
Arun Kumar Chaturvedi, Kavita Verma / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1308-1315

1308 | P a g e

 Modeling Abstract BPMN from Business Driven Model

Arun Kumar Chaturvedi*, KAVITA VERMA**
*(Department of Computer Science, MD University, Haryana)

** (Department of Computer Science, MD University,Haryana)

ABSTRACT
We address the alignment [1], [2], [4] problem following

the Business Driven Development model. A

representation system for the first stage of BDD, namely,

model is proposed. It is argued that the representation

system should be a pure conceptualization of the

business process, should abstract out important

constructs of business processes, and should be able to

represent both intra and inter organization processes. We

use the notion of dependency graphs developed in the

generic method model as our representation system and

show that it meets our requirements. We consider three

intra-organization processes and then put them together

in an inter organization system, the supply chain system,

to illustrate that the proposed representation can handle

both kinds of systems. Through this example, we also

show that the last stage of BDD, analyze and adapt can

also be facilitated by the proposed representation.

Key Words—Business Process, Model, Alignment,

Adaptation.

I. INTRODUCTION
In today's increasingly tight economy, business

processes undergo constant change and the enterprise

needs to swiftly adapt its strategies to reflect these

changes. The inherent problem with the enterprise

business process is that it suffers from a lack of agility to

match the pace at which the business needs to change in

order to keep up with the market trends and competition.

In order for enterprise information systems to survive

and adapt to a controlled environment and to react to the

fast-paced change in business processes, IS needs to

enhance its capability and maturity to align itself with

the business demands. IS must move away from creating

IT-centric solutions and move toward creating solutions

that realize one or more business process. Business-

driven development (BDD) is a methodology for

developing IT solutions that directly satisfy business

requirements and needs.

I.1 THE NEED FOR BDD
Traditional applications and architectures are not able to

keep up with business innovation, primarily because the

processes are not adaptable to on demand business

needs. Business requirements often get transformed into

siloed IT projects that cannot work together; reusability

between artifacts created for different IS is often very

low. Creating applications that are flexible enough to

react to the unknown requires a more systematic

approach toward application development. With the

business not able to create IS functionality that is

capable of reacting to the unknown; it has traditionally

been very difficult to justify the deeper budgetary

requirement to create flexible IT applications like COTS

[5], [6], [7], [8], [9]. The traditional inflexibility of

application architectures makes even small

improvements so expensive that they become virtually

impossible to justify.

A mechanism[3] needs to be devised by which IT

efforts[12] are interlocked with business strategy and

requirements through an execution framework that is

standardized, well understood, and can be executed

repeatedly and successfully. The enterprise might

achieve business flexibility through IT by modeling the

business processes that collectively define the way the

business executes. The first thing to do is model a

business process through its constituent process steps.

By measuring a business process or a key use case

through return on investments (ROIs), key performance

indicators (KPI), or other metrics, the enterprise can use

these business process models (BPMs) as an essential

mechanism to communicate the business needs to the IS

realm. The business and IS can significantly bridge the

communication chasm by using well-articulated BPMs

that create a link between what the business needs and

what IS implements and delivers.

While the starting step for BDD is the creation of BPMs,

the IT solution structure also needs to adapt to using the

BPMs as input artifacts to the design and development

phases of the software development life cycle. The IT

architecture needs to be able to design and implement

the process activities as software components or

services.

By using BDD, the enterprise models provide new

business processes (when conceptualized) to the IS.

Analysis of the new process might reveal either that

software services might already exist to address the need

and the only work effort required is to wire the existing

software services to realize the new business process, or

it might reveal that the enterprise needs to implement

Arun Kumar Chaturvedi, Kavita Verma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1308-1315

1309 | P a g e

new software services and add them to the IT service

portfolio. Similarly, if changes are needed to an existing

process, the BPM is revamped to reflect the change and

delivered to IT for subsequent technical revision based

on which services might need to be enhanced or

modified.

A BDD approach helps increase the agility of the

business and also helps prioritize and align IT initiatives

with business imperatives. It also indirectly helps in

simplifying the process of cost justification for IT

budgets within an enterprise.

