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Abstract—  
To interact with Database industrial application depends on precompiled parameterized procedures. Unfortunately, 

executing a procedure with a set of parameters different from those used at compilation time may be arbitrarily 

suboptimal. By identifying the optimal plans at each point of the parameter space at the time of compilation by using 

parametric query optimization the above mentioned issue can be solved .Parametric Query Optimization is likely not 

cost-effective if the executed with values only within a subset of the parameter space or if it is query is executed 

infrequently . As an alternative to progressively exploring the parameter space and building a parametric plan during 

several executions of the same query , we are going to propose an algorithm as parametric parametric plans are 

populated, are able to frequently bypass the optimizer but still execute optimal or near-optimal plans. 

Introduction 
Query optimization is a function of many relational 

database management systems in which multiple query 

plans for satisfying a query are examined and query 

plan is identified. This may or not be the absolute best 

strategy because there are many ways of doing plans. 

There is a tradeoff between the amount of time spent 

figuring out the best plan and the amount for running 

the plan. Different qualities of database management 

systems have different ways of balancing these two. 

Cost based query optimizers evaluate the resource 

footprint of various query plans and use this as the 

basis for plan selection. In many applications, the 

values of runtime parameters of the system, data, or 

queries themselves are unknown when queries are 

originally optimized. In these scenarios, there are 

typically two trivial alternatives to deal with the 

optimization and execution of such parameterized 

queries. One approach, termed here as Optimize-

Always, is to call the optimizer and generate a new 

execution plan every time a new instance of the query 

is invoked. Another trivial approach, termed Optimize-

Once, is to optimize the query just once, with some set 

of parameter values, and reuse the resulting physical 

plan for any subsequent set of parameters. Both 

approaches have clear disadvantages. Optimize- 

Always requires an optimization call for each 

execution of a query instance. These optimization calls 

may be a significant part of the total query execution 

time, especially for simple queries. In addition, 

Optimize-Always may limit the number of concurrent 

queries in the system, as the optimization process itself 

may consume too much memory. On the other hand, 

Optimize-Once returns a single plan that is used for all 

points in the parameter space. The chosen plan may be 

arbitrarily suboptimal for parameter values different 

from those for which the query was originally 

optimized.  

 

Typically the resources which are costed are 

CPU path length, amount of disk buffer space, disk 

storage service time, and interconnect usage between 

units of parallelism. The set of query plans examined 

is formed by examining possible access paths (e.g., 

primary index access, secondary index access, full file 

scan) and various relational table join techniques (e.g., 

merge join, hash join, product join). The search space 

can become quite large depending on the complexity 

of the SQL query. There are two types of optimization. 

These consist of logical optimization which generates 

a sequence of relational algebra to solve the query. In 

addition there is physical optimization which is used to 

determine the means of carrying out each operation. 

The goal is to eliminate as many unneeded tuples, or 

rows as possible. The following is a look at relational 

algebra as it eliminates unneeded tuples.  

The project operator is straightforward to 

implement if <attribute list> contains a key to relation 

R. If it does not include a key of R, it must be 

eliminated. This must be done by sorting (see sort 

methods below) and eliminating duplicates. This 

method can also use hashing to eliminate duplicates 

Hash table. 

 

Given a query and its parameter values, a 

traditional optimizer returns the optimal execution 

plan along with its estimated cost. In contrast, a 

PPQO-enabled optimizer introduces a data structure 

called PP, which incrementally maintains plans and 

optimality regions, allowing us to reuse work across 

optimizations. As the PP data structure becomes 

populated, it is possible to completely bypass the 

optimization process without hurting the quality of the 

resulting execution plans. When a new instance of a 

parametric query arrives, PPQO tries to obtain an 

optimal (or near-optimal) plan by consulting the PP 

data structure. If it is successful, it returns such plan, 

and a full optimization call is avoided. Otherwise, it 

makes an optimization call, and both the resulting 

optimal plan and cost are added to the PP for future 

use. Due to the size of the parameter space, PPs should 
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not be implemented as exact lookup caches of plans 

because there would be too many “cache misses.” 

Also, due to the nonlinear and discontinuous nature of 

cost functions, PPs should not be implemented as 

nearest neighbor lookup structures as there will be no 

guarantee that the optimal plan of the nearest neighbor 

is optimal or close to optimal for the point in the 

parameter space. 

