,

vol. 6174, 2010, 24-40.

[19] Berkeley Logic Synthesis Group, ABC: A System for

Sequential Synthesis and Verification, Feb. 2010

[Online]. Available:

http://www.eecs.berkeley.edu/~alanmi/abc.

[20] BDS-pga version 2.0, BDD-based Logic Synthesis

System for LUT-based FPGAs [Online]. Available:

http://www.ecs.umass.edu/ece /tessier/rcg/bds-pga-2.0/

http://www.ecs.umass.edu/ece%20/tessier/rcg/bds-pga-2.0/