II THE EXECUTION MODEL
Enterprise IS should strive to bridge the gap between

business needs and IT solutions and also be agile and

responsive in creating IT solutions. This need has led to

the development of a Services-Oriented Architecture

(SOA), which provides an IT framework along with a set

of principles and guidelines to create IT solutions as a set

of reusable, composable, and configurable services that

are independent of applications and runtime platforms.

Transitioning an enterprise to SOA requires a BDD

approach that uses business goals and requirements to

drive downstream design, development, and testing. This

promises to create composite business applications by

reusing existing or newly created services, which helps

to create adaptable and flexible business solutions. It

also brings a much needed flexibility in enterprise IS and

helps to align IT solutions with business needs.

. Figure 1 depicts the flow of activities that define the

high-level steps of BBD.

Figure 1. The execution model
The first step is to model the business processes that

need IT enablement. It is advisable to start by modeling

the key business processes and, using the outputs of the

modeling activity, to communicate the business

requirements to the IT domain

Once the processes are modeled [10], [11], the outputs of

the models can be used as inputs to the requirement

gathering phase of an initiative. The activities or process

steps that make up a given business process model can

be analyzed to form the basis of use case modeling.

Developing use cases is a significant step in the

requirement gathering phase of a project. Based on the

use cases, the application architecture is structured and

the enterprise services are identified, designed,

developed, and subsequently wired together as service

composites that realize the business processes. After

development, the project moves to the deployment stage

during which the developed components are exposed as

publishable, location-transparent, and discoverable

services. These software services are deployed to an

execution runtime, such as an application server.

In post deployment, the project enters the monitoring or

management phase. Once they are up and running,

business processes can be monitored for real-time

performance and data capture, reporting, and analysis.

IT solution meets the needs of the business as defined by

a service level agreement (SLA).

Data obtained from the run-time monitoring is analyzed

against the expected SLA or other benchmark

performance metrics and criteria. The captured

information is provided to the architects, designers, and

developers who analyze the data and find out innovative

ways of optimizing or improving the process through

enhancements and performance tuning of

implementation code. Sometimes the changes might also

be made by the business users by changing business

rules using external interfaces, which requires no code

changes. If the analysis suggests changes to be made in

the business process, the corresponding process models

can be modified and the same steps (that is, develop-

deploy-monitor) repeated to enhance the

implementation. This completes the execution loop with

analysis and process adaptation techniques feeding back

to the modeling step. This mechanism helps both the

business and IS to adapt to the changing business needs

with quick turnaround time.

III BUSINESS REQUIREMENTS ANALYSIS
The first and foremost step during any IS initiative is to

understand the business requirements [15]. The high-

level business requirements reside in the minds of the

key business stakeholders and inside existing legacy

systems. Unless they are documented and signed off, the

project itself might have quite a few unknowns at the

very onset. Getting the time of the business executives is

often a challenging endeavor, but it is a necessity and

needs to be well planned and executed. The following (at

a minimum) need to be documented:

Arun Kumar Chaturvedi, Kavita Verma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1308-1315

1310 | P a g e

1. Business vision

2. Business goals (long- and short-term) that

realize the enterprise vision

3. High-level business requirements that help

attain the goals

4. Problems with existing business processes

(such as customer pain points, high costs,

schedule issues, and so on)

It is also very important to have an understanding of the

high-level business functions that a given business

domain is expected to provide. Having a business

domain matrix with its associated high-level business

functions is a good way of concluding the business

analysis activities.

IV BUSINESS PROCESS MODELING
BPM is the technique used to visually model a business

process through a sequence of activities, use cases, and

decision points. The purpose of BPM is to create fully

executable models that an engineering group can

implement as technical services. BPM involves the

activities of modeling the as-is and to-be business

processes and allocating resources to implement each

process. Process optimizations are performed through

simulations that help in attaining the ideal business

process state. The to-be state is finalized as a first

feasible step -- both from budget and timeline -- toward

the ideal process state.

BPM techniques are used to model the aspects of

behavior, organizational structure, and business domain

objects. Each task is assigned to a role. A role is an

entity (a person, computer, or any other type of actor) or

group of entities that have the same rights and

obligations with respect to performing a task or a group

of tasks. A role might be assigned to any number of tasks

and an entity might act in any number of roles.