 

Previous Work 
Before PPQO, processing parameterized queries was 

an all or nothing approach: either the optimizer 

explores all the parameter space and computes the full 

PQO solution (traditional PQO) or it relies on luck and 

uses the very first plan it gets for a query. PPQO is 

able to progressively construct information about the 

parametric space and approximate optimality regions, 

being able to bypass the optimizer up to 99 percent of 

the times, while still returning plans within 5 percent 

of the cost-optimal plan for 99 percent of the cases. 

Previous 3 techniques used are: 

1. Adaptive Query Processing 

2. Plan Reduction or Plan Diagram 

3. Compilation Queries 

 

1. Adaptive Query Processing 

 

It has been applied log running continuous 

query  over data streams.There is no unifying 

comparison from one time bound another time 

bound.It can contains Large Body inter-related work 

communication process.It can provides the outdated 

statics representation.Some of the deisadvantages of 

using this kind of query processing are: It can provides 

some of the optimization errors.It can contains large 

data sets for executing the query processing 

environment.There is no prediction technique 

implementation.There is no environment  change 

processing. 

 

2. Plan Reduction Or Plan Diagram 
It can contains more number of execution plans.Which 

execution plan can cover total space no one can 

identify.It can contains different types of 

patterns.Which pattern is the best scalability pattern no 

one can identified exactly. Some of the deisadvantages 

of using this kind of query processing are:It can 

contains redundancy patterns.It can contains more 

search space specification process.It can be identified 

as a NP hard problem.There is no fast estimators. 

 

 

3. Compilation Queries 

It can working based on query solution specification. 

Each and every query plan can takes how much 

execution time now can identify exactly. Which Query 

complier is the optimization query complier no one 

can identified specifically. Which path is best path no 

one can defined efficiently. Some of the disadvantages 

of using this kind of query processing are: Every 

Region maintains many number of query plans 

specification process. Some compilation of queries can 

takes more computation time specification process. It 

can contains optimal set solutions. 

 

ARCHITECTURE OF QUERY PROCESSING 

The main idea of PPQO is to incrementally solve (or 

approximate) the solution to the PQO problem as 

successive query execution calls are submitted to the 

DBMS. Fig. 1 shows a high-level architecture of our 

approach.  

 
Fig.1: Processing a Query 

 

Given a query and its parameter values, a traditional 

optimizer returns the optimal execution plan along 

with its estimated cost ((1) and (2) in the figure). In 

contrast, a PPQO-enabled optimizer introduces a data 

structure called PP, which incrementally maintains 

plans and optimality regions, allowing us to reuse 

work across optimizations. As the PP data structure 

becomes populated, it is possible to completely bypass 

the optimization process without hurting the quality of 

the resulting execution plans. When a new instance of 

a parametric query arrives ((3) in Fig. 1), PPQO tries 

to obtain an optimal (or near-optimal) plan by 

consulting the PP data structure. If it is successful, it 

returns such plan, and a full optimization call is 

avoided ((4) in Fig. 1). Otherwise, it makes an 

optimization call ((5) in Fig. 1), and both the resulting 

optimal plan and cost are added to the PP for future 

use ((6) in Fig. 1).  

 

Due to the size of the parameter space, PPs 

should not be implemented as exact lookup caches of 

plans because there would be too many “cache 

misses.” Also, due to the nonlinear and discontinuous 

nature of cost functions, PPs should not be 

implemented as nearest neighbour lookup structures as 

there will be no guarantee that the optimal plan of the 
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nearest neighbour is optimal or close to optimal for the 

point in the parameter space being considered.  

A parametric query Q is a text representation 

of a relational query with placeholders for m 

parameters vpt = (v1….vm). Vector vpt is called a 

Value Point. Examples of parameter values are system 

parameters (e.g., available memory) and query-

dependant parameters (e.g., constants in parametric 

predicates). Using vpt directly to model the parameter 

space and characterize regions of optimality for plans 

is in general difficult To address this problem, a 

transformation function Ω is used, which is optimizer 

specific and transforms Value Points into Cost Points. 

A Cost Point is a vector cpt = (c1…..cn), where each 

ci is a cost parameter with an ordered domain. A well 

known implementation of Ω is transforming 

parametric predicate values into the corresponding 

predicate selectivities. 

   

For instance, consider predicate age < $X$, 

with parameter $X$. Function Ω would then map a 

specific constant c for $X$ into the selectivity of the 

nonparametric predicate age < c. Let p be some 

execution plan that evaluates query Q for a given vpt. 