Each business process, when analyzed, can be

represented as a sequence of activities or tasks. A task is

the smallest unit of work that makes sense to a user.

V NEED OF BPMN
The primary goal of the BPMN effort was to provide a

notation that is readily understandable by all business

users, from the business analysts who create the initial

drafts of the processes, to the

technical developers responsible for implementing the

technology that will perform those

processes, and, finally, to the business people who will

manage and monitor those processes.

BPMN will also be supported with an internal model that

will enable the generation of executable

BPEL4WS. Thus, BPMN creates a standardized bridge

for the gap between the business processes design and

process implementation. BPMN defines a Business

Process Diagram (BPD), which is based on a

flowcharting technique tailored for creating graphical

models of business process operations. A Business

Process Model, then, is a network of graphical objects,

which are activities (i.e., work) and the flow controls that

define their order of performance.

VI RESEARCH PROPOSALS
Traditional systems development life cycles assume that

alignment shall be looked after in upstream activities. A

major role is played by the requirements engineering

stage. However, the alignment issue is not explicitly

brought out in these life cycles. In contrast, the life cycle

proposed in Business Driven Development, BDD

attempts to address this issue. BDD considers alignment

as a top down activity. It proposes a life cycle that

consists of five steps, (a) model, (b) develop, (c) deploy,

(d) monitor, (e) analyze and adapt.

The modeling step consists of identification of business

goals and modeling of business processes. The

development and deployment steps convert the model

into real implementations which are then monitored.

Finally, change and adaptation is carried out in the last

step. Thus BDD proposes that business and

implementations must stay aligned at all times.

 Business process models can also be represented in

BPMN which also contains guidelines on their

transformation into BPEL. Nevertheless, the question is

as to what constitutes a good representation system for

representing business process models at the model level.

We formulate the following requirements of such a

system:

1. The most basic requirement is that the representation

system should be independent of any implementation

details. It should be a pure conceptualization of the

business process.

2. It must be at a high enough level to form a bridge

between business and system analysts. A broad high

level view should be represented that abstracts out the

important features of processes. Thus, features like

deadlines, and other standard features like long and

instantaneous processes, parallelism, choice etc. should

be represented but in a simple, abstract form.

3. The representation system should be able to represent

both intra-organization and inter organizational

processes.

4. It should facilitate movement from the analyze and

adapt stage of BDD to its model stage.

We propose a representation system that attempts to

meet these requirements.

Our proposal is summarized in Fig 1 that shows the

analysis model in two stages, a high level stage, which

we call the Analysis Model Representation System,

AMRS, stage followed by the BPMN stage. Thus, there

Arun Kumar Chaturvedi, Kavita Verma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1308-1315

1311 | P a g e

is to be a transformation from the former to the latter in

the Model stage of BDD.

AMRS BPMN

Fig. 1: The Position of Abstract Model Representation

System

Now, for AMRS, we choose the notion of dependency

graph developed as part of the generic method model

[16]. This dependency graph establishes a successor-

predecessor relationship between nodes. This is

represented as an edge between a pair of nodes.

Additionally, it labels edges with the properties of

urgency and necessity. We will show here that this is

sufficient to provide to us a high level conceptualization

of a business process. It has facilities for an abstract

representation of deadlines etc. of requirement (2) above.

By labeling entire dependency graphs, we can extend

these graphs to allow for inter organization process

models.

VII THE GENERIC METHOD MODEL
The generic method model [16] builds a dependency

graph that can be used to represent process models.

Nodes of this graph are method blocks. Reference to Fig.

2 shows that there are three kinds of method blocks:

a. Method primitives are the simplest kind of

method blocks. They are atomic. Loosely

speaking, a method primitive has two parts, an

argument part and an action part. The action part

acts upon the argument part to produce the

product. These two parts correspond to product

primitive and process primitive respectively of

Fig. 2. The product primitive is found in the

product model. The process primitives correspond

to the operations allowed. This gives to us the

basic notion of an activity or task of a process

model.

b. Complex method blocks are built out of simpler

ones. These correspond to the notion of

activities/tasks and their sub-activities or sub

tasks.

c. Abstract method blocks establish a

generalization/specialization relationship between

method blocks. They allow us to sub classify

tasks/activities into those that display similar

properties.

Fig. 2 shows that there is a ‗depends on‘ relationship

between method blocks. A method block, MB1, that is

dependent upon another, MB2, can only be enacted after

MB2 has been enacted.

Fig. 2: The Generic Method Model

The generic model associates two main properties with a

dependency, namely, urgency and necessity. Urgency

refers to the time at which the dependent method block,

MB2, is to be enacted. If MB2 is to be enacted

immediately after MB1 is enacted then this attribute

takes on the value Immediate. If MB2 can be enacted any

time, immediately or at any later moment, after MB1

has been enacted, then urgency takes on the value

Deferred. Necessity refers to whether or not the

dependent method block MB2 is necessarily to be

enacted after MB1 has been enacted. If it is necessary to

enact MB2, then this attribute takes the value Must

otherwise it has the value Can. Combining these two

properties together, we get the four possibilities shown

in Table I.

Table I: The Four Dependency Properties

Abbreviation Urgency Necessity

IM Immediate Must

IC Immediate Can

DM Deferred Must

DC Deferred Can

Given a set of method blocks and dependencies between

them, the entire process model can be represented as a

dependency graph. For example consider the

dependency graph of Fig. 3. The IC dependencies are

shown. Assume that the rest are IM dependencies.

The graph shows that method blocks O10, O11, and O14

are to be enacted in parallel after O9 has been enacted.

Similarly, once O6 is enacted, O7 and O8 are enacted in

parallel whereas a choice between enactment of O13 and

O14 is to be made.

Enactment Initiation and Termination

A dependency graph has a set of nodes, called START,

that have no edges entering them. This implies that

enactment can begin from any of the nodes in this set.

For example, for Fig. 3, START contains exactly one

node, O, and enactment begins from this node.

1,N

1,N
Belongs

to

Depends

on

1,N 1,N

1,N

1,N

Composed

of

Method block Product

model

Process

primitive

Product

primitive
Method

primitive

Abstract

method

block

Complex

method

block

1,N

1,N
Belongs

to

Depends

on

1,N 1,N

1,N

1,N

Composed

of

Method block Product

model

Process

primitive

Product

primitive
Method

primitive

Abstract

method

block

Complex

method

block

Arun Kumar Chaturvedi, Kavita Verma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1308-1315

1312 | P a g e

Fig. 3: A Dependency Graph with its properties

Now consider termination of enactment. We define a set

STOP that contains nodes at which enactment can

terminate. The following nodes belong to this set:

1. Nodes that have no edges coming out of them. For

example, in Fig 3, O7, O8 and O10 to O14 shall be

members of STOP.

2. Nodes that have edges leaving them but all these

edges have Necessity = Can. Since the edges identify

nodes which are optional and may not be enacted, it is

possible for enactment to terminate. Notice that even if

one of the edges has Necessity=Must then termination

cannot occur since the node determined by such an edge

is to be necessarily enacted. Again for Fig. 3, only two

out of the six edges leaving O have Necessity=Can and

the rest Must be enacted. Therefore, O is not a member

of STOP. All edges coming out of O9 have

Necessity=Must. Therefore, it is not a member of STOP.

Similarly, O6 is not a member of STOP because only two

of its four edges have Necessity=Can. Therefore, we

have O11, O12, and O13 as members of STOP.

VII.1 SOME PROPERTIES
In this section we consider the abstraction capabilities of

the generic method model. We point out a number of

features of lower level notations that can be captured

using dependency graphs. There are three interesting

aspects here

 Dependency Types for representing parallelism,

choice and deadlines

 Dependency graphs for representing business

rules and process models

We consider each of these in turn.

Dependency Types

Let there be two edges emanating from an application

chunk AC1 and leading to two others, AC2 and AC3

respectively. Then the dependency types allow us to

represent:-

Parallelism: Let both the edges have the property, IM.

The two method blocks must both be immediately

enacted. Evidently, this is the situation of parallel

enactment.

Choice: Let both the edges have the property IC. Any of

the two application chunks can be enacted but the

selection must be exercised immediately. A similar

argument can be made if both edges had the property

DC.