The cost function of p, denoted p(cpt), takes a Cost 

Point cpt as an input and returns the cost of evaluating 

plan p under cpt. For every legal value of the 

parameters, there is some plan that is optimal. Given a 

parametric query Q, the maximum parametric set of 

plans (MPSP) is the set of plans, each of which is 

optimal for some point in the n-dimensional cost-based 

parameter space. The region of optimality for plan p, 

denoted r(p), is defined as  

 

r(p)={(t1……..tn) | p is optimal at (c1 = t1; . . . ; cn = 

tn)} 

Finally, a parametric optimal set of plans 

(POSP) is a minimal subset of MPSP that includes at 

least one optimal plan for each point in the parameter 

space. Cost parameters are estimated during query 

optimization from value parameters and from 

information in the database catalog. Physical 

characteristics that affect the cost of plans do not 

depend on query parameters, such as the average tuple 

size or the cost of a random I/O, are considered 

physical constants instead of cost parameters. A 

crucial cost parameter that is used during optimization 

is the estimated number of tuples in (intermediate) 

relations processed by the query plan: most query 

plans have cost formulas that are monotonic in the 

number of tuples processed by the query. 

 

Implementation 
The current application is implemented on an 

Insurance management System. In that system for each 

and every query execution, these optimization 

techniques are called and the queries are implemented. 

The functional requirements which we are going to 

propose in this paper are as follows: 

1. The Query cost should be minimal. 

2. The Query has to consume minimum 

recourses like CPU cycles, memory etc.   

3. The Optimizer has to be implemented for 

query optimization. 

4. Query Optimization should be done with 

PPQO. 

The proposed Modules in this paper are:  

 Parametric Query Representation  

 Parameter Transformation Function  

 Parametric Plan Interface  

 Bounded PPQO implementation  

 Efficient implementation of get plan  

 

Parametric Query Representation  
A parametric query Q is a text representation of a 

relational query with placeholders for m parameters 

vpt =(v1; . . . ; vm). 

            Vector vpt is called a Value Point. Examples of 

parameter values are system parameters (e.g., available 

memory) and query-dependant parameters (e.g., 

constants in parametric predicates). We focus on 

query-dependant parameters since they cover the most 

common scenarios. 

 

Parameter Transformation Function  
Recall that a value parameter refers to an input value 

of the parametric SQL query to execute. On the other 

hand, a cost parameter is an input parameter in the 

formulas used by the optimizer to estimate the cost of 

a query plan. Cost parameters are estimated during 

query optimization from value parameters and from 

information in the database catalog. 

 

Parametric Plan Interface  
We component of PPQO by describing its two main 

operations:  

 

Add Plan Q; cpt; p; cÞ. This operation registers that 

plan p, with estimated cost c, is optimal for query Q at 

Cost Point cpt.  

 

Get Plan Q; cptÞ. This operation returns the plan that 

should be used for query Q and cost values cpt or 

returns null if no plan is considered good enough for 

Q. Now give an operational description of the PP 

 
Fig : Optimize always implementation 
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Fig : Optimize once implementation 

 

Bounded PPQO implementation 
           The intuition for the Bounded-PPQO 

implementation is given as follows: Consider a 

parametric query with two parameters. If plans pi and 

pj are optimal in some Cost Points cpti and cptj, which 

delimit a box. 

 
Fig : Bounded’s addplan Implementation 

 

 
Fig : Bounded’s Getplan implementation 

 

 

Efficient implementation of get plan  
The naive implementation of get Plan in enumerates 

all pairs of tuples, that were introduced by add Plan 

and tests if any pair bounds cpt. If some pair (ti; tj) 

bounds cpt, then plan pj can be returned as the answer 

to get Plan.  

     The complexity of this procedure is clearly 

quadratic in the size of TQ. To avoid the enumeration 

of all of pairs of triples that have to be checked, we 

apply an optimization that allows us to choose a single 

pair of triples (t1; t2) to be checked. 

 
Fig : Effecient Getplan Implementation 

 

RESULTS 

 
Fig : Login Page of PPQO 
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Fig : TO View all customer information 

 
Fig : To retrieve optimizer data 

 

 
Fig : user’s optimization data 

 

 

Conclusion 
PPQO is also amenable to be implemented in a 

complex commercial database system as it requires no 

changes in the optimization or execution processes. In 

fact, PPQO prototype ran outside the DBMS server. 

However, it is important to note that the function can 

be implemented by simply manipulating in memory 

histograms, which is a negligible fraction of 

optimization time and would not have resulted in any 

noticeable difference in our experimental evaluation.  

PPQO was evaluated in a variety of settings, with 

queries joining up to eight tables, with multiple sub 

queries, up to four parameters, and in plan spaces with 

close to 400 different optimal plans. 
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