Iteration: This can be represented by introducing cycles

in the dependency graph.

Hard Deadline: Let the edge to AC2 be DM. This says

that AC2 must be performed perhaps, after a time delay.

We see this as an initial recognition of a deadline that

can be made exact, in the design stage of BDD, by

specifying the time delay before which AC2 must be

performed.

Soft Deadline: Now, let the edge to AC2 be DC. This

says that performing AC2 is an option that can be

exercised perhaps, after a time delay. Since the

possibility of not performing the action is left open, in

contrast to the DM case, we refer to this as a ‗soft‘

deadline. As before, we see this as being made exact by

specifying the time delay before which the choice is to

be exercised. After this time, the choice cannot be

exercised.

It is possible to mix these dependency properties in a

dependency graph to express the appropriate execution

property.

VII.2 MODEL STAGE OF BDD

Let there be an organization with its own procurement

process that asks for quotation enquiries for items

meeting specifications, evaluates the received

quotations, issues purchase orders to selected vendors,

takes delivery of items and finally, makes payment.

There is no choice at any step and there can be a time

delay between each step. Thus, the type of dependency

between these steps is Deferred- Must, DM, as shown in

Fig. 6.

Fig. 6: A Procurement Process Model

O

O6

O12

O2

O3

O4

O5

O9 O11

O10

O14

O13

O8

O7

IC

IC

IC

IC

O

O6

O12

O2

O3

O4

O5

O9 O11

O10

O14

O13

O8

O7

IC

IC

IC

IC

Arun Kumar Chaturvedi, Kavita Verma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1308-1315

1313 | P a g e

It can be seen that the procurement process has been

represented at a high level of abstraction. There is no

reference to messages, timers, signals etc. In other words

the ‗hows‘ of the process are de-emphasized. Similarly,

the ‗normal‘ flow of the process is depicted without any

error paths or compensation paths.

Now consider another organization that supplies

computer systems. It receives requests for system

configurations, determines that the configuration asked

for is indeed realizable and responds with a quotation. If

any additional information/clarification is required then

it obtains it and verifies it once again. Since it may

happen that it has to order system parts that are missing,

such missing parts are ordered and the system is

assembled together, software installed and tested, if

required, and the system is delivered. This process is

shown in Fig. 7.

Fig. 7: A System Supplier

Notice that after <quotation, generate> there are two

possibilities, either additional information is to be

handled or missing parts are to be ordered. Both these

actions can be done after a time delay. Thus, we get

Deferred- Can, DC, as the type of dependency. A similar

situation exists after the system has been assembled, i.e.

at <system, assemble>. To handle the case where no

software is to be loaded and a bare system is to be

supplied, the dependency types are DC as shown in Fig.

7.Finally, consider a simple supplier process that sends

out a quotation and upon receipt of an order delivers

parts. The type of dependency is again DC. This is

shown in Fig. 8.

Fig. 8: The Supplier Process

The three process models considered here are all initial,

first cut models that aim to broadly describe the process.

No attempt is made to look into the details of the

processes for example, the manner of initiation of

activities by message, timer etc. is not considered. In our

scheme, these details are left for the next stage where a

full BPMN representation shall be made. This broad

definition of the process model can be discussed among

business and system analysts, agreed upon, and then

taken to subsequent stages of development.

VII.3 ANALYZE AND ADAPT STAGE OF BDD

Now, consider the ‗analyze and adapt‘ stage [13], [14] of

BDD. Our attempt is to show that the basic process

models developed above can be adapted to a different

situation. Again, the new situation is described at a high

level to lay a basis for subsequent development.

Let it happen that the three process models above are to

be put together to form a supply chain. We label the

three graphs presented earlier with the names of the roles

of the organizations. We shall refer to the first as End

User, the second as Systems Integrator and the third as

Parts Vendor.

The first point of variation is at <specs, enquiry> of the

End User. Whereas earlier this was self contained in the

End User process, now it is possible to invoke the

Systems Integrator as well, for the purchase of systems.

In this case, the DM edge in Fig. 6 to <quotation,

evaluate>, which was originally DM, shall be changed to

DC. The edge from <spec, enquiry> to the System

Integrator shall now be introduced and shall also be DC.

As a result, this allows a choice between the two courses

of action. A soft deadline is also imposed that limits the

time before which enquiries should be received. This is

shown in Fig. 9.

Fig. 9: The Supply Chain Process

Now, one moves to the next node in the End user

process, <quotation, Evaluate>. Again the dependency

Arun Kumar Chaturvedi, Kavita Verma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1308-1315

1314 | P a g e

type to <Purchase-order, Issue> is changed to DC. The

End user may ask for additional information from the

System Integrator (DC) which is supplied after it is

explored and verified. The evaluation activity can now

be completed by the End User. This is shown by the

dependency from <info, verify> to <quotation,

Evaluate> which has the dependency type DM. This

means that if the additional information is not supplied

by a hard deadline then the quotation evaluation activity

of the End User can ignore this quotation and proceed

on. The next node is <purchase-order, issue> on which

the System Integrator activity of <system, assemble> is

dependent. The dependency type is DC. It is assumed

that the System Integrator has already ordered all the

missing parts in anticipation of the order being received.

The next node of the End User process is dependent

upon the system being received from the System

Integrator, see the <system, deliver> activity of the

System Integrator. The dependency type shows that

delivery must be made within a hard deadline. The

compensation activity, in the event of failure to meet the

deadline is again not of interest at this abstraction level.

Finally, the End user authorizes payment within a

stipulated deadline.

The foregoing shows the interaction between the End

user and System Integrator from the End User point of

view. A similar exercise is carried out in the System

Integrator process model. The interesting interaction

now is that with the Parts Vendor. As soon as the

<system detail, check> activity of the System Integrator

is initiated, the Parts Vendor is asked to quote for the

parts comprising the system. The quotation received is

used to generate the quotation, <quotation, generate>,

which is sent to the End User. Again, the dependency of

the Parts Vendor and System Integrator interaction is

DM, showing a hard deadline. Further interaction

between the two takes place upon the System Integrator

placing an order for the missing parts, <missing parts,

Order>. This dependency is IM; the missing parts must

be ordered and the next activity is assumed to be

instantaneous. The <parts. Delivery> activity of the Parts

Vendor is to be done within a specified hard deadline as

shown by the IM dependency type between <parts,

delivery> and <system, assemble>.

In this manner, cooperation between the three process

models is set up at a high level. The points of change are

identified by a walk through the three process models to

set up the appropriate interaction.

VIII RELATED WORKS
According to BPMN, process modeling is flow oriented.

Nodes of these are events, activities, and gateways

whereas edges are sequences or messages and may carry

information as associations. In our case, the basic nature

of the process as a flow is maintained. However, all our

edges are of the same type. To handle intra process and

inter process communication, we propose that all edges

in AMRS are messages. Thus, any node sends a message

to the other. In this sense our proposal resembles the

message passing approach of object orientation.

Additionally, each node resembles the signature of

object orientation. It defines externally visible data and

the operation that shall be performed on it. The

difference is that there is no notion of a return type. As

we develop our proposals further, we intend to examine

whether or not polymorphism would be useful in our

context as well.

Requirements engineering seeks to lay down a basis for

system design. It abstracts away from the ‗hows‘ of

systems to showing why the system is like what it is. We

consider our proposal as similar. We do not express the

‗hows‘ of the system. Instead we aim to discover through

an elicitation process (not yet developed by us) the

nature of the process model and express it in the model

stage of BDD. This model, as our supply chain example

shows, can be the As-Is model that can be adapted to

yield the To-Be model in the analyze and adapt stage of

BDD.

Change management in requirements engineering

corresponds to the last step, namely analyze and adapt,

of BDD. Elicitation of changed requirements has been

reported in[14] . A full proposal centered on the notion

of gaps has been presented. The idea is to elicit gaps and

then fill them in. A different perspective to change is

presented in [13] where the notion of variability in

requirements is introduced. As a result, enough

variations are available from which the pertinent ones

could be picked up for describing the new system.

In our proposal, change management is done by business

and systems analysts performing a walk through the

process model(s), identifying the points of change and

changing nodes, edges, the action performed at a node,

and dependency properties. The issue of variability is for

us a lower level issue when developing a detailed

representation of the process model. It is at this stage

that variability is to be built into the process model.

IX CONCLUSIONS
We have shown that the dependency graph provides us a

representation system that is a high level, abstract

conceptualization of intra and inter organization systems.

Since it is devoid of the ‗hows‘ of the process, we

believe that it forms a good interface between business

and systems analysts. It acts as the ‗why‘ of a process

model that may be represented in BPMN. Indeed, we

Arun Kumar Chaturvedi, Kavita Verma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1308-1315

1315 | P a g e

believe that in the model stage of BDD itself, it should

be transformed into BPMN before it is passed on to the

develop stage of BDD.

We are working on developing guidelines for

transforming AMRS into BPMN. Also we are currently

exploring the implications of our object oriented view on

process modeling. Finally, we intend to look into the

elicitation process for arriving at the representation of a

process model.

X REFERENCES
[1] Chan Y.E., Sabherwal R., and Thatcher J.B.,

Antecedents and Outcomes of Strategic IS

Alignment: An Empirical Investigation, IEEETEM,

53, 1, 27-47, 2006

[2] Malik K., and Goyal D.P., IS Alignment and IS

Effectiveness: Experiences from Indian Industry,

IEEE, 96-100, 2003

[3] Henningsson S., Svensson C., and Vallén L.,

Mastering the Integration Chaos Following Frequent

M&As: IS Integration with SOA Technology, Proc.

40
th

 HICSS, 2007

 [4] Lee J, Siau K, Hong S, Enterprise Integration with

ERP and EAI, CACM , 46, 2, 54 – 60, 2003

[5] Navarrete F., Botella P., and Franch X.,

Reconciling Agility and Discipline in COTS

Selection Processes, Proc. Sixth International IEEE

Conference on Commercial-off-the-Shelf (COTS)-

Based Software Systems, 2007

[6] Fox G., Lantner K., and Marcom S., A Software

Development Process for COTS-based Information

System Infrastructure, IEEE, 137-142, 2008

 [7] Keil M, Tiwana A, Beyond Costs: The Drivers of

COTS applciaiton value, IEEE Software, 22, 3, 64-

69, 2005

[8] Horowitz BM, Lambert JH, Assembling Off-the-

Shelf Components: ―Learn as you Go‖ Systems

Engineering, IEEE Transactions of Systems, Man,

and Cybernetics - Part A Systems and Humans, 36,

2, 286 - 297

[9] Fox G, and Lantner K, A Software Development

Process for COTS Based Information System

Infrastructure, Proc. 5
th

 Intl. Sym. On Assessment of

Software Tools and technologies, 133-142, 1997

[10] Castro Valeria de, Mesa J.M.V., Herrmann E.,

and Marcos E., A Model driven Approach for the

Alignment of Business and Information Systems

Model, Mexican Intl. Conf. on Computer Science,

33-43. 2008

[11] Henkel M., and Zdravkovic J., Supporting

Development and Evolution of Service-based

Processes Proceedings of the 2005 IEEE

International Conference on e-Business

Engineering, 2005

[12] Stein S., Kuhna S, Ivanov K., Business to IT

Transformations Revisited, First Intl Workshop

on Model driven Engineering for Business

Process Management, Pautasso C. ad Koehler J

(eds.), 1-12, 2008

[13] Umapathy K, Towards Co-design of Business

Process and Information Systems Using Web

Services, Proc. 40
th

 HICSS, 172a – 172a, 2007

[14] Shah R., Goldstein S. M., and Ward P.T.,Aligning

Supply Chain Management Characteristics and

Interorganizational Information System Types:

An Exploratory Study, IEEETEM, 49,3, 282-292,

2002

[15] Daneva M. and Wieringa R., A Coordination

Complexity Model to Support Requirements

Engineering for Cross-organizational ERP, Proc.

14th IEEE International Requirements

Engineering Conference, 2006

[16] Fang K, Wu ACH, Tung Yang C, A Study of

Information Systems Integration with the

Structuration Model of Technology as

Foundation, Portland International Centre for

Mangament of Engienering and Technology,

1556-1563, 2007

